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Abstract A correlated multivariate shock model is considered where a system is subject to a sequence
of J different shocks triggered by a common renewal process. Let (Y (k))∞k=1 be a sequence of inde-
pendently and identically distributed (i.i.d.) nonnegative random variables associated with the renewal
process. For the magnitudes of the k-th shock denoted by a random vector X(k), it is assumed that
[X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence of i.i.d. random vectors with respect to k while X(k) and
Y (k) may be correlated. The system fails as soon as the historical maximum of the magnitudes of any
component of the random vector exceeds a prespecified level of that component. The Laplace transform of
the probability density function of the system lifetime is derived, and its mean and variance are obtained
explicitly. Furthermore, the probability of system failure due to the i-th component is obtained explicitly
for all i ∈ J = {1, · · · , J}. The model is applied for analyzing the browsing behavior of internet users.

Keywords: Multivariate shock models, system lifetime, consumer browsing behavior.

1. Introduction

A general shock model is studied by Shanthikumar and Sumita [5], where a system is sub-

ject to a sequence of random shocks generated by a renewal sequence. More specifically, the

model is characterized by correlated pairs of nonnegative random variables [Xj, Yj] (j =

1, 2, · · · ) where Xj is the magnitude of the jth shock and Yj describes the time interval

between two consecutive shocks. The variates [Xj, Yj] (j = 1, 2, · · · ) are i.i.d. pairwise,

while Xj and Yj may be correlated. The underlying system fails as soon as the magnitude

of a shock exceeds a prespecified level. The transform results, an exponential limit theorem

and properties of the associated renewal processes of the system failure times are obtained

with an application to a stochastic clearing system. The model is extended subsequently by

Sumita and Shanthikumar [7] to incorporate the system lifetime based on the cumulative

shock.

While the general shock model has widened the application areas much beyond the tra-

ditional Poisson shock model, it is still limited in that the model accepts only one type of

shocks. In some applications, it is important to deal with multiple types of shocks generated

by a common renewal sequence. In analyzing the browsing behavior of users of the Internet,

for example, it is common to find a user moving from one website to another in order to
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gather information about a specific product of his/her interest. Assuming that dwell times

at different websites constitute a renewal sequence, the first type of shocks may correspond

to the values of information gathered from various websites concerning a product produced

by Company C1, while the second type of shocks may describe those concerning a similar

product produced by Company C2. The internet search would be terminated when the user

obtains enough information to decide which company’s product should be purchased. The

purpose of this paper is to extend the general shock model of Shanthikumar and Sumita

[5] so as to incorporate such multiple different random shocks generated from a common

renewal sequence. A preliminary version of this study is reported at IWAP2008 by Sumita

and Zuo [8]. In this paper, however, the model analysis is elaborated further substantially.

In particular, analysis of the probability of system failure due to the i-th component is

totally new and numerical examples are also enriched.

The structure of this paper is as follows. The correlated multivariate shock model is

introduced in Section 2 and the system lifetime is analyzed in Section 3. In Section 4, the

probability of system failure due to component i is evaluated explicitly. An application to

analysis of the browsing behavior of users of the Internet is discussed in Section 5, and

numerical examples are also presented. Finally, in Section 6, some concluding remarks are

given.

2. Model Description

We consider a system where a sequence of J different shocks are triggered by a com-

mon renewal process characterized by a sequence of i.i.d. nonnegative random variables

(Y (k))∞k=1. Let X(k) = [X1(k), · · · , XJ(k)] be the random vector describing the magnitudes

of J different shocks occurred at the k-th renewal epoch. Throughout the paper, we assume

that all random variables are absolutely continuous with X(k) ∈ RJ
+ and Y (k) ∈ R+, where

RJ
+ is the set of J dimensional nonnegative vectors and R+ denotes the set of nonnegative

real numbers. For notational convenience, we define J = {1, 2, , · · · , J} and its power set

B(J ) = {A : A ⊂ J}. In addition, while X(k) and Y (k) may be correlated, it is as-

sumed that [X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence of i.i.d. random vectors with

respect to k. The joint distribution function and the joint probability density function of

[X(k), Y (k)] are defined by

FX,Y (x, y) = P [X1(k) < x1, · · · , XJ(k) < xJ , Y (k) ≤ y] , (2.1)

and

FX,Y (x, y) =

∫ xJ

0

· · ·
∫ x1

0

∫ y

0

fX,Y (v, w)dwdv . (2.2)

We note that the inequality associated with X(k) in FX,Y (x, y) is taken to be strict. Since

the historical maximum processes are of our main concern, equalities are attached to tail

probabilities for random variables directly involving X(k) as a general rule in this paper.
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For notational convenience, the following functions are also introduced.

fY (y) =

∫ ∞

0

· · ·
∫ ∞

0

fX,Y (x, y)dx ; fX(x) =

∫ ∞

0

fX,Y (x, y)dy (2.3)

GX(x, y) =

∫ xJ

0

· · ·
∫ x1

0

fX,Y (v, y)dv (2.4)

GX(x, y) =

∫ ∞

xJ

· · ·
∫ ∞

x1

fX,Y (v, y)dv (2.5)

GY (x, y) =

∫ y

0

fX,Y (x, τ)dτ ; GY (x, y) =

∫ ∞

y

fX,Y (x, τ)dτ . (2.6)

For simplicity, with x = [x1, · · · , xJ ], we write fX(x) = fX(x1, · · · , xJ), GX(x, y) =

GX(x1, · · · , xJ , y), etc, interchangeably.

The system fails as soon as the historical maximum of the magnitudes of any component

of the random vector exceeds a prespecified level of that component. More specifically, let

N(t) be the counting process associated with the renewal sequence (Y (k))∞k=1 and define the

historical maximum process M(t) by

M(t) = [M1(t), · · · ,MJ(t)] ; Mi(t) = max
0≤k≤N(t)

{Xi(k)} , (2.7)

where X(0) = 0 is employed for notational convenience. The system fails as soon as any

one of the historical maximum processes Mi(t), i ∈ J , exceeds its prespecified level zi .

If only Mi(t) exceeds zi, then the i-th component causes the system failure. If multiple

historical maximum processes exceed their prespecified levels simultaneously, the system

failure is assumed to be triggered by the component having the largest value of them. For

z = [z1, · · · , zJ ] > 0, the system lifetime Tz is then given by

Tz = inf{t : Mi(t) ≥ zi, for some i ∈ J } . (2.8)

Of interest is the distribution of Tz and the probability ρi(z) of the system failure being

caused by the i-th component. In what follows, we analyze Tz, deriving the transform results

and its mean and variance, as well as ρi(z) for all i ∈ J .

3. Analysis of Tz

Let the distribution functions of M(t) and Tz be defined by

V (t, z) = P [M(t) < z] ; Wz(t) = P [Tz ≤ t] . (3.1)

Laplace transforms with respect to t are denoted by a circumflex, i.e.,

V̂ (s, z) =

∫ ