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Abstract

In recent years, many studies have focused on semidefinite relaxation for combinatorial optimiza-
tion problems and their usefulness. While those studies force the solution matrix of the relaxation
problem to be symmetric and positive semidefinite, we often see that each element of the solution
matrix is meant to be nonnegative. A positive semidefinite matrix whose elements are nonnegative is
called a doubly nonnegative matriz. It would be natural to obtain a better relaxation by considering
an optimization problem over the set of such matrices (we call it the doubly nonnegative cone). In
this paper, we will show that the doubly nonnegative relaxation gives significantly tight bounds for
a class of quadratic assignment problems, while the computational time may not be affordable as
long as we solve the relaxation as usual, 1.e., as an optimization problem over the symmetric cone
given by the direct sum of the semidefinite cone and the nonnegative orthant. Aiming to develop
new and efficient algorithms for solving the doubly nonnegative optimization problems, we provide
some basic properties of the doubly nonnegative cone focusing on barrier functions on its interior.

1 Introduction

In recent years, many studies have focused on semidefinite relaxation (SDP relaxation) for combinatorial
optimization problems and their usefulness (see, e.g., [4], [7], [19], [12], [8], [5] and [13]). While those
studies force the solution matrix of the relaxation problem to be symmetric and positive semidefinite,
we often see that each element of the solution matrix is meant to be nonnegative.

A positive semidefinite matrix whose elements are nonnegative is called a doubly nonnegative matriz. We
call the set of doubly nonnegative matrices the doubly nonnegative cone (DNN cone). In this paper, we
first observe how the DNN relaxation gives tighter bounds than the SDP relaxation for a class of quadratic
assignment problems which are NP-hard combinatorial optimization problems. In our computational
experiments, we represent the DNN cone as a symmetric cone given by the direct sum of the SDP cone
and the nonnegative orthant adding many slack variables, and solve the converted DNN relaxation by
adopting existing conic optimization solvers. Resultantly, the size of the problem grows too much large.
Besides the high quality of the DNN relaxation, our computational results show that this symmetric
cone representation approach is not promising enough due to it being too time consuming. This is the
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motivation of this paper. Aiming to develop another approach, we provide some basic properties of the
DNN cone focusing on a barrier function on its interior.

The paper is organized as follows. In Section 2, we show that our computational results of the DNN
relaxation for a class of quadratic assignment problems according to the symmetric cone representation
approach. In order to provide another side of the DNN cone, we review some important definitions and
properties related to the hyperbolic polynomial in Section 3. In Section 4, we observe that the DNN
cone is given by the closure of a hyperbolic cone and define the primal and dual optimization problems
over the DNN cone. The hyperbolicity of (the interior of) the DNN cone implies that the so-called
self-concordant barrier function can be defined on its interior. In Section 5, we briefly summarize a
result on an algorithm based on the self-concordant barrier function approach [15] which can be adopted
to solve DNN optimization problems. Concluding remarks are given in Section 6.

2 The DNN relaxation for quadratic assignment problems

In this section, we show that the DNN relaxation gives significantly tight bounds for a class of quadratic
assignment problems. Here we define some special sets of matrices which appear in the paper.

Definition 2.1 (Five cones of matrices). 1. The cone 8T of n x n symmelric positive semi-definite
matrices (the SDP cone) is the set given by

St={X|X=xT vder", d"Xd>0}.
2. The cone Dy, of n x n doubly nonnegative matrices (the DNN cone) is the set given by
DY ={X|X=X" VdeRr" d'Xd >0, X >0}.
3. The cone Cp of copositive matrices (the copositive cone) is given by
C, ={X|X=X" vdeR?, d'Xd>0}
where RY denotes the nonnegative orthant in R™.

4. The dual cone C}; of Cy, is the cone of completely positive matrices (the CP cone) given by

C, = {X

3K, -

bl

',ZKERH,

X = Z(zk)(zk)T} .

k=1

We can easily see that the following inclusive relation holds:
C.cD,cS8fce, (1)

It is known that the CP cone C, the minimum cone among the above five cones, has high ability to
express some combinatorial optimization problems including quadratic assignment problems (QAPs)
([7, 13],etc.). Let A and B be given n x n matrices. Then the QAP is expressed as follows:

Minimize YY" aijbe(iyrg)

i=1l,...,nj=1,...n

subject to 7 18 a permutation.



