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Abstract

In this paper, we propose a Bayesian simultaneous demand and

supply model for aggregate data in a differentiated product market.

The proposed method treats price endogeneity and consumer hetero-

geneity as well as requires only aggregate data. In the Bayesian esti-

mation, we use an MCMC algorithm including the data augmentation,

Gibbs sampler and Metropolis-Hastings algorithm. Our likelihood for

the demand and supply model is directly derived from the endogenous

sales volume and price unlike a past similar framework. To show va-

lidity of our proposed method, we perform an analysis of simulated

data, and apply our method to data from the U.S. automobile market.
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1 Introduction

In making inferences about consumer preferences, we would like to make use

of data on choices by individuals, along with their heterogeneous personal

characteristics (disaggregate data). However, often we must perform such in-

ferences under the handicap that personal characteristics may not be linked

to choice data. That is, we only have information about the marginal dis-

tributions of characteristics or choices (aggregate data). Models of this type

were pioneered by Berry, Levinsohn and Pakes (1995; henceforth BLP, 1995).

An important aspect of most applications that must be incorporated in

the model is price endogeneity. It is known that ignoring price endogeneity

leads to estimation bias (Berry, 1994; Villas-Boas and Winer, 1999). There-

fore, modern analyses in marketing and economics often model firms’ pricing

behavior simultaneously with consumers’ purchasing behavior.

In the literature, there are both frequentist and Bayesian research streams.

The frequentists include Berry (1994), BLP (1995), Sudhir (2001), Petrin

(2002), Berry, Levinsohn and Pakes (2004; henceforth BLP, 2004), Myojo

(2007) and Myojo and Kanazawa (2010). Bayesian analysis was employed

by Yang et al. (2003), Romeo (2007), Jiang et al. (2009) and Musalem et al.

(2009). The Yang et al. (2003) Bayesian paper introduced both limited and

full information models for disaggregate data. The Yang et al. (2003) method

was extended to aggregate data by Jiang et al. (2009) and Musalem et al.

(2009) in the limited information framework, and by Romeo (2007) in the

full information case.

In this paper, we propose another Bayesian estimation method for the full

information model with aggregate data. To show validity of our proposed
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method, we perform an analysis of simulated data, and apply our method to

data from the U.S. automobile market.

The Bayesian framework offers us four advantages. First, in spite of the

complexity of models used, we can construct an exact posterior distribu-

tion for the parameters, which does not depend on specific distributional

assumptions for the random processes. Second, because the posterior distri-

bution is exact, finite sample inference may be conducted without resorting

to asymptotic methods of dubious applicability. Third, when appropriate,

we can incorporate existing knowledge, both formal and heuristic, about the

parameters in the Bayesian prior distribution. Fourth, the Bayesian frame-

work allows more general distributions of utility and cost parameters. We

can make more natural assumptions about these parameters.

Compared with the limited-information methods, the full-information

methods can improve the estimation if their supply side pricing modelings

are appropriate for markets we investigate. Additionally, the full-information

methods avoid a controversial problem of choosing instrumental variables

in the limited-information methods. Among the full-information methods,

Romeo (2007) used a pseudo-likelihood of mean utility which is calculated

by a contraction mapping using aggregate sales volume in each Markov

Chain Monte Carlo (MCMC) iteration to follow the frequentists’ General-

ized Method of Moment (GMM). On the other hand, our method derives a

likelihood directly from aggregate sales volume and thus is constructed in

one unified computational framework of the MCMC without the contraction

mapping.

This paper is organized as follows. In Section 2, we specify our simulta-
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neous demand and supply model. Then we develop our Bayesian estimation

method for the model, using the data augmentation (Tanner and Wong,

1987), Gibbs sampler (Geman and Geman, 1984) and Metropolis-Hastings

algorithm (Hastings, 1970). In Sections 3 and 4, we implement the simu-

lation and empirical studies respectively. Conclusions and discussions are

presented in Section 5.

2 Simultaneous demand and supply model and

its Bayesian estimation

We explain our model in subsections 2.1 and 2.2. We adopt the BLP (1995)

model of a market for a differentiated indivisible good. We explain our

Bayesian estimation in subsection 2.3.

2.1 Demand Model

Consumers buy one unit of the good, chosen from among J products indexed

by j = 1, . . . , J , or may choose not to buy any of the products. We model

consumers who do not purchase as substituting an outside good, with index

j = 0. The demand model is derived from utility maximization by hetero-

geneous consumers. The observed characteristics of product j are given by

a vector xj = (xj1, . . . , xjQ). Product j’s price is denoted by pj and unob-

served product characteristics are summarized by ξj. For the outside good

j = 0, we assume that x0 = 0, p0 = 0 and ξ0 = 0. Consumer i’s income

is denoted by yi, and net income if product j is purchased is yi − pj. Con-
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sumer i’s idiosyncratic preference for product j is also denoted by εij. Then

consumer i’s utility function uij for product j is specified as

uij = uij(yi, pj,xj, ξj, εij; θi) = αi log(yi − pj) + xjβi + ξj + εij, (1)

where θi = (αi,β
0
i)
0 are respectively his/her marginal utility for log(yi − pj)

and a Q× 1 marginal utility vector for xj.

Researchers observe neither consumers’ idiosyncratic preference nor the

unobserved characteristics, so we specify a probabilistic model of discrete

consumer choice. Let sij denote the probability that consumer i will be

observed to choose product j. Assuming that εij in (1) is independent of the

other terms and is independently and identically Gumbel (type I extreme

value) distributed across consumers and alternatives, we derive the logistic

choice probability for sij as

sij = sij(yi,p,X, ξ;θi) =
exp(αi log(yi − pj) + xjβi + ξj)PJ
k=0 exp(αi log(yi − pk) + xkβi + ξk)

, (2)

where p = (p1, . . . , pJ)
0, X = (x01, . . . ,x

0
J)
0 and ξ = (ξ1, . . . , ξJ)0.

The market share function for product j is obtained by aggregating sij

in (2) with respect to yi and θi over the population of consumers as

s0j = s
0
j(p,X , ξ) =

Z Z
sijf

0(yi, θi)dyidθi (3)

where f 0(yi,θi) is the joint population density of yi and θi.

2.2 Supply Model

We assume that there are F firms in a multiproduct Bertrand oligopoly,

where each firm produces an exclusive subset of the J products and knows
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the true market share function (3) for its own products. Each firm sets price

for each of its products according to the pricing strategy that maximizes the

total profit from its products.

We specify the profit for each firm indexed by f = 1, . . . , F as

Πf =
X
j∈f
Ms0j(p,X, ξ)(pj − cj)

where M is the potential market size and cj denotes unit cost for product j.

The first order condition to obtain the profit maximizing prices p∗ is

p∗ = −

½µ
∂G

∂p

¶0¾−1
s0 + c, (4)

assuming the inverse above exists, where s0 = (s01, . . . , s
0
J)
0 and c = (c1, . . . ,

cJ)
0; (∂G/∂p) = (∂s/∂p) ∗ δ with their (j, k) elements being ∂Gj/∂pk,

∂sj/∂pk and δjk respectively; and δjk = 1 if prices for products j and k are

set by the same firm and δjk = 0 otherwise.

We assume that marginal cost is constant for each product. The cost

shifters of product j are given by a vector zj = (zj1, . . . , zjS) and unobserved

cost characteristics are summarized by ηj. We specify the unit cost vector c

in (4) as

log [c] = Zγ + η (5)

where Z = (z01, . . . , z
0
J)
0 and η = (η1, . . . , ηJ)0, and γ is a (S× 1) coefficient

vector. This specification enforces positive cost. Then substituting p∗ +

{(∂G/∂p)0}−1s0 from (4) for c in (5), we obtain a pricing equation as

log

"
p∗ +

½µ
∂G

∂p

¶0¾−1
s0

#
= Zγ + η, (6)

where we write p∗ = p∗(s0,X,Z, δ, ξ,η;γ).
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2.3 Bayesian estimation

We assume that researchers observe aggregated sales volume data vo =

(vo1, . . . , v
o
J)
0 and prices po = (po1, . . . , p

o
J)
0 for the J products but not in-

dividual purchase incidence. With known market size I, we will specify a

conditional distribution of sales volume (v0,v
0) = (v0, v1, . . . , vJ) given p.

