
 
 

Department of Social Systems and Management 

Discussion Paper Series 

 

 

No.1252 

 

Application of Collateralized Debt Obligation Approach for Managing 

Inventory Risk in Classical Newsboy Problem 

 

 

 

 

by 

Rina Isogai, Satoshi Ohashi and Ushio Sumita 

 

February 2010 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF TSUKUBA 

Tsukuba, Ibaraki 305-8573 

JAPAN 



1 

 

 

Application of Collateralized Debt Obligation Approach for 

Managing Inventory Risk in Classical Newsboy Problem 
 

Rina Isogai 

Morgan Stanley Japan Securities Co., Ltd 

Yebisu Garden Place Tower 4-20-3 Ebisu, Shibuya-ku, Tokyo, 150-6008, Japan 

rina.isogai@morganstanley.com 

 

Satoshi Ohashi and Ushio Sumita 

Graduate School of Systems and Information Engineering,  

University of Tsukuba, 

1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8573, Japan 

sumita@sk.tsukuba.ac.jp 

 

 

ABSTRACT  

In the midst of the ongoing world financial crisis, the Collateralized Debt 

Obligation (CDO) became notorious. However, the fact that the misuse of the CDO 

resulted in collapse of the world economy does not necessarily imply that the CDO 

itself would be hazardous. The purpose of this paper is to explore the potential of the 

CDO approach for controlling general risks, by applying it to the classical Newsboy 

Problem (NBP). The underlying opportunity loss of NBP replaces the credit risk of 

CDO. For VaR (Value at Risk) problems formulated without or with CDO, extensive 

numerical experiments reveal that the overall effect of CDO is rather limited. It could 

be effective, however, if (i) the underlying risk is high in that the variability of the 

stochastic demand D is substantially large; (ii) the expected profit should be held 

above a high level; (iii) the probability of having a huge loss should be contained; and 

(iv) the detachment point Kd should be held relatively low. 

Keyword: Collateralized Debt Obligation, Risk Control, Newsboy Problem, Value at 

Risk 

 

1. Introduction 

It is widely believed that the Collateralized Debt Obligations (CDOs) played a major 

role in the ongoing worldwide financial crisis. Naturally, the CDO became notorious 

for its role in destructing the world economy. However, the fact that the misuse of the 

CDO resulted in collapse of the world economy does not necessarily imply that the 

CDO itself would be useless or even hazardous. It is still worth asking whether or not 

the CDO would be a genuine financial tool for managing risks. The purpose of this 

paper is to answer this question by exploring the potential of the CDO for controlling 

general risks. In order to examine the essential structure of the CDO in a neutral 

manner, we stay away from the problem of controlling financial risks and apply the 

CDO approach to the classical Newsboy Problem (NBP), where the optimal solution 

for a VaR (Value at Risk) problem without CDO would be compared against that with 

CDO. 
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In the literature, the CDO has been studied largely from the perspective of how to deal 

with possible dependencies among defaults, see e.g. Li (2000), Duffie and Garlean 

(2001) and Schonbucher and Schubert (2001), Takada and Sumita (2009), and how to 

compute the risk-neutral unit premium, see e.g. Landor (2004), Kock, Kraft and 

Steffensen (2007) and Takada, Sumita and Takahashi (2008). In this paper, we focus 

on one-term CDO applied to the classical Newsboy Problem (NBP) in order to 

investigate the effectiveness of the CDO as a means for managing general risks. 

The classical NBP is concerned with how to determine the optimal order quantity of a 

product, whose value drops substantially over one period, so as to maximize the 

expected profit, given the probability distribution of the demand of the product. 

Instead of maximizing the expected profit, one often deals with the loss function 

which can be expressed as the difference between the maximum possible profit and 

the actual profit. This loss function consists of the loss due to the reduced residual 

value when the order quantity is larger than the actual demand and the opportunity 

loss when the order quantity is less than the actual demand. Clearly maximizing the 

expected profit is equivalent to minimizing the expected loss function. The reader is 

referred to Khouja (1999) for further details. Recently the classical NBP has been 

analyzed from the perspective of a conditional VaR problem by Gotoh and Takano 

(2007). 

