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Abstract. Transitional relationships in the eye-tracking records have not 
received due attention in the past studies.  The present work applied network 
analysis in an attempt to identify central segments and functional communities 
around them.  The data were obtained from 20 subjects who read 10 frontal 
Web pages that were classified into three types of layouts. The network, built 
for each page, represented the transition of fixations among the segments of a 
5x5 mesh imposed on the screen. The core and peripheral nodes were identified 
by multiple centrality indices as well as the ranking scores and they 
corresponded fairly well to physical locations of the screen. The clique-based 
communities revealed interesting patterns that ran counter to "banner-blind" and 
that indicated the effects of the three layout types. We presently plan to 
incorporate a pattern mining technique(s) in hopes of enhancing the present 
approach. 

(The revised version titled "Networks Emerging from Shifts of Interest in 
Eye-Tracking Records" is to appear in eMinds, 2011, Vol.2(7).) 
 

Introduction 
When browsing books at a bookstore, many people tend to guess the quality of an entire 
book by its cover as is cautioned by a well-known aphorism "Don't judge a book by its 
cover. The same seems to hold for the web sites of businesses oriented toward consumers 
(often abbreviated as B2C). Bold as it may be, this belief led us to examine eye 
movements on the Web's top pages under the widely shared assumption in the field that 
eye fixations and saccades indicate viewers' interests or attention (Granka et al. [1]; 
Josephson [2]). 
  Researchers normally track eye movements across areas set out on a page instead of 
particular textual or graphical components due to the technology that is available today. 
One can set out segments by imposing a grid or mesh varying in size to cover different 
kinds of information such as a navigation menu, the main content, and advertisements 
(Habuchi et al. [3]; Pan et al. [4]). Alternately, one can set out segments equal in size 
when, for instance, comparing various pages with different layouts like those in the 
present work. Segments that attract a great deal of attention are called hotspots, as 
illustrated in Figure 1-a, which has a frontal web page covered by a 4 x 3 mesh. The size 
of the circles expresses the amount of fixations by an individual or collective user(s), 
indicating its hotness: the larger, the hotter (Cutrell and Guan [5]). Thus, one can infer the 
informativeness or attractiveness of the segments from the hotness. Yet, the analysis of 
hotness alone is rather insufficient because it is static, and neglects dynamic features, i.e., 
shifts of interest. 
  Of the two dynamic approaches (see Figure 1-b and c), scanpath analysis of 
saccade-fixate-saccade sequences (Goldberg [6]) should help reveal the properties of 
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individual trajectories, such as their length, smoothness, and spatial density. However, 
they are hard to synthesize over repeated measures or across individuals. Network 
analysis, on the other hand, can be applied to either individual or aggregate records, 
treating hotspots as nodes and the transitions between them as links. By focusing on the 
immediate relations among nodes, one naturally masks the longer sequential relations 
along the trajectories that deserve separate treatment as will be explained later in the 
Discussion. Yet, the advantages of network analysis become clear when it is aimed at 
locating the center or core of attention and the nearby segments visited by viewers. 

Figure 1: Static and dynamic approaches 

However, how should we identify a core node(s) of a network when there is no direct 
measure of the core-ness in network analysis? We need to derive it from available indices. 
In this connection, the congruence principle used by Matsuda et al. [7, 8] as well as that 
by Matsuda and Takeuchi [9] appears to be viable. In their analyses of relatively large 
undirected networks constructed from the textual information of two B2C web sites, they 
identified the core nodes on the basis of congruence among multiple centrality indices and 
importance rankings. In brief, nodes with high centrality and high rankings were judged 
to be cores. Moreover, they examined the vicinity networks of cores constructed from the 
neighborhoods of individual cores by union and intersection operations in terms of broad 
and narrow senses of vicinity.  

Stimulated by their approach at a general level, however, we found that some 
modifications were necessary for the present analysis, taking into consideration the small 
network size and the directionality of links as well as the presence of tightly connected 
sub-networks, technically known as cliques. In addition, peripheral nodes that 
consistently failed to attract attention seemed to be worth examining, since such segments 
were perhaps unwanted on an e-market page, whereas they may help avoid the jammed 
appearance on a fashionable page. It suffices to say that the peripheral nodes can be 
identified by reversal congruence, i.e., consistently low centrality and low rankings.  

It should be of great value to both eye-movement researchers and Web-designers to 
learn the correspondence between the core and peripheral nodes, on the one hand, and the 
segments placed on the screen, on the other. 