Theoretically, we would use I = M . To avoid computational problems with

large M , we choose I appropriately. To obtain the number of product j sold

in randomly drawn I consumers, we operationalize

vj = int

µ
I ·
voj
M
+ 0.5

¶
for j = 1, . . . , J , where int(·) is the integral part in the expression (·). Then

the number of consumers choosing the outside good j = 0 in the I consumers

is v0 = I −
PJ

j=1 vj. Let v = (v1, . . . , vJ)
0.

We assume (v0, v
0) = (v0, v1, . . . , vJ) follows a multinomial distribution

with index I and category probabilities (s00, s
00) = (s00, s

0
1, . . . , s

0
J),

f(v|p,X, ξ) =
I!

v0! · · · vJ !
(s00)

v0 · · · (s0J)
vJ . (7)

This constitutes an assumption that we may aggregate individual choice

probabilities sij to a representative probability s
0
j . Because the taste pa-

rameter θi is unobserved, we do not have the joint population distribution of

yi and θi in (3). Therefore, to construct s
0
j , we replace it with a simulation

estimator from the randomly drawn I individuals,

sj(p,X , ξ;y,θ) =
1

I

IX
i=1

sij, (8)

where y = (y1, . . . , yI)
0 is drawn from the empirical income distribution and

θ = (θ1, . . . ,θI) is drawn from its posterior distribution. Then we replace
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(7) with

f(v|p,X, ξ;y, θ) =
I!

v0! · · · vJ !
sv00 · · · s

vJ
J . (9)

Let s = s(p,X, ξ;y,θ) = (s1, . . . , sJ)
0. We assume that the unobserved cost

characteristics ηj for j = 1, . . . , J follow

ηj|σ
2
s ∼ N(0, σ

2
s).

Since the pricing equation (6) is implicit in p, we use the transformation

of variables η = log[p + {(∂G/∂p)0}−1s] − Zγ with a joint distributionQJ
j=1N(0,σ

2
s) for η = (η1, . . . , ηJ)

0 to derive the distribution of p as

f(p|X,Z, δ, ξ;y,θ,γ,σ2s)

= (2πσ2s)
−J
2

¯̄̄̄¯̄̄̄µ
∂η

∂p

¶¯̄̄̄¯̄̄̄
exp

⎡⎣− 1

2σ2s

JX
j=1

"
log

"
pj +

½µ
∂G

∂p

¶0¾−1
j·
s

#
− zjγ

#2⎤⎦
(10)

where ||(∂η/∂p)|| is the Jacobian and {(∂G/∂p)0}−1j· is the jth row of

{(∂G/∂p)0}−1.

In terms of consumers’ marginal utilities θ = (θ1, . . . ,θI), we assume

θi|θ̄,Σθ ∼MVN(θ̄,Σθ) (11)

for i = 1, . . . , I as in Yang et al. (2003), where θ̄ is a Q× 1 mean vector and

Σθ is a Q × Q variance-covariance matrix. We also assume the unobserved

product characteristics ξj for j = 1, . . . , J follow

ξj|σ
2
d ∼ N(0,σ

2
d). (12)
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To obtain the joint posterior of the parameters θ = (θ1, . . . ,θI), θ̄, Σθ, γ,

σ2d and σ2s , we assume conjugate priors of θ̄, Σθ, γ, σ
2
d and σ2s as follows.

θ̄ ∼MVN(μ
θ̄
,V

θ̄
), (13)

Σθ ∼ IWgθ(Gθ), (14)

γ ∼MVN(γ̄,V γ), (15)

σ2d ∼ IGgd/2(Gd/2), (16)

σ2s ∼ IGgs/2(Gs/2). (17)

The μθ̄, V θ̄, gθ, Gθ, γ̄, V γ , gd, Gd, gs and Gs are hyperparameters.

Let us omit the exogenous y, X, Z and δ for notational simplicity. Mul-

tiplying the distributions of v, p, θ = (θ1, . . . , θI) and ξ in (9) through (12),

and the priors of θ̄, Σθ, γ, σ
2
d and σ2s in (13) through (17) so far, we obtain

f(ξ, θ, θ̄,Σθ,γ, σ
2
d, σ

2
s |v,p, ξ) ∝ f(v|p, ξ; θ)f(p|ξ;θ,γ,σ2s)

×

"
IY
i=1

f(θi|θ̄,Σθ)

#"
JY
j=1

f(ξj|σ
2
d)

#
×f(θ̄)f(Σθ)f(γ)f(σ

2
d)f(σ

2
s). (18)

Therefore, we obtain the joint posterior of the parameters by averaging (18)

over ξ as

f(θ, θ̄,Σθ,γ, σ
2
d,σ

2
s |v,p) =

Z
f(ξ,θ, θ̄,Σθ,γ,σ

2
d, σ

2
s |v,p)dξ. (19)

However, it is difficult to calculate the integral (19) analytically due to intri-

cately embedded ξ in the integrand. Therefore, we apply the data augmen-

tation (Tanner and Wong, 1987) to (19), in which we further apply the Gibbs

sampler (Geman and Geman, 1984), and then obtain an MCMC algorithm
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in Appendix A. In the MCMC algorithm, we generate random draws of ξ,

θ, θ̄, Σθ, γ, σ
2
d and σ2s from their conditional posteriors in Appendix B.

Since the conditional posteriors of ξ and θ have nonstandard parametric

forms, we apply the Metropolis-Hastings algorithm of the third method in

Chib and Greenberg (1995) to them: For the conditional posterior of ξ, we

first generate proposal draws of ξ = (ξ1, . . . , ξJ)
0 from

QJ
j=1 f(ξj|σ

2
d) in (22)

which is a mixture of J identical normal distributions. Then we evaluate the

acceptance probability for those proposal draws by acceptance probability of

ratio of f(v,p|ξ;θ,γ, σ2s) with proposal and current values for ξ. For the

conditional posterior of θ, we follow a similar way.

3 Simulation study

In this section, we implement simulation studies to validate our proposed

method. Specifically, we check if our proposed method can recover true

parameter values. Also we are interested in the speed and stability of con-

vergence of parameter distributions, including relative speed of convergence

among the parameters. We also call attention to some implementation issues

such as nonpositive cost and computational zero likelihood problems.

3.1 Simulation design

We construct data for simulated markets such that computational problems

like multicollinearity do not arise in order to focus on convergence behavior.

We set the market size M = 100,000. On the demand side, we specify
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consumer i’s utility uij for product j as

uij = αi log(yi − pj) + βi1xj1 + · · ·+ βi5xj5 + ξj + εij (20)

where θ̄ = (ᾱ, β̄
0
)0 = (ᾱ, β̄1, . . . , β̄5)0 = (3, 2, . . . , 2)0 and Σθ = diag(σ

2
α,σ

2
β1
,

. . . ,σ2β5) = 0.1E6. Given θ̄ and Σθ, we generate true θ1, . . . ,θ100,000 ran-

domly from MVN(θ̄,Σθ) in the market. On the supply side, we choose to

use a subset of characteristics that consumers value as cost shifters while

allowing demand-side-specific and supply-side-specific variables. Concretely,

we specify product j’s pricing equation with cost shifters of zj = (zj1, . . . , zj4,

zj5) = (xj1, . . . , xj4, zj5) as

log

"
pj +

½µ
∂G

∂p

¶0¾−1
j·
s

#
= γ1xj1 + · · ·+ γ4xj4 + γ5zj5 + ηj (21)

where γ = (γ1, . . . , γ5)
0 = (1, . . . , 1)0. Notice that Q = 5 and S = 5.