In our analysis, the loss function of the classical NBP replaces the credit risk in the 

original CDO context. The risk-neutral unit premium is formally introduced so as to 

assure no-arbitrage. A VaR problem, which is different from that of Gotoh and 

Takano (2007), is then formulated without or with CDO. Computational algorithms 

are developed for evaluating the optimal solutions for the two respective cases. By 

comparing the optimal solutions without CDO against those with CDO for a broad 

range of underlying parameter values, the effectiveness of the CDO for controlling 

general risks is examined. 

The structure of this paper is as follows. In Section 2, a general multi-term CDO 

model is formally described and the risk-neutral unit premium is introduced for 

assuring no-arbitrage. By incorporating the revenue and cost structure within the 

framework of the CDO, it is also shown that the CDO would not affect the expected 

profit. Section 3 is devoted to the classical NBP, providing a succinct summary of the 

fundamental structure. In Section 4, the associated VaR problem is formulated. In 

order to solve the VaR problem, the distribution function of the profit is derived 

explicitly. In Section 5, the CDO approach for the classical NBP is developed and the 

VaR problem is reformulated with CDO. The distribution function of the profit with 

CDO is then obtained in a closed form. Numerical examples with uniformly 

distributed demand are given in Section 6 for illustrating the merits of the CDO 

approach under certain conditions. Some concluding remarks are given in Section 7. 

 

2. General CDO Model 

We consider a financial institution which provides loans to a reference portfolio, i.e. a 

group of corporations or consumers. Naturally, the financial institution faces the 

credit risk. The CDO is a structured financial product to control this credit risk by 

exchanging premium payments from the financial institution to the investors, and 

certain protections from the investors to the financial institution. More specifically, in 
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the CDO scheme, the credit risk is divided into tranches of increasing seniority, where 

a tranche is defined by a pair of an attachment point Ka and a detachment point Kd of 

the cumulative aggregate loss of the reference portfolio. Here, the attachment point Ka 

means that the protection buyer, which is the financial institution issuing the CDO, is 

fully responsible for the portfolio loss up to Ka. In principle, the protection seller, 

which is the tranche investor buying the CDO, compensates the portfolio loss beyond 

Ka up to Kd for the protection buyer during a contracted period. In exchange, 

predetermined premiums are paid to the protection seller by the protection buyer 

according to a predetermined schedule up to the maturity year in such a way that 

no-arbitrage condition of the credit derivative market is satisfied. These relationships 

are depicted in Figure 2.1. In what follows, we analyze a mathematical model for the 

CDO scheme, providing procedural details and certain basic properties. 

 

Figure 2.1 Relationship between the Protection Buyer and the Protection Seller 

Given a tranche [Ka, Kd], the associated CDO contract consists of a predetermined 

premium per monetary unit, denoted by ξ, and a predetermined settlement schedule τ 

= [τ0, τ1,⋯, τK] where  τ0 = 0 < τ1 <⋯< τK . Let  tl
~

 be the cumulative aggregate loss 

of the reference portfolio valued at time t. We note that, throughout the paper, 

financial values with ~ mean that those values are evaluated at a point in time, and 

financial values without ~ represent their discounted present values at time τ0. The 

protection seller taking the credit exposure to the tranche with Ka and Kd would bear 

losses occurring in portfolio in excess of Ka but up to Kd. In order to capture such 

transactions, we introduce   tL
da KK ,

~
 as      

(1) 

If we define [a]
+
 = max{0, a},   tL

da KK ,

~
 in (1) can be rewritten as  

(2) 

In terms of   tL
da KK ,

~
 in (2), the payment to the protection buyer from the protection 

seller at time τk , denoted by )(
~

kbuysellYAP 
, can be described, for k = 1, 2, 3, ⋯ , K as  

 (3) 
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where Δ denotes the first difference of a sequence, i.e. given bk for k = 0, 1 ,⋯, K, 

we define 
1 kkk bbb , k = 1, 2, ⋯, K. In return, the protection buyer pays the 

premium ξ per monetary unit applied to the remaining protected amount at time τk-1. 