The QAP 1s an NP-hard problem and it 1s still considered a computationally nontrivial task to solve
modest size problems, say of size n = 25 [3]. Introducing a permutation matrix X, the QAP can be
written equivalently as follows:

Minimize (B® A, xxl)

subject to r=vec(X), X €Il
where vec(X) is the vector in R"” obtained from X columnwise, (C, D) := Tr(CT D) for n? x n?

matrices C' and D, and I is the set of all permutation matrices. Note that the set II can be completely
characterized as

M={XeR™ | XX =1 X >0}

By adding two seemingly redundant constraints X X7 = I (see [1]) and Y i, Z;zl zi; = n (see [13]),
Povh and Rendle [13] show the following theorem which implies a close relationship between the QAP
and an optimization problem over the CP cone:

Theorem 2.2 (Theorem 3 and Corollary 4 of [13]). The conver hull of the set
{zzT | & = vec(X), X €TI}
15 equal to the set of feasible solutions of the following problem QAP-CP:

Minimaize (B®AY)
subject to Z yit =1,

Ep2, Yy =n?,
Yll Yln
Ynl ... ynn

where B2 is the n? x n? matriz whose elements are 1s. Therefore, the optimal value of the QAP is equal

to the optimal value of the QAP-CP.

To obtain a tractable relaxation of the QAP-CP, Povh and Rendle [13] consider the problem QAP-SDP
where the constraint (2) is replaced by the SDP constraint ¥ € 8:2.

We consider a tighter relaxation of the QAP-CP in terms of the inclusive relation (1) among the cones.
Note that the DNN cone D,, is close to the CP cone C;; when n is small. In fact, D,, = C;; holds for
n < 4 [2]. An aim of this paper is to examine the DNN relaxation (the QAP-DNN) where the constraint
(2) is replaced by the DNN constraint Y € D,,2.

The DNN constraint can be represented equivalently as a symmetric cone constraint as follows
(Y,2) e S x R Y = 7. (3)

According to the above symmetric cone representation, we can adopt primal-dual interior-point algo-
rithms to solve the QAP-DNN. In what follows, we compare the two relaxations, the QAP-SDP and the
QAP-DNN, of the QAP-CP in terms of the accuracy and computational effort.

We use SeDuMi [18] on a PC at 2.4GHz for solving the QAP-SDP. In contrast, the QAP-DNN is a
really tough problem, and to solve the problem, we have to use SDPA Online Solver [17] and TSUBASA



Table 1: QAP-SDP: obtained value and CPU time (sec)

| Instance || SDP val | QAP | SDP cpusec |
chri2c —23479.928* 11156 (28.73)
escl6a 46.365* 68 (174.86)
escl6b 249.892 292 (213.11)
escl6¢ 94.386 160 (193.02)
had12 1578.573 1652 (2.20)
had14 2605.154 2724 (72.42)
nugl? 476.173 578 (22.00)
nuglh 982.890 1150 (109.88)
roul2 202833.519* 235528 (26.42)
scrl2 8040.685 31410 (22.41)
scrlb 10145.392* 51140 (101.14)
tail2a 193514.727 224416 (28.33)
tailba 325576.933* 388214 (98.55)

Table 2: QAP-DNN: obtained value and CPU time (sec)

| Instance || DNN p-val | DNN d-val | QAP | DNN cpusec |
chri2c 11155.999 11156.206 11156 (1261.020)
escl6a 49.542 67.520 68 (24257.230)
escl6b 288.360 290.129 292 (28313.260)
escl6¢ 152.972 154.312 160 (34148.000)
had12 1651.992 1653.034 1652 (1544.670)
had14 2723.988 2724.512 2724 (12564.870)
nugl2 567.677 568.204 578 (1508.380)
nuglh 1140.136 1141.567 1150 (23992.140)
nugl6a 1598.861 1599.982 1610 (148300.015)*
nug20 2505.770 2508.345 2570 (15444.69)*
roul2 235527.997 | 235528.373 | 235528 (2118.500)
scrl2 31409.968 31410.775 31410 (1672.280)
scrlb 51139.963 51142.118 51140 (25938.950)
tail2a 224415.998 | 224416.435 | 224416 (1660.260)
tailba 377097.595 | 377101.813 | 388214 (21634.140)

at CompView [6] of Tokyo Institute of Technology with the help of Katsuki Fujisawa and Makoto
Yamashita.

All instances are taken from QAPLIB website [3], a library of QAP test problems, and their optimal
values have been found as in the “QAP” column in two tables, TABLE 1 and TABLE 2.

