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Abstract

A stochastic process of Vasicek type describing the short rate is considered, where the
three governing parameters {φ, α, σ}, with φ for the market fitting, α for the reversion
and σ for the volatility, would depend on the macro-economic condition modeled as an
independent birth-death process on a finite state space. Computational algorithms are
developed for evaluating the prices of European call options defined on a zero-coupon
discount bond characterized by the above stochastic process. Numerical examples are
provided based on real data so as to demonstrate the speed and efficiency of the proposed
algorithms.

Keywords: Short rate process, Vasicek model, Macro-economic condition, Ehrenfest
approximation, Uniformization procedure, Computational Algorithms for Pricing, Euro-
pean call option.

1



1 Introduction

One of the most prevalent one factor term structure models for pricing interest rate options
is the Hull-White model characterized by the stochastic differential equation

dR(t) =
�

φ(t)− α(t)R(t)
�

dt + σ(t)dW (t) ,(1.1)

where R(t) is a random short rate, W (t) is the standard Wiener process, φ(t) is the
market fitting function , α(t) is the reversion function and σ(t) is the volatility function.
When both α(t) and σ(t) are constant, Hull-White (1990a) show the explicit formulas
for evaluating the prices of zero-coupon discount bonds and associated European options.
When α(t) and σ(t) are time-dependent, however, such formulas are not available in a
closed form and the prices cannot be obtained easily.

Jin, Gotoh and Sumita (2007) develop computational algorithms for pricing European
options associated with R(t) in (1.1) where α(t) and σ(t) are approximated by step func-
tions. Their approach is based on the Ehrenfest approximation, established in Sumita,
Gotoh and Jin (2006), of the Ornstein-Uhlebeck (O-U) process { �XOU(t) : t ≥ 0} which
constitutes the classic Vasicek model, see Vasicek (1977), characterized by

d �XOU(t) =
�

φ− α �XOU(t)
�

dt + σdW (t) .(1.2)

Using the uniformization procedure of Keilson (1979), efficient computational algorithms
are first established in Sumita, Gotoh and Jin (2006) for pricing European options asso-
ciated with �XOU(t). Then, in Jin, Gotoh and Sumita (2007), a single process R(t) with
time varying parameters α(t) and σ(t) is replaced by a sequence of distinct processes
�XOU(t)’s, each defined in a time interval in which both α(t) and σ(t) are constant. Such
segmented �XOU(t)’s are connected together at the end points of the time intervals. The
Vasicek model computations are patched together accordingly through a sequence of the
Ehrenfest approximations. Based on the same Ehrenfest approximation, Gotoh, Jin and
Sumita (2009) propose computational procedures for pricing barrier options associated
with �XOU(t) in (1.2).

For practical purposes, it is natural to consider a case in which an external stochastic
process describing the macro-economic condition would affect the underlying parameter
functions of the Hull-White model. More specifically, let {J(t) : t ≥ 0} be a Markov chain
in continuous time on J = {0, · · · , J} governed by hazard matrix η = [ηij]. We consider

a stochastic differential equation specified by

d �XOU :J(t)(t) =
�

φJ(t) − αJ(t)
�XOU :J(t)(t)

�
dt + σJ(t)dW (t) .(1.3)

To the best knowledge of the authors, this stochastic process has not been analyzed in
the literature. The purpose of this paper is to develop computational algorithms for
pricing European options associated with the random short rate �XOU :J(t)(t) based on the
Ehrenfest approximation of Sumita, Gotoh and Jin (2006).

The structure of this paper is as follows. In Section 2, a succinct summary of the
Ehrenfest approximation is provided from Sumita, Gotoh and Jin (2006). Computational
procedures are then developed in Section 3 for evaluating the time-dependent joint prob-
ability of [J(t), �XOU :J(t)(t)] through the dynamic stochastic mixture of the underlying
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Ehrenfest approximations. It is shown in Section 4 that European call option associated
with the random short rate �XOU :J(t)(t) can be evaluated based on the results of Section
3. Numerical examples are given in Section 5. Firstly, based on LIBOR (London Inter-
Bank Offered Rate), the upward hazard rate and the downward hazard rate of J(t) on
J = {−1, 0, 1} are estimated. Next, using LIBOR, the Vasicek model parameters φj, αj

and σj are estimated for each j ∈ J . Prices for a class of European call options as-

sociated with �XOU :J(t)(t) are then computed, demonstrating speed and accuracy of the
computational algorithms developed in this paper.