More specifically, one sees that, for k = 1, 2, ⋯, K, 

(4) 

By substituting (3) into (4) and working out the summation, it follows that 

(5) 

In order to satisfy the no-arbitrage condition of the credit derivative market, the 

risk-neutral premium should be determined in such a way that the present value of the 

expected total payment over the contract period from the protection seller to the 

protection buyer is equal to that from the protection buyer to the protection seller. For 

this purpose, let rf be the risk free rate to be employed for assessing the present value. 

Based on (3) and (5), the present values buysellPAY   and  sellbuyPAY  , describing the 

present value of the total payment over the contract period from the protection seller 

to the protection buyer and that from the protection buyer to the protection seller 

respectively, can be given by 

(6) 

As shown in (2.7) of Takada et al. (2008), the risk-neutral premium ξRN can be 

obtained by setting , which we transcribe in the 

following theorem. 

Theorem 2.l 

Given a tranche [Ka, Kd] and a contract period τ = [τ0, τ1,⋯, τK], the risk-neutral 

premium ξRN per monetary unit for the associated CDO is given by  

 

 

When the risk-neutral premium ξRN is employed, the CDO would not affect the 

expected profit. In order to observe this point explicitly, let  kVR 
~  be the cumulative 

revenue of the protection buyer evaluated at time τk. Furthermore, let  kRP 
~

 and 

 kCDORP 
~

 be the profit of the protection buyer over the k-th period evaluated at time τk 

without and with CDO respectively. One then sees, for k=0, 1, ⋯, K, that 
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(7) 

and 

(8) 

As before, from (7) and (8), the present value of the profit of the protection buyer 

without or with CDO can be obtained as  

        (9) 

We are now in a position to prove the following theorem. 

Theorem 2.2 

Let PR and PRCDO(ξ) be as in (9) and define π = E[PR] and πCDO(ξ) = E[PR CDO(ξ)]. 

One then has π = πCDO(ξRN). 

Proof  

From the definition of πCDO(ξRN) together with (7), (8) and (9), it can be seen that 

(10) 

where the last two terms on the right hand side of the above equation cancel each 

other from Theorem 2.1, completing the proof. 

Theorem 2.2 states that the CDO scheme has no impact on the expected profit. In 

order to explore the effectiveness of the CDO for risk management, it is therefore 

necessary to introduce an objective function which involves the probability 

distribution of the profit beyond its expectation. In this regard, we consider the 

following optimization problems:  

 

The question concerning the effectiveness of CDO for risk management can be 

answered by comparing the optimal solution **

CDO  for VaR-CDO against the optimal 

solution **  for VaR. 

3. Classical Newsboy Problem: Expected Profit Maximization Approach 

We consider a product whose value drops substantially after a fixed point in time, say 

τ. The demand for the product over the period [0, τ] is given as a non-negative 

random variable D. Throughout the paper, it is assumed that the distribution function 
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of D is absolutely continuous with       
x

DD dyyfxDPxF
0

def

 having the mean  DED 
def

 . 

The corresponding survival function is given by        



x

DDD dyyfxFxDPxF 1
def

.  

Let c~  and p~  be the procurement cost and the sales price per one product 

respectively. Given that the order quantity is Q, if D < Q, each unsold product has the 

residual value r~ . It is natural to assume that 

(11) 

If D > Q, each of the lost opportunities would cost s~ . Assuming that the payment 

would be made and the revenue would be received at time τ, the profit  DQRP ,
~  can 

then be described as  

(12) 

Let the expectation of  DQRP NBP ,
~  be denoted by  

(13) 

The classical NBP is then to determine the optimal order quantity *

NBPQ  so as to 

maximize  QNBP~ . For notational convenience, we write  

(14) 

From (12), the maximum profit that one can expect is   Dcp  ~~  which occurs if Q 

happens to be D. The difference between this maximum profit and the actual profit 

may then be interpreted as the opportunity loss. More formally, we define  

(15) 

If we introduce 
Oc~  and 

Uc~  as  

(16) 

one sees from (12) and (15) that 

(17) 

Let the expectation of  DQlNBP ,
~

 be denoted by  

(18) 
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It can be readily seen from (13) through (18) that maximizing  QNBP~  is equivalent 

to minimizing  Q
NBPl :