In TABLE 1, the “SDP val” and the “SDP cpusec” columns show the obtained values and the consumed
CPU times of the SDP relaxation with SeDuMi. The values marked with * in the “SDP val” column
indicate that a numerical error is reported, i.e., the parameter ¢ does not achieve the default value 1078,

In TABLE 2, the “DNN p-val” and the ”DNN d-val” columns show the obtained primal and dual values
of the DNN relaxation, respectively. The “DNN cpusec” shows the CPU times consumed by the DNN
relaxation with SDPA Online Solver. The values marked with % in the “DNN cpusec” column indicate
that those problems are solved on TSUBASA.

From the two tables, we can see that the DNN relaxation gives significantly tighter bounds than the SDP
relaxation for those instances. Such a strong evidence also can be seen in terms of extracted solutions



from the QAP-DNN problems. The following matrix X is given by X = mat(ymax) where mat(y) is the
n X n matrix Y obtained from the vector y € Rr" satisfying y = vec(Y), and ymax is the eigenvector

corresponding to the maximum eigenvalue of the obtained solution ¥ by the DNN relaxation for the
instance had12.

X =

.000 .000 .985 .000 .000 .000 .000 .004 .001 .000 .000 .000
.000 .000 .000 .001 .000 .000 .000 .000 .000 .988 .000 .000
.000 .003 .000 .000 .002 .000 .000 .000 .000 .001 .982 .001
.000 .984 .000 .000 .001 .000 .000 .000 .000 .000 .004 .001
.000 .000 .000 .000 .000 .001 .001 .000 .000 .000 .001 .987
.000 .000 .000 .000 .985 .002 .001 .000 .000 .000 .002 .000
.000 .001 .000 .000 .002 .487 .500 .000 .000 .000 .001 .001
.004 .000 .000 .001 .000 .498 .486 .000 .000 .000 .000 .000
.000 .000 .004 .001 .000 .000 .000 .985 .000 .000 .000 .000
.985 .001 .000 .000 .000 .002 .001 .000 .000 .000 .000 .000
.000 .001 .000 .987 .000 .000 .000 .000 .002 .000 .000 .000
.000 .000 .001 .002 .000 .000 .000 .001 .987 .000 .000 .000

It is known that the instance had12 has the following two optimal solutions, X7 and X3. The observation

X~ (XT 4+ X3)/2

implies that almost optimal solution of hadl2 can be obtained by the DNN relaxation. The same
phenomena are also seen for the instances scrl2, roul2, tail2a and had14.

OO R OO oo oo o oo
OO OO oo oo~ OOo o
OO OO DO oD OO OO o
O R OO oo oo oo oo
OO OO OO R OO O oo
OO O OO R OO O oo o
OO OO R OO oo oo o
OO O R OO oo oo oo
— O oo oo o oo oo o
[ eelelelelelele el =
OO OO oo oo o~ OOo
OO OO oo OO O oo

OO PR OO OO oo o oo
O R OO OO oo oo oo
OO OO R OO OO o oo
OO DD OO OO OoO o oo
O OO R OO OO oo oo
— oo o oo oo oo oo

OO OO o oo oo~ O oo
OO DO OO OO OO OO
OO OO OO R OO o OoOOo
OO DD OO OO OO o~ O
OO OO oo oo oo~ OO
OO O oD OO O~ OO oo

On the other hand, in terms of the CPU times, we have to say that the DNN relaxation is too much
computationally expensive and not practical as long as we solve it using the symmetric cone represen-



tation (3) of the DNN cone. As we will explore in the succeeding sections, another approach should be
adopted to the DNN relaxation.

3 Preliminaries on hyperbolic polynomials

In this section, in order to explore another approach to the DNN optimization problem, we review some
definitions and properties related to the hyperbolic polynomial based on the papers [10] and [16].
Let £ be a finite-dimensional Euclidean space.

Definition 3.1 (Hyperbolic polynomial). A homogenous polynomial p : £ — R is said to be hyperbolic if
there exists a direction e € £, p(e) > 0, with the property that, for each x € £, the univariate polynomial
t — p(x + te) has only real roots (i.e., each root has no imaginary part). The polynomial is said to be
hyperbolic in direction e.

Here we raise two examples of hyperbolic polynomials [16].

Example 3.2 (Linear programming 1). &€ = R", p(z) = x1- -z, and e is any vector with only positive
coordinates.

Example 3.3 (Semidefinite Programming 1). £ = S, (the set of n x n symmetric matrices), p(x) =
det (z) and e is any symmetric matriz with only positive eigenvalues.