In the simulated market, there are five firms each of which sells an exclu-

sive set of two products. This means the market offers J = 10 products. We

randomly generate values for x11, . . . , x10,1, and then for for x12, . . . , x10,2

from N(0, 0.12). If these two have a correlation less than 0.05, we retain

both. Otherwise, keep discarding and regenerating x12, . . . , x10,2 until the

correlation with x11, . . . , x10,1 is less than 0.05. We randomly generate val-

ues for x13, . . . , x10,3 from N(0, 0.12), and check if its correlations with two

accepted x11, . . . , x10,1 and x12, . . . , x10,2 are less than 0.05. In this way,

we generate xj1, . . . , xj5 for j = 1, . . . , 10 so that any two of the five sets

of (x11, . . . , x10,1)
0, . . . , (x15, . . . , x10,5)0 have a correlation less than 0.05 to

avoid the multicollinearity problem in (20). We follow a similar process to

generate (z15, . . . , z10,5)
0 which has a correlation less than 0.05 with any set
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of the other four sets of (x11, . . . , x10,1)
0, . . . , (x14, . . . , x10,4)0. We set x0 = 0

for the outside good.

We set true values for the variance parameters of the unobserved product

and cost characteristics respectively as σ2d = 10−4 and σ2s = 10−4. Given

σ2d and σ2s , we randomly generate a true value for each component of ξ =

(ξ1, . . . , ξ10)
0 from N(0, σ2d) and that of η = (η1, . . . , η10)

0 from N(0,σ2s)

until they have correlations less than 0.05 with all of the observed product

characteristics and cost shifters respectively. Note that ξ0 = 0 for the outside

good j = 0.

We obtain positive values for incomes y1, . . . , y100,000 randomly from the

log normal distribution with mean 1 and standard deviation 0.1. We finally

determine a pair of equilibrium values for market shares s0 and prices p∗ for

the 10 products, using the Newton-Raphson method with ten dimensional

nonlinear simultaneous equations in (6). We note that p0 = 0 for the outside

good j = 0. We also note that vo =Ms0.

3.2 MCMC implementation

We now check if our proposed method can recover the true parameter values.

We randomly draw I = 1,000 from the M = 100,000 consumers for the

estimation. To obtain reliable results according to Gelman (1996), we run

five independent MCMC sequences with different sets of initial parameter

values. See Appendix C.1 for actual initial parameter values used. Note

that these initial values are designed to avoid not only nonpositive values for

costs in c but also the likelihood with computationally zero which can be

time consuming. Each sequence has 30,000 iterations.
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We also set hyperparameter values for μθ̄, V θ̄, gθ, Gθ, γ̄, V γ gd, Gd, gs

and Gs. See Appendix C.1 for actual hyperparameter values used. Of these

values, μθ̄, V θ̄, gθ, Gθ, gd and Gd are designed to avoid the nonpositive

costs.

We assess the convergence of the MCMC algorithm by inspecting a time-

series plot of draws for each parameter from the five MCMC sequences. We

also check if the 95% posterior inverval from the last halves of draws in the

five MCMC sequences includes its true value for each parameter.

We summarize the results in time-series plots in Figures 1 and 2 and

summary statistics in Table 1. We confirmed the convergences for all of

the parameters to their true values. Each of their 95% posterior intervals

included the corresponding true value.

There are three points to be noted on the summary statistics in Ta-

ble 1. First, the posterior standard deviation 0.056 of ᾱ was far smaller

than the posterior standard deviations (0.44, 0.58, 0.48, 0.43, 0.47)0 of β̄ =

(β̄1, . . . , β̄5)
0. Second, the posterior mean 0.26 of σ2α was smaller than the

posterior means (0.44, 0.34, 0.35, 0.35, 0.35) of (σ2β1, . . . , σ
2
β5
). Third, the pos-

terior standard deviation 0.13 of σ2α was much smaller than the posterior

standard deviations (0.51, 0.28, 0.42, 0.29, 0.44) of (σ2β1 , . . . ,σ
2
β5
). In the fol-

lowing, we will first describe how the first and third facts are consequences

of the second fact. Then we will explain why the second fact arose.

As for the first fact, let b̄α =
P1000

i=1 αi/1000 and
b̄βq = P1000

i=1 βiq/1000.

Since
√
var[b̄α] = √

σ2α/1000 and
√
var[ b̄βq] = √

σ2βq/1000 approximate the

posterior standard deviations of ᾱ and β̄q respectively, the fact that the

posterior mean of σ2α was less than that of σ
2
βq
for q = 1, . . . , 5 is the reason
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for the first fact.

As for the third fact, we note that the theoretical posterior standard

deviations of σ2α and σ2βq are
√
var[σ2α] =

√
2E[σ2α]

2/1001 and
√
var[σ2βq ] =

√
2E[σ2βq ]

2/1001 respectively. Therefore, the fact that the posterior mean of

σ2α was less than that of σ
2
βq
for q = 1, . . . , 5 is also the reason for the third

fact.

Now we turn our attention to the reason why the posterior mean of σ2α was

smaller than that of σ2βq for q = 1, . . . , 5. In our proposed method, βiq exists

only in the components of sij formula in (2). On the other hand, αi appears

not only in the components of sij but also in the other components of the

pricing equation. This formulation worked to generate few negative values

for αi which was the coefficient for log(yi−pi) and thus took postive values for

almost all consumers. This means our proposed method restricted the range

αi could take, which in turn induced the second fact of the posterior mean

of σ2α being smaller than that of σ
2
βq
for q = 1, . . . , 5. If we had set a higher

true value for ᾱ, that is, the true α1, . . . ,αI generated from MVN(θ̄,Σθ)

would have been also higher, then the posterior mean of σ2α would have been

higher and the posterior standard deviations of ᾱ and σ2α would have been

also higher.

We also have some observations from the time-series plots in Figures 1

and 2. The time-series plots for ᾱ, γ and σ2α were stable. The stabilities in

the time-series plots for ᾱ and σ2α reflected their smaller standard deviations.

We also needed much larger number of iterations for the MCMC algorithm

to obtain reliable estimates for β̄ than that for ᾱ or γ.
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Figure 1: Time series plots for θ̄ and Σθ in the simulation study
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Figure 2: Time series plots for γ, σ2d and σ2s in the simulation study
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Table 1: Posterior means, standard deviations and quantiles (2.5%, 50% and

97.5%) in the simulation study

Parameter Mean Std.Dev. 2.5% 50% 97.5% True value

ᾱ 3.05 0.056 2.96 3.04 3.18 3

β̄1 1.84 0.44 0.93 1.86 2.67 2

β̄2 1.95 0.58 0.98 1.92 3.31 2

β̄3 1.89 0.48 0.94 1.87 2.78 2

β̄4 2.00 0.43 1.26 1.98 2.83 2

β̄5 2.16 0.47 1.17 2.21 3.01 2

σ2α 0.26 0.13 0.087 0.23 0.59 10−1

σ2β1 0.44 0.51 0.097 0.27 2.19 10−1

σ2β2 0.34 0.28 0.091 0.26 1.11 10−1

σ2β3 0.35 0.42 0.089 0.26 1.05 10−1

σ2β4 0.35 0.29 0.091 0.27 1.00 10−1

σ2β5 0.35 0.44 0.072 0.20 1.49 10−1

γ1 1.00 0.056 0.89 1.00 1.11 1

γ2 0.99 0.056 0.87 0.99 1.10 1

γ3 0.99 0.057 0.88 0.99 1.10 1

γ4 0.98 0.056 0.87 0.98 1.09 1

γ5 0.97 0.052 0.87 0.97 1.08 1

σ2d 0.00039 0.00048 0.000094 0.00027 0.0014 10−4

σ2s 0.00021 0.00014 0.000069 0.00017 0.00057 10−4

Note: The mean of R
(t)

ξ∗
is 0.76 and that of R

(t)

θ∗
is 0.68.
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3.3 Implementation issues and their remedies

As shown in Appendix D, when we use so-called diffuse priors for Σθ, σ
2
d

and σ2s as well as θ̄ and γ with the other settings being the same as those

above, we can overestimate Σθ, σ
2
d and σ2s . In summary, we can run into

three problems of the nonpositive cost, computational zero likelihood and

overestimations of Σθ, σ
2
d and σ2s in our proposed method.