2 Ehrenfest Approximation of O-U Process

In this section, we provide a succinct summary of the Ehrenfest approximation of the O-U
process �XOU(t) characterized by (1.2) based on Sumita, Gotoh and Jin (2006). We first
consider the stochastic process XOU(t) obtained from (1.2) by setting φ = 0, i.e.

dXOU(t) = −αXOU(t)dt + σdW (t) .(2.1)

The relationship between �XOU(t) in (1.2) and XOU(t) in (2.1) can be found, after a little
algebra, as

�XOU(t) = XOU(t) + θ(t) ,(2.2)

where XOU(0) = 0 and

θ(t)
def
=

φ

α
(1− e−αt) + �XOU(0) e−αt

.(2.3)

Since θ(t) is a one-to-one mapping, the transition probabilities of �XOU(t) can be con-
structed from those of XOU(t). It is shown in Sumita, Gotoh and Jin (2006) that a
certain sequence of Ehrenfest processes converges in law to XOU(t) as the corresponding
discretized state space becomes dense in the limit. Using the uniformization procedure
of Keilson (1979), the transition probabilities of the Ehrenfest process approximating
XOU(t) can be computed with speed and accuracy, which in turn enables one to evaluate
the transition probabilities of �XOU(t) based on (2.2) and (2.3). Prices of European call op-
tions associated with �XOU(t) can then be obtained by employing the above computational
procedures.

More specifically, let XOU(t) be the stochastic process characterized by (2.1). We
approximate XOU(t) by considering a sequence of Ehrenfest processes {NV (t) : t ≥ 0}
defined on NV = {0, 1, · · · , 2V } governed by upward transition rates λn and downward
transition rates µn given by

λn =
α

2
(2V − n) , µn =

αn

2
, n ∈ NV .(2.4)

It should be noted that

νn = λn + µn = αV , n ∈ NV ,(2.5)

which is independent of n.
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In order to position the state space NV of NV (t) in the state space {−∞,∞} of
XOU(t), we introduce a sequence of intermediary stochastic processes {XV (t) : t ≥ 0}, V =
1, 2, 3, · · · , defined by

XV (t)
def
=

σ√
αV

NV (t)− σ

�
V

α
.(2.6)

It should be noted that the state space XV of XV (t) can be written as XV = {xV (0), · · · , xV (2V )}
where

xV (n) =
σ√
αV

n− σ

�
V

α
, n ∈ NV .(2.7)

The correspondence between the states of NV (t) and those of XV (t) is summarized in
Table 1, where

ξV (x) =

�√
αV

σ
x

�
,(2.8)

with �a� denoting the smallest integer which is greater than or equal to a.

[Table 1 about here.]

It is shown in Sumita, Gotoh and Jin (2006) that XV (t) converges in law to XOU(t) as
V → ∞. Furthermore, the first passage time and the historical maximum of XV (t) also
converge in law to those of XOU(t) as V → ∞. These results provide a computational
vehicle for this paper, as we will see.

3 Development of Short Rate Model under the In-

fluence of Macro-economic Conditions

We consider a stochastic process {J(t) : t ≥ 0} describing the marco-economic condition
at time t, which would affect the random short rate and therefore prices of the associated
derivatives. Throughout the paper, it is assumed that J(t) is a continuous time birth-
death process on J = {0, · · · , J} governed by hazard rate matrix η = [ηij], where η is

given by

η =





0 η
+
0

η
−
1 0 η

+
1 0

. . .
η
−
j

0 η
+
j

. . .
0 η

−
J−1 0 η

+
J−1

η
−
J

0





.(3.1)

Of interest is the random short rate �XOU :J(t)(t) characterized by

d �XOU :J(t)(t) =
�

φJ(t) − αJ(t)
�XOU :J(t)(t)

�
dt + σJ(t)dW (t) .(3.2)
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It should be noted that, given J(t) = j, the process �XOU :J(t)(t) behaves like a Vasicek
model with constant parameters φj, αj and σj until J(t) changes its state. Accordingly,
�XOU :J(t)(t) can be interpreted as a dynamic random mixture of Vasicek models. The
purpose of this section is to prepare a basis for developing computational procedures
to evaluate the time-dependent joint probability of [J(t), �XOU :J(t)(t)], which would be
discussed in the next section.