~ . It then follows that 

(19) 

From (17), it can be shown that 

(20) 

Since    dxxQHQ
NBPlNBPl

,
0 :

~
:

~ 


 , it then follows that 

(21) 

By differentiating  Q
NBPl :

~  with respect to Q twice, one finds that  

(22) 

and 

(23) 

Hence,  Q
NBPl :

~  is strictly convex in Q and has the unique minimum point *

NBPQ  at 

which the first order derivative in (22) vanishes. Accordingly, it follows that 

(24) 

For incorporating the one-term CDO approach in the context of the NBP, it is 

necessary to convert the monetary values evaluated at time τ, where such values are 

highlighted by ~ in the above discussions, into the corresponding present values. This 

can be accomplished by discounting the monetary values evaluated at time τ by fr
e
  

where rf is the risk free rate as introduced in Section 2. The present value of a 

monetary value evaluated at time τ is denoted by dropping ~ in the notation. One can 

confirm the following conversions. 

   (25) 

From (25), it can be readily seen that  QNBP  achieves the maximum also at *

NBPQ  

and one has 
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(26) 

It should be noted from (13), (15) and (25) that  

(27) 

where  QNBPl:  can be obtained from (21) and (25) as  

(28) 

The next theorem provides a necessary and sufficient condition for the maximum 

expected profit  *

NBPNBP Q  to be positive. 

Theorem 3.1 

  0* NBPNBP Q  if and only if  


*

0

1 NBPQ

D

DUO

xsdF
cc

s



. 

Proof 

From (21), (25) and (26), after a little algebra, one finds that  

(29) 

Since p – c = cU – s from (16) and (25), substituting (29) into  *

NBPNBP Q  in (27) yields  

 

         

and the theorem follows. 

Throughout the paper, we assume that the condition of Theorem 3.1 is satisfied and 

  0* NBPNBP Q . 

4. Classical Newsboy Problem: Value at Risk Approach 

We now consider the VaR problem for the classical NBP as specified below. 
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In order to solve this problem numerically, it is necessary to evaluate the distribution 

function of  DQPRNBP , .  

Theorem 4.1 

Let     xDQRPPxQW NBPNBP  ,
~

,
~  and     xDQPRPxQW NBPNBP  ,, . One then has 

the followings. 

 

Proof 

We first define  

(30) 

so that one sees from (12) that 

(31) 

From the law of total probability, it can be seen that  

(32) 

From the definition of  DQNBP ,~  in (30), the right hand side of Equation (32) can 

be rewritten as  

 

It then follows that  

(33) 

From (31), this then leads to  
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and part (a) follows from (33). Part (b) is immediate from (25) since  

 

completing the proof. 

Under the condition of Theorem 3.1, the range of Q satisfying   1vQNBP   can be 

found as a connected interval since  QNBP  is strictly concave from (23) and (27). 

Given v0 and v1, the optimal solution *

NBP  can then be computed from Theorem 4.1 

(b) by applying the bi-section method with respect to Q in this interval. 

 5. Application of CDO Approach to Classical Newsboy Problem 

The risk structure of the classical NBP is contained in the opportunity loss  DQlNBP ,
~

  

given in (15) where the discrepancy between the actual order quantity Q and the 

actual occurrence of the stochastic demand D dictates its magnitude. In order to see 

the potential of the CDO approach for risk management in general by applying it to 

the classical NBP, it is then natural to replace the cumulative aggregate loss  tl
~

 of 

the reference portfolio in the original CDO model by  DQlNBP ,
~ . 

Let   DQL
da KK ,

~
,

 be defined as in (1) where  tl
~  is replaced by  DQlNBP ,

~  given in 

(17). Then, the mean of   DQL
da KK ,

~
,

 and the risk-neutral premium for the NBP with 

CDO can be obtained from Theorem 2.1 with K=1, (17) and (18), as stated in the next 

theorem.  