Before closing this section, we will provide a concise explanation of graph/network 
analysis. Interested readers should also see the Appendix for the glossary. Graphs, in the 
strictly mathematical sense, consist of points, often called nodes or vertices, and the 
connections between them, called arcs, edges, or links. Of the various types of graphs are 
networks and trees (Text Encoding Initiative [10]). In practice, graphs and networks are 
often used interchangeably and we have followed suit.  
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Nodes representing sources or origins are linked to the respective targets or 
destinations in a directed network. No such distinction is made in an undirected network. 
A clique is a tight subgraph in which every pair of nodes is linked. Note that a clique may 
contain sub-cliques. A community in network analysis represents a similar notion in 
which nodes are relatively densely connected compared to the nodes outside of it. 
Community detection has been one of the hottest issues in network analysis (see Newman 
[11]; Newman and Girvan [12]; Raghavan et al. [13]). Put briefly, the directionality led 
us to incorporate additional ranking scores, and the tight subgraphs led us to form 
clique-based communities.  

The centrality of a node in a given network can be measured by a) the number 
adjacent nodes–degree, b) the average length of the shortest paths from it to the 
rest–closeness, and, c) the proportion of shortest paths in all the pairs of nodes running 
through it–betweenness (See Freeman [14]). Beside these classical indices, the centrality, 
or importance, can be inferred from the ranking scores of Brin and Page’s [15] PageRank 
and Kleinberg’s [16] authority-and hub-scores.  

Method  
Subjects–Twenty residents, (7 males and 13 females), living near a research institute 
(AIST) located in Japan were recruited for the experiments. They had normal or 
corrected vision, and their ages ranged from 19 to 48.  

Figure 2: Layout types 

Stimuli–The frontal pages of ten commercial web sites were selected from various 
business areas–airlines, e-commerce, finance, and banking. The pages were classified into 
Types A, B, and C, which differed in their layout of the principal layer, while they all had 
a banner in the top layer, as shown in Figure 2. The main areas of Type A were 
sandwiched between sub-areas, while the main areas of Types B and C were accompanied 
by a single sub-area either on the left (B) or the right (C). The top pages will be referred 
to, hereinafter, as TPn, where n denotes the page number. 
Apparatus and Procedure–The 
stimuli were presented with 1024 x 
768 pixel resolution on a 17” TFT 
display of a Tobii 1750 
eye-tracking system with the rate 
set at 50Hz. The subjects were 
instructed to look at each page 
carefully for 20 sec. 
Mesh and Fixation–A 5x5 mesh 
was imposed on the effective part of 
the screen stripped of white margins, 
which had no text or graphics. The 
tracking records of each subject 
were transformed to fixation data 
on condition that the eyes stayed in 
the same area for a 100-msec. 

Figure 3. An example of 5 x 5 mesh 
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period. The segments of the mesh were sequentially coded by using a combination of 
alphabetical labels for the rows and numerical labels for the columns: A1, A2, . . . , A5 
for the first row; B1, . . . , B5 for the second; ...; and, E1 , ..., E5 for the fifth. 
Transition matrix–For network analysis, a square transition matrix was prepared for each 
page to record the frequencies of fixation shifts from one segment to another aggregated 
across subjects. Its rows (and columns) were arranged corresponding to the segment 
codes sorted as [A1, A2, . . . , A5, B1, . . . , B5, . . . , E1, . . . , E5]. The codes were used as 
the names of network nodes for the ease of inspection. 

The diagonal cells of the 25 x 25 matrices contained counts of prolonged fixations, i.e., 
loops in the network terminology. Finally, the entries of the transition matrices were 
divided by the respective total frequencies to express the relative volumes. The matrices 
served as adjacency matrices, the cell values of which were used as weights of links. All 
the computations and graph layouts were carried by the statistical package R and its 
library called igraph [17].  

Results 
Of the top 10 pages used as stimuli, TP5 was eliminated due to its broad white space. 

TP4 was also eliminated because of its absence of a solid core, which will be explained 
later in this section. The remaining pages were subjected to analysis, i.e., TP1, 3, 6, and 8 
(Type A), TP2 and 9 (Type B), and TP7 and 10 (Type C).  
3.1 Basic Properties  

The constructed networks were identical in size, and all were comprised of 25 nodes. 
The loops accounted substantial proportions of link weights–34.7 to 44.2% (Type A), 
39.2 to 41.3% (Type B), and 40.4 to 40.9% (Type C). For the sake of simplicity, however, 
they were omitted from subsequent analysis, which caused no side effects.  