To understand the stochastic characteristics of �XOU :J(t)(t), we need to introduce the
age process Y (t) associated with the underlying Markov process J(t), that is, with τn

denoting the n-th transition epoch of J(t) for n ≥ 0 with τ0 = 0, one has

Y (t) = t−max{τn : 0 ≤ τn ≤ t} .(3.3)

Given J(t) = j, �XOU :J(t)(t) behaves like a Vasicek model with constant parameters φj, αj

and σj until J(t) changes its state. Because Y (t) describes the elapsed time at time t

since the last transition of J(t) into the current state, this last transition time can be
written as t− Y (t). One then sees, from (2.1) and (2.2), that

�XOU :j(t) = XOU :j

�
Y (t)

�
+ θj

�
Y (t)

�
, j ∈ J ,(3.4)

where

dXOU :j(t) = −αj XOU :j(t)dt + σj dW (t) , XOU :j(0) = 0 ,(3.5)

and

θj

�
Y (t)

� def
=

φj

αj

�
1− e−αjY (t)

�
+ �XOU :j

�
t− Y (t)

�
e−αjY (t)

.(3.6)

As in Sumita, Gotoh and Jin (2006), the joint probability of [J(t), �XOU :J(t)(t)] can be
derived from that of

�
J(t), Y (t), XOU :J(t)

�
Y (t)

��
from (3.4), provided that the values of

�XOU :J(τn)(τn), 0 ≤ τn ≤ t, n ≥ 0, are known.
Following the discussion of Section 2, the process XOU :j(y) with j ∈ J can be approx-

imated by the Ehrenfest process {NV :j(y) : y ≥ 0} on NV = {0, 1, · · · , 2V } governed by
upward transition rates λj:n and downward transition rates µj:n where

λj:n =
αj

2
(2V − n) , µj:n =

αjn

2
, n ∈ NV .(3.7)

The corresponding intermediary stochastic processes {XV :j(y) : y ≥ 0} are then defined
as

XV :j(y)
def
=

σj�
αjV

NV :j(y)− σj

�
V

αj

,(3.8)

which allows one to bridge states between NV :j(y) and XOU :j(y), i.e., given NV :j(y) = n,
one has

xV :j(n) =
σj�
αjV

n− σj

�
V

αj

,(3.9)
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and

�xV :j(y, n, t) = xV ;j(n) + θj(y, t) ,(3.10)

where

θj(y, t) =
φj

αj

�
1− e−αjy

�
+ �xV :j(0, V, t− y) e−αjy

.(3.11)

From the discussion above, it can be seen that the joint probability of
�
J(t), Y (t),

XOU :J(t)

�
Y (t)

��
can be assessed from that of

�
J(t), Y (t), NV :J(t)

�
Y (t)

��
, which in turn

enables one to evaluate [J(t), �XOU :J(t)(t)] of our principal interest. Accordingly, in what
follows, we focus on the joint process

�
J(t), Y (t), NV :J(t)

�
Y (t)

��
for developing algorithmic

procedures to compute the joint probability.

4 Computational Procedures for Evaluating Time-

dependent Joint Probability of [J(t), �XOU :J(t)(t)] and

Prices of Associated European Bond Options

We are now in a position to establish computational procedures for evaluating the time-
dependent joint probability of

�
J(t), Y (t), NV :J(t)

�
Y (t)

��
based on the Ehrenfest approx-

imation described in Section 2 and the uniformization procedure of Keilson (1979). One
can see that, the state transition of the joint process triggered by the state transition
of J(t) is affected by the age Y (t) of J(t) prior to the transition. Because of this, it is
necessary to consider the embedded process

�
J#(k), Y #(k), N#

V :J#(k)

�
Y (k)

��
with t = k∆,

k = 0, 1, 2, · · · for some ∆ > 0, where it is assumed that ∆ is small enough so that no
transition of J(t) would occur in

�
k∆, (k + 1)∆

�
and J(t) could change its state only at

discrete points k∆. Since J(t) describes the macro-economic condition, this assumption
is not so unreasonable, e.g., for many applications, it would be sufficient to consider the
macro-economic condition that may change at least in time unit of a month. J#(k) can
be constructed from J(t) via the uniformization procedure of Keilson (1979). More specif-
ically, the one step transition probability matrix P

J# of J#(k) can be expressed in terms
of the transition probability matrix P

J
(t) of J(t) as

P
J# =

�
pJ#:(i,j)

�

i,j∈J
= P

J
(∆) .(4.1)

For evaluating P
J# , let η

D

be defined by

η
D

= diag
�
ηj

�
j∈J , ηj =






η
+
0 j = 0

η
−
j

+ η
+
j

1 ≤ j ≤ J − 1

η
−
j

j = J

,(4.2)

where η
+
j
, η
−
j

are given in (3.1). Let η ≥ maxj∈J {ηj} and let a
η

be a stochastic matrix

specified by

a
η

= I − 1

η
η

D

+
1

η
η .(4.3)

6



Following the uniformization procedure of Keilson (1979), the transition probability ma-
trix of J(t) can be written as