Theorem 5.1 

 

With this risk-neutral premium  QNBPRN

**

: , the total payment form the protection 

buyer to the protection seller paid at time 0 is deterministic for the NBP with CDO 

and is given by  

 (34) 

Accordingly, the net profit  DQPRCDO ,  can be described as  

        (35) 

Of particular importance for further study is the distribution function of  DQPRCDO ,  

defined as 
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              (36) 

In the next theorem, we derive  xQWCDO ,  in terms of demand probabilities under 

various conditions. 

Theorem 5.2 

Let  xQWCDO ,  be as defined in (36). One then has  

 

where 

 

 

 

 

 

 

Proof   

From (35), one sees that 

 

For notational convenience, we denote the condition inside this probability by  

 

    (37) 

With this notation, the law of total probability implies that  
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                                       (38) 

 

We now apply the law of total probability again with the conditions 0 ≤ D ≤ Q and Q 

< D to each term on the right hand side of the above equation. For the first term, 

under the condition    aNBP KDQl ,0,
~

 , one has    0
~

, QL
da KK  from (1) so that COND(Q, 

D, x) is simplified to  

    (39) 

Combined with the condition 0 ≤ D ≤ Q, COND1 (Q, D, x) can be further reduced 

from (15), (17) and (25) to  

 (40) 

              

Under 0 ≤ D ≤ Q, the condition    aNBP KDQl ,0,
~

  becomes equivalent to  

                (41) 

The probability of satisfying both (40) and (41) is then equal to G1(Q, x).  

Similarly, when Q < D is satisfied, COND1(Q, D, x) can be reduced from (15), (17) 

and (25) to  

    (42) 

             

We also note that, under the condition Q < D, one has  

               (43) 

Hence the probability of satisfying both (42) and (43) is given by G2(Q, x). 

Consequently, we have shown that the first term on the right hand side of (38) is equal 

to G1(Q, x) + G2(Q, x). It can be shown in a similar manner that the second term 

becomes G3(Q, x) + G4(Q, x), and the third term is equal to G5(Q, x) + G6(Q, x), 

completing the proof. 
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The expressions for Gi(Q, x) (i = 1,⋯, 6) in Theorem 5.2 are somewhat awkward and 

may not be suitable for computing  xQWCDO ,  repeatedly for different values of Q and 

x. In order to facilitate repeated computations of  xQWCDO ,  better, alternative 

expressions for Gi(Q, x) (i = 1,⋯, 6) are given in Appendix where proofs are omitted. 

Based on Theorem 5.2 together with those theorems in Appendix,  xQWCDO ,  can be 

computed repeatedly for different values of Q and x with speed and accuracy. 

Accordingly, we are now in a position to numerically explore the VaR for the 

classical NBP with CDO. More specifically, of our main concern is the following 

problem. 

 

6. Numerical Examples with Uniformly Distributed Demand 

For exploring the potential of the CDO approach in general risk management, in this 

section, VaR-NBP defined in Section 4 would be compared with VaR-NBP-CDO 

introduced in Section 5 through numerical examples. In order to conduct such 

numerical experiments systematically, we assume that the demand D is uniformly 

distributed, i.e. the p.d.f. fD(x) of D is defined by 

         (44) 

The distribution function and the survival function of D can be written as 

     (45) 

The basic set of the parameter values to be employed in this section is provided in 

Table 6.1, which we assume unless specified otherwise. 

Table 6.1 Basic Set of Parameter Values 

p the unit sales price 3 

c the unit procurement cost 1 

r the unit residual value 0.1 

s the unit opportunity cost 0.5 

μD the mean of the demand 5000 

rf the risk free rate 0.0001 

Ka the attachment point 500 

Kd the detachment point 1000, 2000, 3000 

We note that two parameters a and b for the distribution of the demand D are related 

to each other, when μD is fixed, as a = μD – b/2 . 
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From (26), one finds that the optimal order quantity Q*NBP maximizing the expected 

profit is given by 

   .                   (46) 

The corresponding maximum expected profit is then obtained from (27) as  

         (47) 

From (27) together with (46) and (47), it follows that  

 .       (48) 

The expected loss can then be given from (27) as  

 .               (49) 

Figures 6.1 and 6.2 depict π(Q) and  for b=2000, 2500 and 3000.  