As listed in Table 1, the initial networks did not greatly differ from one another on any 
indices. Yet, an interesting contrast was found in reciprocity defined as the ratio of the 
number of two-way links to the combined number of two-and one-way links. While the 
one-way links generally outnumbered the two-way links (reciprocity < .486), only on TP6 
the trend was slightly reversed (.507). High transitivity, ranged from .563 to .617, and 
mild density (< .390) indicated the presence of cliques defined as complete subgraphs.  

Table 1: Basic properties of initial networks by Type 
 Type A  Type B  Type C 
Index TP1 TP3 TP6 TP8  TP2 TP9  TP7 TP10 
Number of links           
  two-way 76 58 70 65  63 68  70 65 
  one-way 82 75 68 81  85 80  74 74 
  Total Na 234 191 208 211  211 216  214 204 
Reciprocity .481 .436 .507 .445  .426 .459  .486 .468 
Transitivity .617 .582 .593 .598  .609 .568  .575 .563 
Density .390 .318 .347 .352  .352 .360  .357 .340 
Notea: A two-way link consists of two links in opposite directions, 

  i.e., Total N = 2*(N of two-way) + (N of one-way links) 

3.2 Identification of core and peripheral nodes  
The nodes that were ranked highest (or lowest) at least on three indices were selected as 
core (or peripheral). There were no ties involved in the rankings. Of the cores listed in 
Table 2, perfect congruence was only observed on TP1 followed by less perfect ones on 
TP3, 7, and 10 that were ranked highest on four indices. The rest (TP6, 8, 2, and 9) 
minimally satisfied the criterion. Interestingly, all the rankings of the cores were highest 
in degree and closeness with two mild exceptions (TP8 and 2), probably due to the 
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node-centric property of the indices, as is explained in the Appendix. The peripheral-ness 
was more thorough compared to the core-ness in terms of the ranking values (see Table 3). 
The nodes recorded the lowest or second lowest rankings (i.e., 24 or 25) on the indices 
with exceptions for TP2 and TP7. Perfect congruence was observed on TP6 and TP9 
followed by nearly-perfect ones on TP1, 3, 8 (all of which belonged to Type A), and 10.  

Table 2: Core nodes ranked highest on at least three indices by Type 
 
 Type A  Type B  Type C 
 TP1 TP3 TP6 TP8  TP2 TP9  TP7 TP10 
Index B2 D3 C3 C3  C2 B3  B5 B1 
Degree 1 1 1 2  1 1  1 1 
Betweenness 1 1 2 2  1 3  1 7 
Closeness 1 1 1 1  2 1  1 1 
PageRank 1 1 5 1  8 4  3 1 
Authority-score 1 2 1 9  1 2  1 1 
Hub-score 1 6 2 1  5 1  2 8 

 

Table 3: Peripheral nodes ranked lowest on at least three indices by Type 
 
 Type A  Type B  Type C 
 TP1 TP3 TP6 TP8  TP2 TP9  TP7 TP10 
Index E4 E5 E4 E3  E5 D5  E3 E2 
Degree 25 25 25 25  25 25  25 25 
Closeness 25 24 25 25  23 25  21 25 
PageRank 25 25 25 25  24 25  21 24 
Authority-score 25 25 25 25  25 25  25 25 
Hub-score 25 25 25 24  25 21  25 25 

 
Concerning the correspondence between the computational (i.e., networks) and 

physical locations, three tendencies were immediately noticeable, as shown in Figure 4. 
The cores belonged to non-marginal rows B, C, and D, the peripherals belonged to bottom 
row E or to marginal column 5, and none of them appeared in the top row. The 
correspondence could have been perfect, had the cores B1 and B5 of TP7 and TP10 (Type 
C) been located in internal columns.  

Figure 4: Locations of cores and peripherals on screen  

3.3 Extraction of clique-based communities  
In view of the embedding structure of cliques, only the largest ones were obtained for 
each network. Their sizes were nearly identical: 7 (TP1, 3, and 6 of Type A, TP9 of B, 
and TP10 of C) and 8 (TP8 of Type A, TP2 of B, and TP7 of C). However, their numbers 
varied from 1 (TP8) to 17 (TP3) with 6 on average (see Table 4). Some of the cliques 



 
 

6 

pertaining to TP1, 3, and 6 of Type A did not contain the cores identified in the entire 
networks. The missing ratios (the number of cliques without cores to the total number of 
cliques) were 2/11 (TP1), 10/17 (TP3) and 3/5 (TP5).  