The nonpositive cost problem is generated by choosing inappropriate sets

of values for the hyperparameters μθ̄, V θ̄, gθ, Gθ, gd and Gd and for ξ
(0),

θ(0), θ̄
(0)
, Σ

(0)

θ
and σ2d

(0)
. The computational zero likelihood problem was

produced by choosing inappropriate sets of values for ξ(0), θ(0), γ(0) and

σ2s
(0)
.

We think that there are two causes of the overestimation of Σθ:

(1) The posterior estimation method for θ induced the overestimation of

Σθ. In the posterior estimation method for θ, we averaged all of the

functions of θ = (θ1, . . . ,θI) with respect to i = 1, . . . , I and then

reduced the information about the variances and covariances of θ =

(θ1, . . . , θI).

(2) The small number J = 10 of products induced large posterior variances

of σ2d and σ2s which in turn affected the posterior estimation method for

Σθ indirectly through the posterior estimation method for θ. Specif-

ically, the posterior estimation method for θ was affected by a large

posterior variance of σ2d indirectly through ξ and was affected by a

large posterior variance of σ2s directly or indirectly through γ.

We also think that there was one common cause of the overestimations of
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σ2d and σ2s : The small number J = 10 of products allowed the priors of σ2d

and σ2s with low densities around their true values to retain their influences

largely in their posteriors; and allowed their posterior means to be larger.

To avoid all of the three problems, we have to choose appropriate sets of

values for the hyperparameters μ
θ̄
, V

θ̄
, gθ, Gθ, gd, Gd, gs and Gs and for

ξ(0), θ(0), θ̄
(0)
, Σ

(0)

θ
, γ(0), σ2d

(0)
and σ2s

(0)
. It would be nice to have enough

information on the parameters so that we are able to specify such appropriate

sets of these values. Such information would be obtained from experts in the

field, relevant theories and other datasets of relevance. However, it is not

always possible to have the information available.

The nonpositive cost and computational zero likelihood problems give us

information as to inappropriate sets of these values. Hence, we search for

appropriate sets of these values by re-setting them and then re-running the

MCMC algorithm several times based on the directions. This process is easy.

On the other hand, it is somewhat tricky for us to set priors of Σθ, σ
2
d

and σ2s informative enough to estimate them as well as the other parame-

ters correctly. In the following, we suggest three possible criteria to obtain

such information. First, meaningful informative prior of Σθ should pro-

duce right sign conditions for components of θi for i = 1, . . . , I since our

experiences show that θ̄ can be correctly estimated with diffuse priors for

all of the parameters. Second, meaningful informative priors of σ2d and σ2s

should not produce extremely large or small acceptance probability Rξ∗ in

the Metropolis-Hastings algorithm. The same can be said for informative

priors of Σθ and σ2s relative to Rθ∗. Third, meaningful informative priors of

σ2d and σ2s should produce the orders of the theoretical prior means of σ
2
d and
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σ2s smaller than the smallest orders of variances of observed product char-

acteristics and of cost shifters respectively. This is because the variances σ2d

and σ2s are those of unobserved product and cost characteristics, and their

variabilities should be dominated by the variabilities of influential observed

product characteristics and cost shifters respectively.

4 Empirical study

To show how practical the proposed method is, we first bring it to the 1995

U.S. new automobile market and obtain estimates for parameters. Given

the estimates, we then provide forecasts for market shares for products in

the 1996 market and examine their accuracy by comparing with observed

market shares. We chose the U.S. automobile market for two reasons. First,

it is a market for a differentiated indivisible product where aggregate sales

volume data and product characteristic data are publicly available, while dis-

aggregate purchase incidence data are not. While similar methods have been

applied to markets for divisible product, one where a consumer purchases

one unit of the product during the course of observation fits the model best.

Second, it is one of the largest industries in the U.S. and thus has a strong

influence on both domestic and international economies.

The choice of the specific year 1995 for the U.S. automobile market was

dictated by the following two considerations. First, we use an empirical eight-

year total cost of ownership (TCO) as the price variable for consumers.2 Then

2The ownership period of eight years is derived from the median age for vehicle: 7.7 in

1995 and 7.9 in 1996 according to Ward’s Motor Vehicle Facts & Figures 1999.
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this restricts the date used to those for which we have at least eight years of

data on non-price components of TCO. The year of 1996 is the most recent

year for which we have TCO data, and we use 1996 data for an out-of-sample

comparison. This means that the data for 1995 is the most recent we can

use for our estimation.

The second consideration is that consumers’ preferences were stable be-

tween the introduction of the minivan in 1985, and the introduction of hybrid

electric vehicles (HEVs) in the 1999.3

4.1 Data

We obtain observed data from several sources. For consumers’ incomes y,

we use data in Integrated Public Use Microdata Series — Current Population

Survey 1995 (IPUMS-CPS 1995 ) by Minnesota Population Center in Uni-

versity of Minnesota.4 Most households received “Total Household Income”

which is less than any of the estimated eight-year TCOs for the top 50 mod-

els in sales, which will be included in our estimation. Since automobiles are

durable, we multiply each household’s “Total Household Income” from the

3Although electric cars had been expected for some time, we note that the first HEV

(in Japan) was the Toyota Prius in 1997, while the HEV was introduced to the U.S.

as the Honda Insight in 1999 followed by the Prius in 2000. Sales for the Prius in North

America increased from 5,800 in 2000 to 1,838,000 in 2007 according to a news release from

TOYOTA (http://www.toyota.co.jp/jp/news/08/May/nt08 032.html, in Japanese).

This suggests that U.S. consumers were probably not very aware of the future potential

of the HEV in 1995 and 1996.
4The IPUMS-CPS 1995 is publicly available on their website (http://cps.ipums.org/

cps/) and has information on a joint distribution of a variety of consumer demographics

for the U.S. population.
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IPUMS-CPS 1995 by the same eight year life-span used to compute TCO.

Their average annual income is $42,953.

The market size M in 1995 is assumed to be

M =
(vehicles per household)× (households)

planned holding period
,

where the number 2 of vehicles per household and the number 104,212,000 of

households are from Consumer Expenditure Survey 1995 (henceforth CEX

1995 ).5 The planned holding period of 8 years is chosen to match the period

used in computing TCO. The observed sales volumes vo are from Ward’s

Automotive Yearbook 1996.

The TCO (p) for each 1995 model includes its acquisition cost, M&R cost,

operating cost and resale value.6 Acquisition cost is taken from the “mid”

retail price from Ward’s Automotive Yearbook 1995. Operating cost for each

1995 model is calculated from its mileage in Ward’s Automotive Yearbook

1995 and the U.S. city average gasoline prices in 1995 through 20027 with an

assumption that each vehicle travels 12,000 miles per year during the eight

years8. The resale value is the discounted average of the wholesale and retail

values in 2003, eight years after a consumer purchases a new vehicle in 1995,

from Official Wisconsin Automobile Valuation Guide 2003.9

5The number 2 of vehicles per household is a rounded value of 1.9 from the website of

CEX 1995 (http://www.bls.gov/cex/1995/Standard/cusize.pdf).
6Examination of insurance cost data shows it to be very driver- and location-dependent,

even for the same make and model. We omit it from the computation.
7The U.S. city average gasoline prices in 1995 through 2002 are on the website of Energy

Information Administration (http://www.eia.doe.gov/emeu/aer/txt/stb0524.xls).
8The number 12,000 miles each vehicle travels per year is an approximate average of

12,385 in 1995 and 11,813 in 1996 from Ward’s Motor Vehicle Facts & Figures 1999.
9The discount rate used is the rate on 10-year U.S. government bonds for each year,
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An estimated M&R cost is reported by The Complete Car/Small Truck

Cost Guide every year. However, Puripunyavanich et al. (2004) showed that

it had a serious overestimation for each model because their cost figures for

repairs were based on service contract pricing for automobiles’ mechanical

breakdowns. We follow Puripunyavanich et al. (2004), and obtain an es-

timated eight-year M&R cost for each 1995 model by the sum of annual

products of the following three estimates between 1995 and 2002: An av-

erage M&R cost per problem, an expected annual number of problems for

each 1995 model, and a series of annual ratios of an M&R cost per problem

for each 1995 model relative to a weighted average (in sales) M&R cost per

problem. The third factor accounts for variation in M&R costs across models

as they age. We used data for 166 models to obtain our estimated M&R cost.