 

Figure 6.1  Expected Profit π(Q)        Figure 6.2  Expected Loss  

We next turn our attention to VaR-NBP introduced in Section 4. The feasible region 

is denoted by  

 .               (50) 

From (48), we see that  can be rewritten as 

           (51) 

where 
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        (52) 

In order to evaluate , we recall from Theorem 4.1 (b) that  

    (53) 

where                         (54) 

From (45), it can be seen that  

       (55) 

and 

,      (56) 

where                   

,    , 

 ,    . 

The next lemma then immediately follows. 

Lemma 6.1  

  

Let  

          (57) 

and assume that  
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.                 (58) 

Lemma 6.1 then yields the next lemma. 

Lemma 6.2 

Under the assumption of (58), the following statements hold true. 

(a)     

(b)     

We are now in a position to prove the next theorem. 

Theorem 6.3 

Under the condition of (58), the optimal solution of VaR-NBP can be obtained as  

. 

Proof 

From (53) through (56) combined with Lemma 6.2, one finds that  

.       (59) 

It can be seen that, as a function of Q,  is linearly decreasing given by 

 for  and linearly increasing 

as  for . The theorem then follows from (50) and (51). 

Unfortunately, the counterpart of Theorem 6.3 for VaR-NBP-CDO is not available 

and  cannot be evaluated explicitly. One has to resort to numerical solutions 

based on the bi-section method using Theorems A.1 through A.6 given in Appendix.  

In Figure 6.3, WNBP(Q,7500) and WCDO(Q,7500) are plotted along with π(Q), where 

v1 is varied for 8000, 8500 and 9000, while Kd=1000 and b=2500 are fixed. One sees 

that the feasible region  becomes narrower as the threshold, v1, of the 

expected profit increases. Accordingly, both η
**

NBP and η
**

CDO, the optimal solutions 

for VaR-NBP and VaR-NBP-CDO respectively, become worse and increase as v1 

increases. It is worth noting that the CDO approach is effective only when v1 becomes 

sufficiently large.  
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  v1=8000     v1=8500    v1=9000 

Figure 6.3  π(Q) and WNBP(Q,7500) v.s. WCDO(Q,7500)  [ Kd=1000, b=2500 ] 

Similarly to Figure 6.3, WNBP(Q,7500), WCDO(Q,7500) and π(Q) are depicted in 

Figure 6.4 where b is varied for 2000, 2500 and 3000, while v1 is fixed at 9000 with 

Kd=1000. It should be noted that π(Q) decreases while both WNBP(Q,7500) and 

WCDO(Q,7500) increase as b increases. This means that it becomes more difficult to 

control the profit as the variability of the stochastic demand becomes larger. While 

η
**

NBP < η
**

CDO  for b = 2000, this inequality is reversed and the CDO approach 

becomes effective for b = 2500 or 3000.  

 

 

  b=2000     b=2500    b=3000 

Figure 6.4  π(Q) and WNBP(Q,7500) v.s. WCDO(Q,7500)  [Kd=1000 , v1=9000] 
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In order to observe the impact of the variability of the stochastic demand on the 

optimal solutions more closely, Figure 6.5 depicts η
**

NBP  and η
**

CDO  as functions of 

b, where v0  is varied for 7000, 7500 and 8000, while v1 = 9000 and Kd=1000 are 

fixed. One sees that the CDO approach dominates the performance without CDO for 

v0  = 7000. For v0 = 7500 and 8000, the CDO approach becomes effective when b 

becomes sufficiently large, and this breaking point becomes larger as v0 becomes 

larger. 

 

  v0 = 7000      v0 = 7500    v0 = 8000 

Figure 6.5   η
**

NBP  v.s.  η
**

CDO    [Kd=1000 , v1=9000] 

Finally, Figure 6.6 illustrates how η
**

NBP  and  η
**

CDO  are impacted when (v0, v1) 

and (b, Kd) are changed, where the white areas represent the regions in which the 

CDO approach is effective. It can be observed that the CDO approach can be effective 

only when v1 is sufficiently large. The area in which the CDO approach performs 

better shifts toward the lower side of v0 and becomes larger as b increases or Kd 

decreases.  