P
J
(t) = exp

�
− ηt

�
I − a

η

��
=

∞�

r=0

e−ηt

�
ηt

�r

r!
a

r

η
,

where A
0 = I for any square matrix A. From (4.1), one has

P
J# =

∞�

r=0

e−η∆

�
η∆

�r

r!
a

r

η
.(4.4)

In
�
k∆, (k + 1)∆

�
and given that J#(k) = j and Y #(k) = �, the marginal process

NV :j(�) behaves like an ordinary Markov chain in continuous time. Accordingly, the one
step transition probability matrix P

N
#
V :j

of the embedded process N
#
V :j(k) can be expressed

in terms of the transition probability matrix P
NV :j

(t) of NV :j(t) as

P
N

#
V :j

=
�
p

N
#
V :i:(m,n)

�

m,n∈NV

= P
NV :j

(∆) .(4.5)

Evaluation of P
N

#
V :j

is similar to that of P
J# . More specifically, let ν

j
be the hazard rate

matrix of NV :j(t) given by

ν
j
=





0 λj:0

µj:1 0 λj:1 0
. . .
µj:n 0 λj:n

. . .
0 µj:2V−1 0 λj:2V−1

µj:2V 0





,(4.6)

where λj:n and µj:n are defined in (3.7). For ν
D:j

given by

ν
D:j

= diag
�
νj:n

�
n∈NV

, νj:n =






λj:0 n = 0

µj:n + λj:n 1 ≤ n ≤ 2V − 1

µj:2V n = 2V

,(4.7)

let νj ≥ maxn∈NV {νj:n} and define

a
νj

= I − 1

νj

ν
D:j

+
1

νj

ν
j

.(4.8)

Then the transition probability matrix of NV :j(t) can be written as

P
NV :j

(t) = exp
�
− νjt

�
I − a

νj

��
=

∞�

r=0

e−νjt

�
νjt

�r

r!
a

r

νj
.

It then follows from (4.5) that

P
N

#
V :j

=
∞�

r=0

e−νj∆

�
νj∆

�r

r!
a

r

νj
.(4.9)
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Since a
η

and a
νj

are stochastic matrices, the series representation of (4.4) and (4.9) involve

only additions and multiplications of non-negative numbers, providing computational sta-
bility with speed and accuracy.

Let π(j, �, n, k) be the probability that J#(k) = j, Y #(k) = � and N
#
V :J#(Y #(k)) = n

at time k∆, i.e.,

π(j, �, n, k) = P
�
J

#(k) = j, Y
#(k) = �, N

#
V :j(�) = n

�
.(4.10)

For � > 0, one sees that

π(j, �, n, k) = P
J#(j, j)

�

m∈NV

π(j, �− 1, m, k − 1) P
N

#
V :j

(m, n) .(4.11)

The above equation can be interpreted probabilistically in the following manner. The
trivariate process

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��
is at state [j, �−1, m] at time (k−1)∆

with probability π(j, �−1, m, k−1). A self-transition of J# describing the macro-economic
condition occurs with probability P

J#(j, j). Consequently, the trivariate process moves
from state [j, �− 1, m] to state [j, �, n] at time k∆ with probability P

J#(j, j)P
N

#
V :j

(m, n).

Equation (4.11) then follows by summing over m ∈ NV .
For � = 0, in parallel with (4.11), one has

π(j, 0, n, k) = δnV

�

i∈J\{j}

k−1�

�=0

�

m∈NV

π(i, �,m, k − 1) P
J#(i, j) .(4.12)

In order to interpret this equation probabilistically, we suppose that the joint process is
at state [i, �,m] at time (k − 1)∆, which occurs with probability π(i, �,m, k − 1). When
J# moves from i to j with probability P

J#(i, j), the age is reset to be 0 at time k∆ if and
only if i �= j. By summing the resulting probability over m ∈ NV , � ∈ {0, · · · , k− 1} and
i ∈ J \ {j} with the age reset at � = 0, the probability of the trivariate process reaching
state [j, 0, n] at time k∆ is obtained.

Let �χ(j, �, n, k) denote the value of the short rate �XOU :J(t)(k∆) associated with state
[j, �, n]. For � > 0, one sees, from (3.10) and (3.11), that

�χ(j, �, n, k) = xV ;j(n) + θj(�∆, k∆)(4.13)

=
σj�
αjV

n− σj

�
V

αj

+

+
φj

αj

(1− e−αj�∆) + �χ(j, 0, V, k − �)e−αj�∆
.