We next explain the number J of models, observed product characteris-

tics and cost shifters we include in our estimation. We obtained data on 160

models available in 1995, accounting for essential all sales of new automobiles

in the U.S. To reduce the computational burden, we need to reduce the num-

ber of models treated. First, we combined twin models (and the occasional

triplets) into a single model in cases where the price range indicated that

adjusted for inflation, in the 8-year period. The former rate is on the web site of Federal

Researve Board (https://www.federalreserve.gov/releases/h15/data/Annual/H15

TCMNOM Y10.txt). For the value of inflation is obtained by subtracting the increasing rate

in the Consumer Price Index (CPI) from 1994 to 1995 on the web site of Bureau of Labor

Statistics in U.S. Department of Labor (ftp://ftp.bls.gov/pub/special.requests/

cpi/cpiai.txt).
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they were very close substitutes up to a small brand effect.10 This left us

with 117 models. Of these, we include the top J = 50 in sales, which account

for 83.80% of the total sales for the 117 models and 44.61% of the potential

market size M respectively. Of the 50 models, 39 are from U.S. manufac-

turers and 11 are from Japanese manufacturers. We summarize the TCO

breakdown for the 50 models, grouped by category, in Tables 2 through 8.

Data on product characteristics in X, Z and the manufacturer dummy

variables in δ are from Ward’s Automotive Yearbook 1995, except for the

predicted reliability on a five-point scale from Consumer Reports April An-

nual Auto Issue 1996. Observed product characteristics included in xj for

each model are size (length×width), a measure of safety (a dummy indicating

whether dual air bags are available standard or optional), three dummies for

minivan, pickup truck and SUV, and two dummies indicating the country

of origin of manufacturers (Japan and U.S.). The cost shifters in zj are an

intercept, the logarithm of observed sales volume voj to capture economies

of scale, a measure of acceleration (horsepower/weight), mileage, predicted

reliability, and observed product characteristics used in xj.

There are three points to be noted. First, the selection of product charac-

teristics and cost shifters follows the studies by BLP (1995), Sudhir (2001),

Petrin (2002), BLP (2004) and Myojo (2007). Second, we included mileage

and reliability in the cost shifters, but not in the observed product charac-

teristics, because they are accounted for in the operating cost and M&R cost

components, respectively, of TCO. Third, we used the intercept instead of

10A twin model is a very similar model under a different brand, such as the Ford Taurus

and the Mercury Sable.
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the U.S dummy in the pricing equation (6) while we used both Japan and

U.S. dummies in consumers’ utility (1). In other words, the outside good

j = 0 is the baseline in the demand model, while U.S. models play the role

of the baseline in the supply model. Notice that Q = 7 and S = 11.

4.2 MCMC estimation

We randomly obtain I = 1,000 households with their eight-year “Total

Household Incomes” greater than the largest estimated eight-year TCO.11

Then we run three independent MCMC sequences with different sets of ini-

tial parameter values. Each sequence has T = 50,000 iterations. Accroding

to the implications from Section 3, we set hyperparameter and initial param-

eter values. Note that the implications include how we avoid the nonpositive

cost, computational zero likelihood and overestimation problems. See Ap-

pendix C.2 for actual hyperparameter and initial parameter values used.

We assess the convergence of the MCMC algorithm by inspecting a time-

series plot of draws for each parameter from the three sequences in Figures 3

through 6. Tables 9 and 10 report summary statistics with the 90% and 95%

posterior invervals for each parameter from the last halves of draws in the

three MCMC sequences. The averages of the acceptance probabilities of Rξ∗

and Rθ∗ were 0.82 and 0.76 respectively.

We used a so-called diffuse prior for γ. Then we confirmed convergences

for all of the components of γ. Since we estimated γ correctly by using its

diffuse prior in the simulation study in Section 3, we were confident of the

11We decide the number of sample consumers included in the estimation, taking account

of the number J = 50 of models in the estimation as well as our computational burden.
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results for γ in this empirical study.

On the other hand, the other priors were informative. Then θ̄, Σθ, σ
2
d

and σ2s were estimated well as far as their priors were defined. Note that we

set the hyperparameter values for these priors, according to the implications

from Section 3.

We next explain the results for θ̄ in detail. The 95% posterior interval for

ᾱ was above zero as expected. The 95% posterior intervals for β̄size, β̄safety,

β̄minivan, β̄pickup and β̄SUV were above zero while those for β̄Japan and β̄U.S.

were below zero. Our results for θ̄ indicated that consumers’ utility was

positively affected by a product characteristic of size and dual air bags while

it was negatively affected by consumers’ expense of TCO. The minivans,

pickup trucks and SUVs also enhanced consumers’ utility. The negative

signs for the Japan and U.S. dummies were measured against the outside

good. Since the market share for the outside good based on our market size

M was the highest value of 55.39% among j = 0, . . . , 50, these negative

signs were accordance with the data. There was no difference in consumers’

preference for the Japanese models and the U.S. models because the 90%

posterior intervals for β̄Japan and β̄U.S. overlapped.

In our Bayesian estimation, we assumed consumer heterogeneity to be

the diagonal components of Σθ. Our results for the diagonal components

of Σθ indicated there existed individual differences in preference for the

corresponding product characteristics.

As for the results for γ, the 95% posterior interval for γsafety and 90%

posterior interval for γSUV were above zero while the 95% posterior interval

for γmileage was below zero. The results for γsafety and γSUV indicated that
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it took cost to produce vehicles with dual air bags and that it took more

cost to produce SUVs than the other models. As for the negative γmileage,

since mileage for a vehicle in general is highly correlated with the number of

cylinders and weight for it, the result reflected the fact that it took more cost

to produce vehicles with a greater number of cylinders or heavier vehicles.

Our results also implied that the Japanese models cost as much as the U.S.

models.

4.3 Prediction of the market shares for the top 50

models in sales in the 1996 market

In order to examine accuracy of our estimates from the 1995 data, we provide

forecasts for the market shares for the top 50 in sales of the 1996 models.

Specifically, we calculate predicted values for the market shares (8) for the

outside good and the 50 models (j = 0, . . . , 50), using our estimates. To

calculate them, we use estimated eight-year TCOs, observed product char-

acteristics X and unobserved product characteristics ξ = (ξ1, . . . , ξ50)
0 gen-

erated from the posterior of ξ for the top fifty 1996 models in sales, and

incomes y for randomly sampled 1,000 consumers from IPUMS-CPS 1996

and their marginal utilities θ = (θ1, . . . ,θ1,000) from the posterior of θ. We

then calculate 300 different sets of market shares for j = 0, . . . , 50 in terms

of different sets of ξ and θ. Note that the 300 sets for ξ and θ are randomly

obtained from last halves of draws in the three MCMC sequences. Our pre-

dicted market shares are the means of the 300 sets of the market shares for

j = 0, . . . , 50.

The predicted and observed market shares for j = 0, . . . , 50 are pre-
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sented in Figure 7. We also mark and specify 14 models whose observed

market shares were largely over/underestimated. In terms of the accuracy

of the predicted market shares for j = 0, . . . , 50, the mean of the absolute

percentage errors was 48.86% while the mean of the absolute deviations was

0.0037.

Except for the 12 largely over/underestimated models, our estimates pre-

dicted the observed market shares well for the other 36 models. Note that

the underestimated 9 models had tended to be acheiving top ranks of sales at

least in the past 5 years. Therefore, we could fail to capture the reputation of

these popular models by each ξj. If we could capture it, the overestimations

as well as the underestimations could improve. We can thus ascribe these

over/underestimations to limitation of our posterior estimation method for

ξ as well as that of data.

5 Conclusion and discussion

In this paper, we developed a Bayesian simultaneous demand and supply

model for aggregate data in a differentiated indivisible product market. To

predict consumers’ purchasing behavior, our proposed method requires only

aggregate data unlike the Yang et al. (2003) method which requires disag-

gregate data.