The univariate functional A — p(Ae + #) is the characteristic polynomial of # (with respect to p, in
direction e). The roots of the characteristic polynomial are the eigenvalues of #. Let r denote the degree
of p. We write the eigenvalues of z as

counting multiplicities, and Amin (#) := A1 (2).
Definition 3.4 (Hyperbolic cone). The set
Apip(pe) :={r €&| Anin(z) >0}
1s the hyperbolicity cone for p in direction e.
If a set K 1is the hyperbolicity cone for some p in some direction e, then we say that K s a hyperbolic
cone.

Example 3.5 (Linear programming 2). The set %"} | = {x € N" | « > 0} is a hyperbolic cone given by
Wi, =Api(p,e) where p(x) = x1-- -2, and e is any vector with only positive coordinates.

Example 3.6 (Semidefinite Programming 2). The set ST, of n xn symmetric positive definite matrices
is a hyperbolic cone given by S, = Ayi(p,e) where p(x) = det (x) and e is any symmetric positive
definite matriz.

We summarize some properties of hyperbolic cones.
Proposition 3.7 (Hyperbolic cone). Let K C £, K1 C &£ and K2 C & be hyperbolic cones given by

K=Ar1(pe), K1 =Asi(pre), Ko=Apq(p2,e)

for some p : & — RN with degree v, p1 : &€ — R with degree r1, ps : € — RN with degree ro and for a
common e € £.



(i) The hyperbolic cone K is the connected component of {x | p(x) # 0} containing e.
(i1) The hyperbolic cone K is convex.

(iii) The hyperbolic barrier function F(x) = —logp(x) is a selfconcordant barrier function on K with
barrier parameter equal to r. Therefore F is conver on K.

(iv) The intersection Ky N Ky of K1 and Ko is a hyperbolic cone given by K1 N Ky = Ay (p1pa, e)
where p1pa(x) = p1(x)p2(x).

(v) The function —log(pip2(x)) = —log p1(x)—logpa(x) is a logarithmically homogeneous self-concordant
barrier for the hyperbolic cone K1 N Ky = Ay 4 (p1p2,e) with barrier parameter less than rq + ra.

Proof. (i) and (ii): See Proposition 1 and Theorem 2 of [16].
(iii): See Theorem 4.1 of [10].

(iv): We can see that pipa(e) = pi(e)p2(e) > 0 and for each z € &, the univariate polynomial ¢ —
p1pa(x +te) = p1(x + te)pa(x + te) has only real roots. Thus pyps is hyperbolic in direction e. Since
t — pipa(x +te) = pr(x +te)pa(x +te) has a nonpositive root if and only if py (x + te) or pa(x +te) has
a nonpositive root, this yields that
KiNKy = Apy(pipz,e) D Api(pipa,e)
= Aii(pipase)

(v): Tt follows from the assertions (iii), (iv) and Theorem 2.3.1 of [15]. O

Define
Ay(pe) :={z | Amin(z) > 0}.

Then we can see that Ay(p,e) is the closure of Aj4(p1,€). Since Ayy(p1,e) is convex, so is Ay(p,e€)
(Theorem 2.33 of [14]).

4 Properties of the DNN cone

In this section, we observe basic properties of the DNN cone. Before proceeding, we introduce some
notations and definitions: For a given set C, con (C') and pos (C') denote the convex hull of C' and the
positive hull of C'| respectively, which are given by

con (C) := {Ele ;g ‘ v, €C) a; > 0}, 4)
pos(C) :={0}U{azx | z€C, a>0}.

Given a cone K C R", we define its dual cone by

K*:={zeR" | Ve e K, {(z,z)>0}.

In what follows, we denote by Ky and K5 the set of n-dimensional symmetric positive matrices and the
set of n-dimensional symmetric positive definite matrices, respectively, i.e.,

K = {Xer"| X=XT X>O0)}, (5)
Ky = {Xer"| X=XT X0}, (6)



It can be easily seen that cl K is the set of n-dimensional symmetric nonnegative matrices and cl K5 is
the set of n-dimensional symmetric positive semidefinite matrices S}, respectively, i.e.,

dK; = {Xen"| X=XT X>0},
cl Koy {(Xen| X=XxT X >0},

The set cl K3 Ncl Ky is the DNN cone. The DNN cone cl K7 Ncl K3 has the following properties.
Proposition 4.1 (Properties of the DNN cone). (i) int (cl K1) = Ky and int (cl K3) = K.

(i1) cl Ky Ncl Ky is a closed conver cone and int (cl Ky Ncl Ko) = Ky N Ko # 0.