For � = 0, one has

�χ(j, 0, n, k) = δnV

�

i∈J

k�

�=1

�

m∈NV

�χ(i, �,m, k) π(i, �,m, k) ,(4.14)

The probabilistic interpretation of this equation is somewhat subtle. The instant before
the macro-economic condition changes its state, the trivariate process

�
J#(k), Y #(k),
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N
#
V :J#(k)

�
Y #(k)

��
should have been at [i, �,m] at time k∆− with probability π(i, �,m, k).

The value of the short rate corresponding to that state is then given by �χ(i, �,m, k).
Hence, the original short rate process can be approximated by setting the initial value
of the trivariate process reset with � = 0 at state [j, 0, n] for any j ∈ J as the weighted
average of �χ(i, �,m, k) as shown in (4.14).

The whole computational procedure discussed above is summarized in Algorithm A.2.
Once π(j, �, n, k) and �χ(j, �, n, k) are calculated, one can use those to construct a com-
putational vehicle for evaluating the prices of European bond options associated with
�XOU :J(t)(t).

In order to calculate the prices of the associated European bond options, one needs
to evaluate the prices of the zero-coupon discount bond. Here we employ a discrete time
backward recursive formula which is similar to that in Jin, Gotoh and Sumita (2007). Let
B(j, �, n, k | K) be the price of the zero-coupon discount bond at time k∆ with maturity
K∆, where the state of the corresponding discrete time process is at

�
J

#(k), Y #(k), N#
V :J#(k)

�
Y (k)

��
= [j, �, n] .

For k = K, one sees that

B(j, �, n, K | K) = b for all j ∈ J , � ≤ K, n ∈ NV ,(4.15)

where b is the face value of the bond at maturity. This face value is usually set to be 1,
which we assume throughout the rest of the paper. For k < K, one has

B(j, �, n, k | K)(4.16)

= e−bχ(j,�,n,k)∆

�
�

i∈J

P
J#(j, i) B(i, 0, V, k + 1 | K)

+
�

m∈NV

P
N

#
V :j

(n, m) P
J#(j, j) B(j, � + 1, m, k + 1 | K)

�
.

This algorithm is summarized in Algorithm A.3.
We next evaluate the prices of European options defined on the zero-coupon discount

bond discussed above. For discrete economies, it is well known that the price of any
security with known payoffs can be viewed as a portfolio of Arrow-Debreu securities and
can be priced as the payoff-weighted sum over all states of the prices of the Arrow-Debreu
securities, see e.g., Pelsser (2000). Accordingly, we first evaluate the price of an Arrow-
Debreu security. Let Q(j, �, n, k) be the present value at time 0 of the Arrow-Debreu
security with maturity price 1 at time k∆ given state [j, �, n]. For k = 0, one has

Q(j, 0, n, 0) = δnV for all j ∈ J , n ∈ NV .(4.17)

If k ≥ 1, the value depends on whether or not � = 0. More specifically, for � = 0, one has

Q(j, 0, n, k)(4.18)

= δnV

�

i∈J\{j}

k−1�

�=0

�

m∈NV

e−bχ(i,�,m,k−1)∆
Q(i, �,m, k − 1) P

J#(i, j) ,
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and one sees, for � �= 0, that

Q(j, �, n, k)(4.19)

=
�

m∈NV

e−bχ(j,�−1,m,k−1)∆
Q(j, �− 1, m, k − 1) P

N
#
V :j

(m, n) P
J#(j, j) .

This procedure for evaluating the price of the Arrow-Debreu security is summarized in
Algorithm A.4.

Let ΠC(M, S | K) be the present value at time 0 of the European call option with
maturity at time M∆ and strike price S defined on the zero-coupon discount bond with
maturity at time K∆. The counterpart for that of the European put option is denoted
by ΠP (M, S | K). By using Equations (4.15) through (4.19), one has

ΠC(M, S | K) =
�

j∈J

M�

�=0

�

n∈NV

�
B(j, �, n, M | K)− S

�+
Q(j, �, n, M) ,(4.20)

ΠP (M, S | K) =
�

j∈J

M�

�=0

�

n∈NV

�
S −B(j, �, n, M | K)

�+
Q(j, �, n, M) ,(4.21)

where [a]+ = max{a, 0}. It should be noted that the following relationship exists between
ΠC(M, S | K) and ΠP (M, S | K), which is called the “put-call parity”:

ΠC(M, S | K) = ΠP (M, S | K) + B(J#(0), 0, V, 0 | K)(4.22)

− S · B(J#(0), 0, V, 0 | M) .

Hence, it is sufficient to establish the computational procedure for ΠC(M, S | K) only,
which we summarize in Algorithm A.5.