Our Bayesian estimation used the MCMC algorithm including the data

augmentation, Gibbs sampler and Metropolis-Hastings algorithm. To take

an advantage of conjugacy, we assumed multivariate normals for θ1, . . . , θI ,

θ̄ and γ even when some of their values should be only positive or negative.
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Figure 3: Time series plots for θ̄ in the empirical study

ᾱ

β̄
s
iz
e

β̄
s
a
f
e
ty

β̄
m
in
iv
a
n

β̄
p
ic
k
u
p

β̄
S
U
V

β̄
J
a
p
a
n

β̄
U
.S
.

# of iteration

# of iteration # of iteration

37



Figure 4: Time series plots for the diagonal components of Σθ in the empir-

ical study
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Figure 5: Time series plots for γ in the empirical study
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Table 9: Posterior means, standard deviations and quantiles for θ̄ and Σθ

(2.5%, 5%, 50%, 95% and 97.5%) in the empirical study

Parameter Mean Std.Dev. 2.5% 5% 50% 95% 97.5%

ᾱ 41.98 2.01 38.29 38.81 42.00 45.60 46.13

β̄size 1.67 0.16 1.39 1.43 1.66 1.95 2.00

β̄safety 0.45 0.087 0.27 0.30 0.45 0.59 0.62

β̄minivan 0.39 0.10 0.19 0.23 0.39 0.57 0.59

β̄pickup 0.33 0.10 0.064 0.16 0.34 0.47 0.49

β̄SUV 0.67 0.11 0.42 0.48 0.68 0.84 0.89

β̄Japan −3.70 0.23 −4.15 −4.08 −3.69 −3.32 −3.24

β̄U.S. −3.20 0.23 −3.66 −3.59 −3.20 −2.82 −2.75

σ2α 3.23 3.37 0.72 0.83 2.19 8.89 12.48

σ2βsize 0.099 0.065 0.029 0.033 0.082 0.22 0.27

σ2βsafety 0.0074 0.0065 0.0019 0.0022 0.0055 0.018 0.024

σ2βminivan 0.0078 0.0067 0.0019 0.0022 0.0057 0.021 0.027

σ2βpickup 0.0038 0.0041 0.00099 0.0012 0.0028 0.0091 0.014

σ2βSUV 0.019 0.021 0.0046 0.0053 0.013 0.055 0.076

σ2βJapan 0.40 0.30 0.11 0.12 0.31 1.01 1.23

σ2βU.S. 0.31 0.21 0.093 0.11 0.25 0.68 0.80

40



Table 10: Posterior means, standard deviations and quantiles for γ, σ2d and

σ2s (2.5%, 5%, 50%, 95% and 97.5%) in the empirical study

Parameter Mean Std.Dev. 2.5% 5% 50% 95% 97.5%

γintercept −1.40 1.06 −3.48 −3.14 −1.40 0.34 0.68

γhp/weight 0.035 0.042 −0.047 −0.033 0.035 0.10 0.12

γsize 0.35 0.27 −0.18 −0.089 0.35 0.79 0.88

γmileage −0.055 0.013 −0.081 −0.077 −0.055 −0.035 −0.031

γreliability 0.049 0.035 −0.019 −0.0084 0.049 0.11 0.12

γsafety 0.21 0.078 0.061 0.086 0.21 0.34 0.37

γminivan 0.19 0.13 −0.067 −0.023 0.19 0.40 0.44

γpickup −0.19 0.12 −0.43 −0.39 −0.19 0.015 0.058

γSUV 0.22 0.13 −0.043 0.0024 0.22 0.44 0.49

γJapan 0.12 0.11 −0.095 −0.061 0.12 0.30 0.33

γlnvo −0.056 0.065 −0.18 −0.16 −0.056 0.051 0.072

σ2d 0.00011 0.00014 0.000024 0.000027 0.000071 0.00028 0.00040

σ2s 0.037 0.0085 0.024 0.025 0.035 0.052 0.057
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Figure 6: Time series plots for σ2d and σ2s in the empirical study
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We can instead use log-normals and truncated normals for such parameters,

but we lose conjugacy.

We brought our proposed method to simulated data and empirical data

from the U.S. automobile market. In the simulation study, we note three

problems of the nonpositive cost, computational zero likelihood and overes-

timations of Σθ, σ
2
d and σ2s our proposed method can run into, for which

we proposed remedies. In the empirical study, it could be difficult for us to

predict observed market shares for some products due to our limitation of

our posterior estimation method for ξ as well as that of data.

In what follows, before discussing future research, we will briefly discuss

some ideas on how to modify and improve our proposed method to over-

come the nonpositive and overestimation problems by itself and to overcome

the limitation of our posterior estimation method for ξ. We note that our

current MCMC algorithm has already had a mechanism to recover from the

computational zero likelihood problem by itself in the Metropolis-Hastings

algorithms for ξ and θ though it can be time-consuming.
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Figure 7: Predicted and observed market shares for the top 50 in sales of the

1996 models.
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Note: The left figure is with the outside good j = 0 while the right is without it. The dots and circles

indicate the predicted and observed market shares respectively.

Models with the number j marked on the right figure

1. Ford F-Series

2. Chevrolet C/K pickup / GMC Sierra

3. Dodge Caravan / Plym. Voyager / Chrysler Town & Country

4. Ford Taurus / Mercury Sable

5. Ford Explorer

7. Honda Accord

9. Toyota Camry

12. Chev. Blazer / GMC Jimmy

16. Jeep Grand Cherokee 4WD

35. Chev. Suburban / GMC Suburban

43. Dodge Dakota

49. Lincoln Town Car
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We first need to incorporate a mechanism to recover from the nonpositive

cost problem by itself. To modify the posterior estimation method for θ which

was a cause of the overestimation of Σθ, a method proposed by Chen and

Yang (2007) and Musalem et al. (2009) could be useful. In the method, they

first augmented aggregate sales volume with disaggregate purchase incidence

data. Then they estimated consumer i’s θi corresponding his/her augmented

purchase incidence. The method could obtain a more precise set of θ =

(θ1, . . . , θI) which would in turn generate a more precise posterior of Σθ.

Although a common cause of the overestimations of Σθ, σ
2
d and σ2s was

the small number J of products, there are not always enough products in a

market in which we investigate. To increase the number of data on products,

we can extend our model for cross-sectional data to that for panel data like

Yang et al. (2003). This extention can lead our current unobserved product

characteristics ξ = (ξ1, . . . , ξJ)
0 and cost characteristics η = (η1, . . . , ηJ)

0

to be ξn = (ξ1n, . . . , ξJn)
0 and ηn = (η1n, . . . , ηJn)

0 for n = 1, . . . , N , the

N being the number of times or locations of observation. This extention

also enables us to define heterogenous variances as well as covariances for

unobserved product and cost characteristics.

One possible reason for the over/underestimations of the observed market

shares for some products was limitation of our posterior estimation method

for ξ. We need to improve our posterior estimation method for ξ. We have

two ideas to improve it. The first idea is to estimate the components of

ξ = (ξ1, . . . , ξ50)
0 individually to be able to obtain a product-specific value

more precisely. Note that we estimated ξ = (ξ1, . . . , ξ50)
0 all at once in

MCMC1 throughMCMC3 in the MCMC algorithm in Appendix A, where
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it could be more difficult to estimate a product-specfic value for ξj for j =

1, . . . , 50 efficiently. We estimated ξ = (ξ1, . . . , ξ50)
0 all at once to reduce

computational burden. If we improved our MCMC algorithm to estimate

ξ = (ξ1, . . . , ξ50)
0 individually, we would increase computational burden when

we use 50 or more products.

The second idea is to reconsider our assumption to set the prior of σ2d.

The assumption was that all of the major influential product characteristics

on consumers’ utility were observed. We need better information to set an

alternative prior of σ2d.