(i1) cl Ky + cl K5 is a closed conver cone and int (cl Ky +cl Ko) = K1 + Ko # 0.

(iv) (cl Ky Nnel K2)* =cl Ky +cl Ky

Proof. (i): The equations follow from the fact that the sets K; and K3 are open and convex (Theorem

2.33 of [14]).

(ii): By (i) above, it suffices to show that Ky N Ky # @. Consider the matrix [ + E where F denotes the
n x n matrix whose elements are 1s. Then we have I + F € K1 N K».

(i) For a given positive value a > 0, define the two sets

A(a) = X ecdK, ZZJL‘M:@ ,
i=1j=1
Ag(a) = {X €clKa| Tr(X) =a}.

Since the set As(a) is compact, we can define the value

B = min ZH:ZH:J;”

i=1j=1

X € As(1) (7)

which may be negative. Consider the sets A;(]|8] + 1) and Az(1). Since the sets A1(|8] + 1) and As(1)
are compact and convex, so is the set Ay(|8] + 1) + Aa(1) (cf. Exercise 3.12 of [14]) and we have

Ar(18]+ 1) + As(1) = con (Ar(18]+ 1) + A (1)).

Below, we will show that

0 ¢ con (A (18 +1) + As(1)) ®)
and
cl K1 +cl Ky
= pos (A4(181+ 1) + 2x(1))
= pos (con (240814 1) + 24(1)) ) )
hold.



To show (8), suppose that X € Ay (|f]+1) + Az(1). Then X = X; + X for some X; € Ay(|8|+1) and
X5 € As(1), and by the definition (7) of 5, we can see that

2w = D (w4 (@2)ig) =3 (21 + Y (wa)is

i3 i3

Bl + 14 (w2)ij > B+ 148> 1.

i
This yields (8).

To show (9), suppose that X € cl K1 + cl K2. Then X = X; + X5 for some X; € cl K and X € cl K5
with the following four possible cases

a): X1 =0 and X2 = O,
b): X1 # 0 and Xz = O,

¢): X1 =0 and X3 # O,
d): X1 #0 and X2 # O.

If case (a) occurs then
X =0 € pos (A1(|ﬁ| +1)+ A2(1))

by the definition (4). If case (d) occurs, then since y1 := Zi,j(xl)ij > 0 and 2 := Tr(X2) > 0 hold, X
is given by

Xo= (/0814 1) +3)

(e g, g
Y1i/(1B]+ 1) + 72 Y1i/(1B]+ 1) + 72
where ) )
Xl = |ﬁ| + X, e A1(|ﬁ| + 1) and Xz = —Xs € Az(l),
B! Y2

which implies that

X € pos (con (As(11+ 1) + A2(1)))
- pos(A1(|ﬁ|—|—1)+A2(1)).
We can easily find that X € pos (A1(|8] + 1) + A2(1)) for cases (b) and (c) as well as case (d). Therefore,
Ky + el K5 C pos (A1(|ﬁ| T1)+ A2(1))
holds. The converse inclusion is obvious.

Since pos (C') is closed for any compact set C' 3 0 (cf. Exercise 3.48 of [14]), by (8) and (9), we conclude
that the set cl K1 + cl K5 1s also closed.

The convexity of the sets K7 and K guarantees that the equation int (K1 + K3) = int Kj + int Ky =
K1 + K3 holds (cf. Proposition 2.24 and Exercise 2.45 of [14]). Tt is easy to see that F+ 1 € K7 + K3
where F 1s the matrix of 1s.



(iii): The assertion follows from (cl Ky Ncl K2)* = cl (cl K1 4+ ¢l K3) (cf. Corollary 11.25 of [14]) and the
fact that ¢l Ky + cl K5 1s closed as we have shown above. O

By (ii) of Proposition 4.1 and (iv) and (v) of Proposition 3.7, we obtain the following result.