5 Estimation of the Underlying Parameter Values

and Numerical Results

In this section, numerical examples are provided to demonstrate the speed and efficiency
of Algorithms A.2 through A.5 given in Section 4. For this purpose, the monthly LIBOR
(London Inter-Bank Offered Rate) in US dollars for the period September 1989 – Decem-
ber 2008 would be employed as the fundamental data set so as to specify the birth-death
process J(t) for describing the macro-economic condition, as well as the Vasicek model
�XOU :J(t)(t) for representing the short rate process.

The fundamental data set is depicted in Figure 1. When this curve with fluctuations
is viewed as the short rate process, it is evident that the process is not governed by a
single set of the three parameters {φ, α, σ}, with φ for the market fitting factor, α for the
reversion factor and σ for the volatility. Accordingly, it is necessary to specify the state
space J = {0, 1, 2} of J(t) precisely, where state 0 means the bad economic condition,
state 1 indicates the normal economic condition, and state 2 describes the good economic
condition. In this regard, the range of the fundamental data set is decomposed into 500
intervals of equal length. The corresponding cumulative distribution of the monthly data
is illustrated in Figure 2. In order to define the state space J = {0, 1, 2}, we choose the 20
percentile point and the 40 percentile point, as shown by the two dotted lines in Figure 2,
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with the inverted points of 0.026428 and 0.042513 respectively along the horizontal axis.
Accordingly, the state space J is defined as described below. For notational convenience,
we set t = 0 at the beginning of October 1989 and T > 0 to be the end of December 2008.
The interval [0, T ] is decomposed into monthly segments and those months are numbered
consecutively. Let m(t) be the month ID of time t.

J(t) =






0 if the value of the monthly LIBOR for m(t)

is less than or equal to 0.026428

1 if the value of the monthly LIBOR for m(t)

is grater than 0.026428 but less than or equal to 0.042513

2 if the value of the monthly LIBOR for m(t)

is grater than 0.042513

.

The state change borders are also indicated in Figure 1 by the two dotted lines.

[Figure 1 about here.]

[Figure 2 about here.]

For estimating the values of the birth-death process hazard rates η
+
0 , η

−
1 , η

+
1 and η

−
2 ,

we employ the maximum likelihood method. More formally, let Dij(t) be the number of
transitions of J(t) from state i to state j in the time interval [0, t], and define Ui(t) to be
the total time spent in state i in [0, t]. Then the maximum likelihood estimator of the
hazard rate ηij of J(t) can be given by

�ηij(t) =
Dij(t)

Ui(t)
,

see, e.g. Bladt and Sørensen (2005). Table 2 shows the maximum likelihood estimators
of the hazard rates of J(t).

[Table 2 about here.]

As discussed in Section 3, given J(t) = j, the short rate process behaves like a Vasicek
model with constant parameters φj, αj and σj until J(t) changes its state. The three
parameters can be estimated with Generalized Method of Moments of Hansen (1982).
The reader is referred to Chan et al. (1992) for further details. The data corresponding
to state j are used together in estimating φj, αj and σj. Tabel 3 exhibits the estimation
results. For comparison, the estimators for the Vasicek model without the macro-economic
condition are also shown, which can be obtained by using the whole data together. It
is worth noting that the volatility for the Vasicek model without the macro-economic
condition is 0.010749, which is much larger than the Vasicek model with the macro-
economic condition, as one may expect. From Equation (3.6), one sees that φj/αj is
the value to which the short rate process approaches when the age of J(·) at state j

becomes longer. Consequently, it is natural to assume that this value increases as the
macro-economic condition becomes better, as can be observed in Tabel 3.

[Table 3 about here.]

We are now in a position to test the speed and efficiency of Algorithms A.2 through
A.5. The following European option defined on a zero-coupon discount bond is considered
as a base for this purpose.
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Example of European Call Option Defined on a Zero-coupon Discount Bond

• Maturity of bond: 2 years

• Face value of bond: $ 1

• Initial value of short rate: 0.035

• Maturity of option: 1 year

• Strike price of option: $ 0.9

• Length of unit time interval ∆: 1/100 years

• Factor to define the number of states of Ehrenfest approximation V : 50

Table 4 provides the price of the above European call option, where the price is
compared with the analytic solution of the Vasicek model without the macro-economic
condition based on Hull and White (1990b). The former price is 0.07182, which is higher
than the latter price of 0.06604. This may be so because the fundamental data set stayed
in the good economic condition for a substantial amount of time, which would be captured
less in the Vasicek model without the macro-economic condition than in our model with
the macro-economic condition.

[Table 4 about here.]