Table 4: Properties of cliques and clique-based communities by Type 
 Type A  Type B  Type C 
Index TP1 TP3 TP6 TP8  TP2 TP9  TP7 TP10 
Maximal cliques           
  n of cliques 11 17 5 1  2 7  3 2 
  n of cliquesa 2 10 3 0  0 0  0 0 
Clique-based community          
  Size 22 14 10 8  10 13  11 8 
  Reciprocity .478 .549 .625 .607  .537 .600  .653 .630 
  Transitivity .647 .812 .895 1.00  .920 .795  .898 .962 
  Density .429 .604 .722 .804  .700 .615  .736 .786 
Notea: Cliques without cores. 

The presence of multiple cliques in all networks except TP8 led us to form a 
community by union, !, of the clique(s) for each TP. The community size as in the index 
of the heterogeneity of cliques within individual networks in this study varied from 8 
(TP8 and 10) to 22 (TP1) with 12 on average. TP1 indeed yielded a community 
comprised of almost all nodes of the original network (22 out of 25).  

The extracted communities are shown in Figures 5 and 6 in large nodes linked by thick 
lines over the initial networks. The links connected to the cores are emphasized in 
different colors according to their directionality, i.e., two-way, inward, and outward.  

The community of TP1 was exceptional also with respect to reciprocity, transitivity, 
and density, probably due to the extreme heterogeneity of the cliques. Its reciprocity fell 
below .500, indicating the relative dominance of one-way links, whereas the opposite was 
true for all the other communities (! .537). Interestingly, one-way links were generally 
dominant in the initial networks (see Table 1). While the transitivity of the communities 
all increased from the initial networks, TP1 recorded the least increase, from .617 to .647, 
resulting in a sharp decline from the largest to the smallest values. The same held for 
density.  

  Finally, the communities differed in the inclusion of segments in the marginal rows, 
A and E. Concerning TP1 whose community size was nearly maximal (22/25), most 
marginal segments other than A2 and E4 remained in the community. All other 
communities but that of TP10 (Type C) included some of or all the segments of row A.  
Particularly noteworthy was the complete inclusion of the top row, [A1, . . . , A5], in the 
communities of TP9 (Type B) and TP7 (Type C). Furthermore, A1 and some other top 
segments were mutually linked to the cores (TP1 and 6 of Type A, TP2 and 9 of Type B, 
and TP7 of Type C). In sharp contrast to the top row, only the communities of TP1 and 
TP9 contained the marginal segment(s) in row E. Of these, TP9 contained E4 alone.  
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Figure 5: Clique-based communities of Type A 
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Figure 6: Clique-based communities of Types B (above) and C (below) 

Discussion 
The present network analysis revealed how the core and peripheral segments of frontal 
Web pages could be located from the eye-tracking records of viewers, which were 
transformed into transition matrices. It deserves special note that the identified cores were 
truly central not just because of the high rankings on multiple indices, but because of the 
agreement among local (degree) and global (betweenness and closeness) as well as 
recursive importance (PageRank and authority-and hub-scores). By altering the criterion 
from the high to the low end, we identified peripheral segments as well. Of particular 
interest were the cores and the peripherals, which corresponded fairly well to physical 
locations on the screen. Web designers can learn whether their intentions in allocating 
information were met or not from the results.  

The term ”banner-blind” (e.g., Pagendarm and Schaumburg [18]) refers to the 
reluctance of people to pay attention to banners often placed at the top of frontal web 
pages. That no cores represented the segments in row A seems to have confirmed this. On 
closer examination, however, they were frequently found in the clique-based communities. 
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Moreover, some of them were found to have mutual links to the respective cores in all 
types of layouts. Upper-left segment A1 was always present particularly in those cases. 
Hence, ”banner-blind” did not apply to the present records. If it exists, it must be more 
specific to the content and design rather than being universal. Still, one may argue that 
this might have been an artifact arising from the omission of loops in the treatment of 
hotness. We presently have no answers to this. Whether it was an artifact or not certainly 
deserves fuller investigations in the future.  