In summary, assuming that the stochastic demand D is uniformly distributed, the 

CDO approach could become effective if  

(i)  the underlying risk is high in that the variability of the stochastic demand D is 

substantially large; 

(ii)  the expected profit should be held above a high level;  

(iii)  the probability of having a huge loss should be contained; and 

(iv)  the detachment point Kd should be held relatively low. 
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  b=2000, Kd=1000   b=2000, Kd=2000   b=2000, Kd=3000 

 

  b=2500, Kd=1000   b=2500, Kd=2000   b=2500, Kd=3000 

 

b=3000, Kd=1000   b=3000, Kd=2000   b=3000, Kd=3000 

Figure 6.6 η
**

NBP v.s. η
**

CDO as (v0, v1) and (b, Kd) Change 

 

7. Concluding Remarks 

 

It is widely believed that the Collateralized Debt Obligations (CDOs) played a major 

role in the ongoing worldwide financial crisis. Naturally, the CDO became notorious 

for its role in destructing the world economy. However, the fact that the misuse of the 

CDO resulted in collapse of the world economy does not necessarily imply that the 

CDO itself would be useless or even hazardous. It is still worth asking whether or not 

the CDO would be a genuine financial tool for managing risks. The purpose of this 

paper is to answer this question by exploring the potential of the CDO for controlling 

general risks. In order to examine the essential structure of the CDO in a neutral 

manner, we stay away from the problem of controlling financial risks and apply the 

CDO approach to the classical NBP, where the optimal probability, the optimal order 
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quantity and the resulting expected profit for a value at risk problem without CDO 

would be compared against those with CDO. 

A general multi-term CDO model is formally described first and the risk-neutral unit 

premium is derived for assuring no-arbitrage. By incorporating the revenue and cost 

structure within the framework of the CDO, it is also shown that the CDO would not 

affect the expected profit. The CDO idea is then applied to the classical NBP. The 

fundamental structure of the classical NBP is first described and the associated value 

at risk problem is formulated. In order to solve the value at risk problem numerically, 

the distribution function of the profit is derived explicitly. The CDO approach for the 

classical NBP is developed and the value at risk problem is rewritten with CDO. The 

distribution function of the profit with CDO is then obtained in a closed form. 

Numerical examples are given for illustrating the merits of the CDO approach under 

certain conditions.  

Extensive numerical experiments reveal that the overall effect of CDO is rather 

limited. It could be effective, however, if (i) the underlying risk is high in that the 

variability of the stochastic demand D is substantially large; (ii) the expected profit 

should be held above a high level; (iii) the probability of having a huge loss should be 

contained; and (iv) the detachment point Kd should be held relatively low. 

While the positive effect of the CDO approach could be demonstrated through 

numerical examples, it is difficult to establish a necessary and sufficient condition 

under which the CDO approach would be worth doing for the protection buyer. 

Furthermore, the CDO model discussed in this paper may be expanded so as to 

accommodate multiple terms and multiple markets, and also to incorporate the 

motivation analysis of the protection seller which is totally ignored in the current 

model. These theoretical challenges would be pursued further in the future. 

APPENDIX  

Theorem A.1. 

Let G1(Q,x) be as in Theorem 5.2 and define 

 

Let x1:Q and x1:a be defined by  

 

respectively. Then the following statements hold. 
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Theorem A.2 

Let G2(Q,x) be as in Theorem 5.2 and define 

  

Let x2:Q and x2:a be defined by  

 

respectively. Then the following statements hold. 

 

 

 

 

Theorem A.3.  

Let G3(Q,x) be as in Theorem 5.2 and define 

 

Let x3:d and x3:a be defined by 

 

respectively. Then the following statements hold. 
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Theorem A.4.  

Let G4(Q,x) be as in Theorem 5.2 and define 

 

Let x4:a and x4:d be defined by  

 

respectively. Then the following statements hold. 

 

 

 

 

Theorem A.5.  

Let G5(Q,x) be as in Theorem 5.2 and define 

 

Let x5:d be defined by 

 

Then the following statements hold. 
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Theorem A.6.  

Let G6(Q,x) be as in Theorem 5.2 and define 

 

Let x6:d be defined by 

 

Then the following statements hold. 
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