Exhibited in Figure 3 are the tradeoffs between the computational time and the two
accuracy factors: the precision of the discrete approximation of the short rate represented
by V and the precision of the discrete approximation of the time axis captured by ∆. One
sees that the computational time increases as V increases and ∆ decreases, i.e., the discrete
approximations approach the continuum. However, this increase of the computational
time as a function of ∆ is fairly contained and is almost linear for V = 30 or less, with
the maximum computational time of 8.7 seconds at V = 30 and ∆ = 1/100. Considering
the fact that the convergence accuracy at V = 30 and ∆ = 1/100 in comparison with the
computed price at V = 50 and ∆ = 1/100 can be given as 0.05% in the relative error,
the proposed algorithms provide the speed and efficiency that would tolerate the repeated
computations. We also note that the computed option price decreases as V increases and
∆ decreases.

In Tables 5 and 6, the sensitivities of the computed option price are illustrated as the
initial short rate and the strike price vary respectively. The corresponding elasticities are
defined as

Elasticity for Tabel 5 =
DIFF(Price)/Price

DIFF(Initial ShortRate)/Initial ShortRate
,

Elasticity for Tabel 6 =
DIFF(Price)/Price

DIFF(Strike Price)/Strike Price
,

where DIFF(·) describes the difference of the corresponding values in two adjacent columns.
We note that the price of the European call option decreases as either the initial short
rate or the strike price increases, as expected. The price, however, is not so sensitive to

12



the changes of the initial short rate, while the elasticity with respect to the price and the
strike price is quite high, reaching -1,211.53% when the strike price is changed from $ 0.90
to $ 0.95.

All the computations are done using MATLAB R2009b on an iMac with Mac OS X
1.6 Snow Leopard, 2.66GHz Intel Core 2 Duo processor and 4GB memory.

[Figure 3 about here.]

[Table 5 about here.]

[Table 6 about here.]
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Appendices

A Algorithms

Algorithm A.1 Calculation of P
J# and P

N
#
V :j

Input:
� J , NV : the state spaces of J(t) and NV (t), introduced in Section 3, where J =
{0, · · · , J} and NV = {0, · · · , 2V }
� φj, αj, σj: the parameter values of the Vasicek model corresponding to j ∈ J
� ∆: the length of the time interval
� η: the hazard rate matrix of J(t) in (3.1)

Output:
� P

J# : the one step transition probability matrix of J#(·)
� P

N
#
V :j

: the one step transition probability matrix of N
#
V :j(·) for all j ∈ J

Procedure:

1: Compute P
J# and P

N
#
V :j

for j ∈ J based on (4.4) and (4.9) respectively.

In what follows, the output matrices of Algorithm A.1 are assumed to be available.
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Algorithm A.2 Calculation of π(j, �, n, k) and �χ(j, �, n, k)

Input:
� k: the k-th discrete point in time
� J ×Z+×NV : the state space of the trivariate process

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��
,

introduced in Section 4, where J = {0, · · · , J}, Z+ = {0, 1, 2, · · · } and NV = {0, · · · , 2V }
� [j, �, n] ∈ J × Z+ ×NV : the current state of

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��

� φj, αj, σj: the parameter values of the Vasicek model corresponding to j ∈ J
� ∆: the length of the time interval
� π(j, 0, n, 0): the initial state probability associated with state [j, 0, n]
� �χ(j, 0, n, 0): the initial value of the short rate associated with state [j, 0, n]

Output:
� π(j, �, n, k): state probability at state [j, �, n] at time k∆
� �χ(j, �, n, k): value of short rate at state [j, �, n] at time k∆

Procedure:

1: if k = 0 then

2: π(j, �, n, k) ← π(j, 0, n, 0), �χ(j, �, n, k) ← �χ(j, 0, n, 0).
3: else

4: if � �= 0 then

5: Calculate π(j, �, n, k) by using (4.11) and Algorithm A.2 recursively.
6: Calculate �χ(j, �, n, k) by using (4.13) and Algorithm A.2 recursively.
7: else

8: Calculate π(j, �, n, k) by using (4.12) and Algorithm A.2 recursively.
9: Calculate �χ(j, �, n, k) by using (4.14) and Algorithm A.2 recursively.