In contrast to the intermediate importance of top segments, the bottom segments 
attracted the least amount of interest by viewers. That it, the peripheral segments were 
concentrated on the bottom row and segment D5. Their locations were remote from the 
upper left segments. The lack of attention to these segments was in good agreement with 
the dominance of F-shaped patterns reported by Nielsen [21]  

We believe that forming clique-based communities could facilitate the evaluation of 
web pages, revealing tight linkages between limited number of segments unless the 
cliques were highly heterogeneous like TP1. With a manageable community size, one 
could closely examine the linkages of cores to their neighbors, for instance, with respect 
to the direction and/or weights of the links in light of the intentions in design.  

The composition of the cliques and the location of the core segments are indicative of 
the effect of page layouts. First, the pages of Type A alone produced cliques both with 
and without the cores. This complexity may be attributed to the presence of sub-areas on 
both sides of the main area. Second, the cores of Type C pages belonged to marginal 
columns, while those of Types A and B were located in the internal segments, both 
horizontally and vertically. The placement of the sub-area on the right of the main area in 
Type C might have influenced the fixation behavior by subjects. It is well known in brain 
science that our left and right vision is processed differently. The information presented in 
the left visual field of both eyes is sent to the right visual cortex, and vice versa. If this 
were the sole mechanism, we could easily provide design recommendations. However, 
the right and left hemispheres of the brain (cerebral hemispheres) communicate via the 
corpus callosum, possibly affecting the initial projections. Further complications arise 
from the fact that the two eyes do not always converge in reading characters (see 
Liversedge [19]). Although this is very intriguing, it will require much more evidence 
from carefully designed studies to fully account for the eye movements of web viewers on 
a physiological basis.  

In lieu of a conclusion, let us mention our current plan, which is to incorporate 
PrefixSpan (Pei et al. [22]) or any other relevant pattern mining technique(s). By doing 
this, we may be able to fill in the gaps between the two dynamic approaches–contrasting 
scanpath and network analyses. That is, to find predominant sub-paths of interest, the 
entire paths treated in the former are too long and the links connecting pairs of nodes in 
the latter are too short. A similar idea was proposed by West et al. [20] who demonstrated 
how the clustering pattern similarities in eye-tracking records were visualized but did not 
apply network analysis. It is our hope that our plan will lead us to finding clues that will 
settle the generality of principal scan patterns, i.e., F-shaped (Nielsen et al. [21]), 
zig-zagged (Lorigo et al. [23], or Z-shaped (as believed by many leaf-let designers).  
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Appendix: Glossary  

Clique: A complete subgraph in which every pair of nodes is connected either unilaterally 
or bilaterally.  

Density: The ratio of the number of links, n, to the maximally possible number, i.e., n/NC2, 
where N is the total number of nodes. For a directed network, the denominator is the 
maximally possible number of two-way links, i.e., 2"NC2.  

Reciprocity: The ratio of the number of two-way links to the sum of the number of 
two-and one-way links.  

Centrality indices: Degree, closeness and betweenness are well-known (see Freeman [14]). 
The former two are node-centric in that the degree of a node is the number of links 
directly attached to it and the closeness of a node is inversely proportional to the 
average distance (geodesics) to other nodes in a given network. Also based on 
geodesics g, betweenness uses the information differently with emphasis on the 
intervening role in the global structure as opposed to the local dominance of degree. 
The betweenness of a node is determined by the extent a node intervenes in 
transactions or flows between all pairs of nodes. The formulas for closeness and 
betweenness of nodev are: 

 
 
 

  
 

The three indices coincide for a node located in the middle of a wheel-or a star-like 
network.  
! 

closenessv = ( giv
i"v
# /(the number of nodes -  1))$1

betweennessv = givj
i"v,i" j,v" j
# /gij
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Ranking scores: PageRank (Brin et al. [15]) recursively determines the importance of a 
node by the importance of the nodes connecting to it, and their importance is further 
determined by the importance of the nodes connecting to them. Computationally, one 
first normalizes the adjacency matrix, A, by row, and, obtains the scores from the 
leading eigenvector of its transpose. When PageRank is applied to an undirected 
network, links are treated as bidirectional. Authority-and hub-scores (Kleinberg [16]) 
have mutually reinforcing relationships: The authoritativeness of a node is enhanced 
by the hubness of the nodes linking to it, while the hubness of a node increases as a 
function of the authoritativeness of the nodes they link to. Interestingly, authority-and 
hub-scores can be obtained from the leading eigenvectors of ATA for the former and 
AAT for the latter. Thus, they are identical when applied to an undirected network. 