In future, we need more empirical studies in other differentiated indivisi-

ble product markets, using our proposed method. We also wish to have two

kinds of comparison. One of them is to compare our proposed method with

the past Bayesian methods (Romeo, 2007; Jiang et al., 2009; Musalem et

al., 2009). The other is to compare our proposed method with the corre-

sponding past frequentists’ methods (BLP, 1995; Sudhir, 2001; Petrin, 2002;

BLP, 2004; Myojo, 2007). It is generally said that a Bayesian framework

facilitates exact and finite-sample inferences and requires no asymptotic the-

ories while it requires to assume priors for parameters. We could verify these

facts as shown in our simulation and empirical studies in Sections 3 and 4

respectively. Especially, we had to set priors for all of the parameters and

then had to use additional information for some of the priors to obtain more

valid and reliable results. We recognize the setting of priors is a Bayesian

disadvantage if we had little confident information about parameters in the

framework of the simultaneous demand and supply model. However, Myojo

and Kanazawa (2010) showed that the frequentists’ simultaneous demand
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and supply model framework also required a series of strong assumptions

for their asymptotic results to be valid. Additionally, since the asymptotic

theories are derived in terms of the number of products, it may not be ap-

propriate to apply the frequentists’ framework to some of the markets with

the limited number of products. We believe that it is important to uncover

the frequentists’ and Bayesian relative strengths and weaknesses in analyzing

consumers’ purchasing behavior in a differentiated indivisible product mar-

ket with the framework of the simultaneous demand and supply model for

aggregate data.

To predict consumers’ purchasing behavior from aggregate data is useful

because it is more difficult or costs more to obtain disaggregate data. We

believe that our proposed method will be an important contribution to the

literature of consumers’ purchasing behavior.
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A MCMC algorithm

Let ξ(t), θ(t), θ̄
(t)
, Σ

(t)

θ
, γ(t), σ2d

(t)
and σ2s

(t)
denote values for ξ, θ, θ̄, Σθ,

γ, σ2d and σ2s respectively at the tth iteration for t = 0, . . . , in which ξ(0),

θ(0), θ̄
(0)
, Σ

(0)

θ
, γ(0), σ2d

(0)
and σ2s

(0)
especially denote their initial values we

have to set; and let θ∗ = (θ∗1, . . . ,θ
∗
I) and ξ

∗ = (ξ∗1 , . . . , ξ
∗
J)
0 denote proposal

draws for θ = (θ1, . . . ,θI) and ξ = (ξ1, . . . , ξJ)
0 in their Metropolis-Hastings

algorithms respectively. Our MCMC algorithm is as follows.

MCMC0 Set values for the hyperparameters μθ̄, V θ̄, gθ, Gθ, γ̄, V γ , gd,

Gd, gs and Gs, and θ
(0), θ̄

(0)
, Σ

(0)

θ
, γ(0), σ2d

(0)
, σ2s

(0)
and ξ(0).

For t = 1, . . . ,

MCMC1 Generate each component of ξ∗ = (ξ∗1 , . . . , ξ
∗
J)
0 randomly from

N(0,σ2d
(t−1)

).
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MCMC2 Calculate

R
(t)

ξ∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min

µ
f(v,p|ξ∗,θ(t−1),γ(t−1),σ2s

(t−1)
)

f(v,p|ξ(t−1),θ(t−1),γ(t−1),σ2s
(t−1))

, 1

¶
if the denominator f(v,p|ξ(t−1),θ(t−1),γ(t−1),σ2s

(t−1)
) > 0,

1 otherwise.

MCMC3 Set ξ(t) = ξ∗ with probability R(t)
ξ∗
or ξ(t) = ξ(t−1) with probability

1−R(t)
ξ∗
.

MCMC4 Generate each component of θ∗ = (θ∗1, . . . , θ
∗
I) randomly from

MVN(θ̄
(t−1)

,Σ
(t−1)
θ

).

MCMC5 Calculate

R
(t)

θ∗
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min

µ
f(v,p|ξ(t),θ∗,γ(t−1),σ2s

(t−1)
)

f(v,p|ξ(t),θ(t−1),γ(t−1),σ2s
(t−1))

, 1

¶
if the denominator f(v,p|ξ(t),θ(t−1),γ(t−1),σ2s

(t−1)
) > 0,

1 otherwise.

MCMC6 Set θ(t) = θ∗ with probability R(t)
θ∗
or θ(t) = θ(t−1) with probabil-

ity 1−R(t)
θ∗
.

MCMC7 Generate θ̄
(t)
from f(θ̄|θ(t),Σ(t−1)

θ
).

MCMC8 Generate Σ
(t)

θ
from f(Σθ|θ

(t), θ̄
(t)
).

MCMC9 Generate γ(t) from f(γ|θ(t), σ2s
(t−1)

, ξ(t),p).

MCMC10 Generate σ2s
(t)
from f(σ2s |θ

(t),γ(t), ξ(t),p).
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MCMC11 Generate σ2d
(t)
from f(σ2d|ξ

(t)).

MCMC12 If random draws from the Metropolis-Hastings algorithm for θ in

MCMC4 throughMCMC6, from f(θ̄|θ(t),Σ(t−1)
θ

) inMCMC7, from

f(Σθ|θ
(t), θ̄

(t)
) inMCMC8, from f(γ|θ(t),σ2s

(t−1)
, ξ(t),p) inMCMC9,

from f(σ2s |θ
(t),γ(t), ξ(t),p) inMCMC10 and from f(σ2d|ξ

(t)) inMCMC11

stabilize, then stop the iteration. Otherwise increase t by one and re-

turn to MCMC1.

B Conditional posteriors

The conditional posteriors we use in the MCMC algorithm in Appendix A

are

f(ξ|θ,γ,σ2d,σ
2
s , v,p) ∝ f(v,p|ξ;θ,γ, σ

2
s)

"
JY
j=1

f(ξj|σ
2
d)

#
∝ sv00 · · · s

vJ
J

×(σ2s)
−J
2

¯̄̄̄¯̄̄̄µ
∂η

∂p

¶¯̄̄̄¯̄̄̄
exp

⎡⎣− 1

2σ2s

JX
j=1

"
log

"
pj +

½µ
∂G

∂p

¶0¾−1
j·
s

#
− zjγ

#2⎤⎦
×(σ2d)

−J
2 exp

Ã
−
1

2

JX
j=1

ξ2j

!
, (22)

f(θ|θ̄,Σθ,γ, σ
2
s , ξ, v,p) ∝ f(v,p|ξ; θ,γ,σ

2
s)

"
IY
i=1

f(θi|θ̄,Σθ)

#
∝ sv00 · · · s

vJ
J

×(σ2s)
−J
2

¯̄̄̄¯̄̄̄µ
∂η

∂p

¶¯̄̄̄¯̄̄̄
exp

⎡⎣− 1

2σ2s

JX
j=1

"
log

"
pj +

½µ
∂G

∂p

¶0¾−1
j·
s

#
− zjγ

#2⎤⎦
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×|Σθ|
− I
2 exp

(
−
1

2

IX
i=1

(θi − θ̄)0Σ−1
θ
(θi − θ̄)

)
,

θ̄|θ,Σθ ∼MVN((IΣ
−1
θ
+ V −1

θ̄
)−1(IΣ−1

θ
ν + V −1

θ̄
μ
θ̄
), (IΣ−1

θ
+ V −1

θ̄
)−1),

Σθ|θ, θ̄ ∼ IWgθ+I

Ã
IX
i=1

(θi − θ̄)(θi − θ̄)0 +Gθ

!
,

γ|θ, σ2s , ξ,p ∼MVN((Σ
−1
s∗ + V

−1
γ )

−1(μγ∗ + V
−1
γ γ̄), (Σ−1s∗ + V

−1
γ )

−1),

σ2d|ξ ∼ IG gd+J

2

Ã
1

2

Ã
JX
j=1

ξ2j +Gd

!!
,

σ2s |θ,γ, ξ,p ∼ IG gs+J
2

⎛⎝1
2

⎛⎝ JX
j=1

"
log

"
pj +

½µ
∂G

∂p

¶0¾−1
j·
s

#
− zjγ

#2
+Gs

⎞⎠⎞⎠ ,
where

ν =
1

I

IX
i=1

θi, μγ∗ =
1

σ2s

JX
j=1

z0j

"
log

"
pj +

½µ
∂G

∂p

¶0¾−1
j.

s

##
, Σ−1s∗ =

1

σ2s

JX
j=1

z0jzj.