10: end if

11: end if
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Algorithm A.3 Calculation of B(j, �, n, k | K)

Input:
� K: the maturity point in time of the zero-coupon discount bond
� k: the k-th discrete point in time
� J ×Z+×NV : the state space of the trivariate process

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��
,

introduced in Section 4, where J = {0, · · · , J}, Z+ = {0, 1, 2, · · · } and NV = {0, · · · , 2V }
� [j, �, n] ∈ J × Z+ ×NV : the current state of

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��

� φj, αj, σj: the parameter values of the Vasicek model corresponding to j ∈ J
� ∆: the length of the time interval
� b: the face value of the bond at maturity

Output:
� B(j, �, n, k | K): price of the zero-coupon discount bond at time k∆ with maturity K,
where the corresponding trivariate process is at state [j, �, n]

Procedure:

1: if k = K then

2: B(j, �, n, k | K) ← b.
3: else

4: Calculate B(j, �, n, k | K) by using (4.16), Algorithm A.2 and A.3 recursively.
5: end if

Algorithm A.4 Calculation of Q(j, �, n, k)

Input:
� k: the k-th discrete point in time
� J ×Z+×NV : the state space of the trivariate process

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��
,

introduced in Section 4, where J = {0, · · · , J}, Z+ = {0, 1, 2, · · · } and NV = {0, · · · , 2V }
� [j, �, n] ∈ J × Z+ ×NV : the current state of

�
J#(k), Y #(k), N

#
V :J#(k)

�
Y #(k)

��

� ∆: the length of the time interval

Output:
� Q(j, �, n, k): present value of the Arrow-Debreu security with maturity price 1 at time
k∆ given state [j, �, n]

Procedure:

1: if k = 0 then

2: Q(j, �, n, k) = Q(j, 0, n, 0) ← δnV .
3: else

4: if � = 0 then

5: Calculate Q(j, 0, n, k) by using (4.18), Algorithm A.2 and A.4 recursively.
6: else

7: Calculate Q(j, �, n, k) by using (4.19), Algorithm A.2 and A.4 recursively.
8: end if

9: end if
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Algorithm A.5 Calculation of ΠC(M, S | K)

Input:
� K: the maturity point in time of the zero-coupon discount bond
� M : the maturity point in time of the European call option defined on the discount bond
� S: the strike price at maturity of the European call option

Output:
� ΠC(M, S | K): price of the European call option

Procedure:

1: ΠC(M, S | K) ← 0.
2: for j ∈ J do

3: for � = 0 to M do

4: for n ∈ NV do

5: ΠC(M, S | K) ← ΠC(M, S | K) +
�
B(j, �, n, M | K)− S

�+
Q(j, �, n, M),

where B(j, �, n, M | K) and Q(j, �, n, M) can be calculated by using Algo-
rithm A.3 and A.4 respectively.

6: end for

7: end for

8: end for
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Table 1: State Conversions

Process State Conversion State Space
x ∈ R → n ∈ NV n ∈ NV → x ∈ R

NV (t) n = ξV (x) + V n NV = {0, 1, · · · , 2V }
XV (t) σ√

αV
ξV (x) xV (n) = σ√

αV
n− σ

�
V

α
XV = {−σ

�
V

α
, · · · , σ

�
V

α
}

XOU(t) x x = xV (n) R = {−∞, +∞}
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Table 2: Maximum Likelihood Estimators of Hazard Rates of J(t)

η
+
0 η

−
1 η

+
1 η

−
2

0.5106 0.7500 0.5000 0.2627
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Table 3: Estimated Parameters of Vasicek Models

Economy State j φj αj σj φj/αj

0 0.017998 1.253164 0.002918 0.014362
1 0.104914 3.039290 0.009231 0.034519
2 0.039756 0.721681 0.007961 0.055579

Vasicek Model without
the Macro-economic Condition 0.003766 0.166188 0.010749 0.022659
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Table 4: Prices of European Bond Call Option

Proposed Approach
Analytic Solution without the

Macro-economic Condition
0.07182 0.06604

Note: initial short rate = 0.035, face value of bond = $1, bond maturity = 2 years, option
maturity = 1 year, strike price = $0.9, length of unit time interval ∆ = 1/100 years, V = 50.
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Table 5: European Bond Call Option Prices with Various Initial Short Rates

Initial Short Rate
0.020 0.025 0.030 0.035 0.040 0.045 0.050

Price 0.07360 0.07300 0.07241 0.07182 0.07123 0.07064 0.07006
Elasticity -3.26% -4.04% -4.89% -5.75% -6.63% -7.39%

Note: face value of bond = $1, bond maturity = 2 years, option maturity = 1 year, strike price
= $0.9, length of unit time interval ∆ = 1/100 years, V = 50.
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Table 6: European Bond Call Option Prices with Various Strike Prices

Strike Price ($)
0.75 0.80 0.85 0.90 0.95

Price 0.21684 0.16850 0.12016 0.07182 0.02348
Elasticity -334.39% -459.01% -683.90% -1,211.53%

Note: initial short rate = 0.035, face value of bond = $1, bond maturity = 2 years, option
maturity = 1 year, length of unit time interval ∆ = 1/100 years, V = 50.
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