Proposition 4.2. The DNN cone D,, = cl Kj Ncl Ky =R} N St is the closure of the hyperbolic cone
int D, = K1 N Ko with the logarithmically homogeneous self-concordant barrier function of the form

_Hij IOg Tij — log det X = — Z log Ti; — log det X.

ij
Note that in the proof of Proposition 4.1, we utilize only the following properties of K; and Kj:

(i) Ky and K5 are open and convex cones.
(ii) Ky MKy 2 0.
(iii) cl K and cl K5 are given by cl K1 = con (C1) and ¢l Ko = con (C3) for some compact and convex
sets C1 3 0 and C» % 0.
For example, the closure of any symmetric cone K in a Euclidean Jordan algebra (V, o) is given by
cl K = pos (A)

where

A={zedK

tr(z) =1}

and tr (#) denotes the first coefficient of minimal polynomial of z € V. By the spectral decomposition
theorem (cf. Theorem II1.1.2 of [9]), any « € V is given by

r
r = E /\ici
i=1

for some eigenvalues Ay, -+, A, and Jordan frame ¢y, -+, ¢,. Combining this with the boundedness of
any nonzero idempotent (cf. (iv) of Proposition of 2.7 in [20]), there exists a positive w > 0 such that

el <D Pallleall <3 il (10)
i=1 i=1

holds for any « € V. Since € A implies that € cl K and tr (z) = 1, we can see that

A>0(i=1,...,7) and 1= X\=> |Al (11)
i=1 i=1

which implies that the set A is compact and 0 € A. Therefore, we obtain the following proposition
which 1s an extension of Proposition 4.1 to symmetric cones.

Proposition4.3. Let Ky and Ky be two symmetric cones having the nonempty intersection K1NKy # ().
Then the assertions (i)-(iv) in Proposition 4.1 hold.

10



Using the results in Proposition 4.1, we can define the primal and dual linear optimization problems
over the DNN cone as follows:

(P) Minimize (C,X)
subjectto  (A;, X)=b; (i =1,...,m),
XecKin Cl[(z,
(D) Maximize bTy
subjectto  C'— Y7 yiAi € cl Ky + cl Ko

where (X, 7) .= Tr (X1 Z) = Tr (X Z).

Since the set cl K1 Ncl K» is a closed convex cone with nonempty interior and its dual cone is given by
(cl Ky el Ky)* = cl Ky + cl K, the following duality theorem can be obtained (cf. Theorem 3.2.8 of
[15]).

Theorem 4.4 (Duality theorem of the DNN optimization). If the dual problem (D) is strongly feasible
and the primal problem (P) is feasible, then the primal problem (P) has an optimal solution. Similarly,

if the primal problem (P) is strongly feasible and the dual problem (D) is feasible, then the dual problem
(D) has an optimal solution.

5 A barrier function approach for solving the DNN optimiza-
tion problems

As we have seen that the DNN cone D,, is the closure of a hyperbolic cone (Proposition 4.2), we can adopt
the primal barrier method where Newton’s method is used to minimize the associated logarithmically
homogeneous self-concordant barrier function. See Section 2.4.2 of the book [15] for a detailed description
of the algorithm. For the method, the following result can be derived from Theorem 2.4.1 of [15].

Theorem 5.1. Let Ky and Ks be given by (5) and (6), respectively. Define the set
DF = {X|<AZ,X>:I)Z (i:l,...,m),
X €l Ky nel Ky} (12)

which is the feasible region of the primal DNN optimization problem (P) defined in Section 4. Suppose
that the set Dp is bounded and we have an initial point X° € int Dp. For a given € € (0, 1), the primal
barrier method will terminate within

© (vee (o))

wterations of the algorithm, all points X computed thereafter satisfy
(C, X)) — p
A
Here sym (X, D) is the symmetry of D about X defined by
sym (z, D) :=inf{r(L)| L € L(x,D)}

<€

where L(x, D) is the set of all lines through x which intersect D in an interval of positive length and
r(L) is the ratio of the length of the smaller to the larger of the two intervals in LN (D \ {X}). The
values p, and p* are given by

ps = nf{{C,X)| X € Dp} and

p" = sup{(C,X)| X € Dp}.

11



6 Concluding remarks

Our computational experiments show that the quality of the DNN relaxation is much higher than the
SDP relaxation for solving a class of QAPs. Simultaneously, those show that the DNN relaxation is

not practical as long as we represent the DNN cone as a symmetric cone 8:2 X ]RZ_QX"Q in the space

RAIXn? o RRIX® ag i (3). In order to develop another approach, we have investigated the DNN cone
and shown that the DNN cone is the closure of a hyperbolic cone. Thus we can adopt the primal barrier
function method for solving the DNN optimization problems. However; the result is not enough to
conduct an experimental study of the primal barrier function method. The DNN relaxation problem
does not satisfy the assumption in Theorem 5.1 in usual. In particular, the feasible region of the DNN
relaxation problem QAP-DNN has no interior. We have to consider an artificial problem and/or an
infeasible algorithm as provided to the primal-dual interior point method for solving symmetric cone
optimization problems. This i1s the focus of our future research.
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