C Hyperparameter and initial parameter val-

ues

C.1 Hyperparameter and initial parameter values for

the simulation study

Hyperparameter values for the simulation study in Section 3 are

μθ̄ = (μᾱ,μβ̄1 , . . . ,μβ̄5)
0 = (20, 0, . . . , 0)0,
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V θ̄ = 10
2E6,

gθ = 10,

Gθ = diag(Gα, Gβ1 , . . . , Gβ4 , Gβ5) = diag(1.2, 1.2, . . . , 1.2, 0.9), (23)

γ̄ = 0,

V γ = 10
2E5,

gd = 5,

Gd = 0.0012, (24)

gs = 5,

Gs = 0.0009. (25)

For initial parameter values, we have three sets as the large, middle and small

sets. One of the five MCMC sequences has only the large set and another one

has only the small set. Each of the remaining three MCMC seqeuences has a

middle set with a uniformly generated random value for each parameter with

the upper and lower bounds corresponding to the values in the forementioned

large and small sets respectively. For the MCMC sequence with the large set,

we have

θ̄
(0)
= (ᾱ(0), β̄

(0)
1 , . . . , β̄

(0)
5 )

0 = (7, 6, . . . , 6)0, Σ(0)
θ
= E6,

γ(0) = (5, . . . , 5)0, σ2d
(0)
= 10−2, σ2s

(0)
= 10−2.

For the MCMC sequence with the small set, we have

θ̄
(0)
= (ᾱ(0), β̄

(0)
1 , . . . , β̄

(0)
5 )

0 = (2, 0, . . . , 0)0, Σ(0)
θ
= 10−10E6,

γ(0) = (−5, . . . ,−5)0, σ2d
(0)
= 10−10, σ2s

(0)
= 10−10.

Given θ̄
(0)
, Σ

(0)

θ
and σ2d

(0)
in each MCMC sequence, we randomly generate

each component of θ(0) = (θ
(0)
1 , . . . , θ

(0)
1,000) from MVN(θ̄

(0)
,Σ

(0)

θ
) and that
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of ξ(0) = (ξ
(0)
1 , . . . , ξ

(0)
10 )

0 from N(0,σ2d
(0)
).

C.2 Hyperparameter and initial parameter values for

the empirical study

Hyperparameter values for the empirical study in Section 4 are

μθ̄ = (μᾱ,μβ̄size,μβ̄safety ,μβ̄minivan,μβ̄pickup ,μβ̄SUV ,μβ̄Japan,μβ̄U.S.)
0

= (43.92, 1.73, 0.46, 0.43, 0.32, 0.68,−3.53,−3.18)0,

V θ̄ = diag(Vᾱ, Vβ̄size, Vβ̄safety , Vβ̄minivan, Vβ̄pickup, Vβ̄SUV , Vβ̄Japan, Vβ̄U.S.)

= diag(3.12, 0.10, 0.017, 0.029, 0.030, 0.033, 0.17, 0.21),

gθ = 12,

Gθ = diag(Gα, Gβsize , Gβsafety , Gβminivan , Gβpickup, GβSUV , GβJapan, GβU.S.)

= diag(3.12, 0.12, 0.0083, 0.0073, 0.0041, 0.019, 0.50, 0.41),

γ̄ = 0,

V γ = 102E11,

gd = 5,

Gd = 0.0003,

gs = 5,

Gs = 0.03.

Notice that the prior of γ with γ̄ and V γ is diffuse while the other priors

with the corresponding hyperparameters are informative.

We next explain initial parameter values. For β̄
(0)
in θ̄

(0)
, Σ

(0)

θ
, σ2d

(0)

and σ2s
(0)
, we use the same values for all of the three MCMC sequences.
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Specifically, we set β̄
(0)
= 0, Σ

(0)

θ
= E8, σ

2
d
(0)
= 10−10 and σ2s

(0)
= 1. For ᾱ(0)

in θ̄
(0)
and γ(0), we have three sets as the large, middle and small sets. One

of the three MCMC sequences has only the large set and another one has

only the small set. The remaining MCMC seqeuence has only the middle

set with a uniformly generated random value for each parameter with the

upper and lower bounds corresponding to the values in the forementioned

large and small sets respectively. For the MCMC sequence with the large

set, we have ᾱ(0) = 60 and γ(0) = (5, . . . , 5)0. For the MCMC sequence with

the small set, we have ᾱ(0) = 50 and γ(0) = (−5, . . . ,−5)0. Given θ̄
(0)
, Σ

(0)

θ

and σ2d
(0)
in each MCMC sequence, we randomly generate each component

of ξ(0) = (ξ
(0)
1 , . . . , ξ

(0)
50 )

0 from N(0, σ2d
(0)
) and that of θ(0) = (θ

(0)
1 , . . . ,θ

(0)
1,000)

from MVN(θ̄
(0)
,Σ

(0)

θ
).

D An example simulation generating overes-

timations

We show overestimations of Σθ, σ
2
d and σ2s when we use so-called diffuse

priors for them as well as θ̄ and γ. To obtain the diffuse priors for Σθ, σ
2
d

and σ2s , we reset the scale hyperparameter Gθ in the inverse Wishart prior of

Σθ in (14) to be diag(3, . . . , 3, 3) instead of the original diag(1.2, . . . , 1.2, 0.9)

in (23); the scale hyperparameter Gd in the inverse gamma prior of σ
2
d in (16)

to be 0.03 instead of the original 0.0012 in (24); and the scale hyperparameter

Gs in the inverse gamma prior of σ
2
s in (17) to be 0.03 instead of the original

Gs = 0.0009 in (25).

We summarize the results of the MCMC in time-series plots in Figures 8
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and 9 and summary statistics in Table 11. We confirmed the convergences for

the components of θ̄ = (ᾱ, β̄
0
)0 and γ to their true values. Each of their 95%

posterior intervals also included the corresponding true value. We were not

able to confirm that the diagonal components of Σθ, σ
2
d and σ2s converged to

their true values as far as their time-series plots and summary statistics were

concerned. Their true values were out of the corresponding 95% posterior

intervals and our proposed method overestimated them.
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Figure 8: Time series plots for θ̄ and Σθ from the MCMC estimation given

the diffuse priors for all of the parameters
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Figure 9: Time series plots for γ, σ2d and σ2s from the MCMC estimation

given the diffuse priors for all of the parameters
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Table 11: Posterior means, standard deviations and quantiles (2.5%, 50%

and 97.5%) from the MCMC estimation given the diffuse priors for all of the

parameters

Parameter Mean Std.Dev. 2.5% 50% 97.5% True value

ᾱ 3.06 0.088 2.90 3.06 3.25 3

β̄1 1.99 0.62 0.84 1.99 3.23 2

β̄2 2.01 0.60 0.84 1.99 3.22 2

β̄3 1.91 0.61 0.83 1.89 3.23 2

β̄4 2.00 0.61 0.89 1.98 3.29 2

β̄5 1.94 0.62 0.82 1.91 3.39 2

σ2α 0.50 0.22 0.21 0.45 1.05 10−1

σ2β1 0.93 0.91 0.24 0.66 3.20 10−1

σ2β2 0.79 0.55 0.23 0.62 2.29 10−1

σ2β3 0.78 0.63 0.21 0.60 2.45 10−1

σ2β4 0.95 0.87 0.22 0.68 3.39 10−1

σ2β5 0.84 0.76 0.24 0.60 2.99 10−1

γ1 0.99 0.22 0.54 0.99 1.44 1

γ2 0.98 0.23 0.52 0.97 1.43 1

γ3 0.98 0.23 0.53 0.98 1.44 1

γ4 0.98 0.23 0.53 0.98 1.44 1

γ5 0.98 0.22 0.54 0.98 1.42 1

σ2d 0.0073 0.0053 0.0022 0.0058 0.021 10−4

σ2s 0.0044 0.0027 0.0016 0.0037 0.011 10−4

Note: The mean of R
(t)

ξ∗
is 0.35 and that of R

(t)

θ∗
is 0.81.
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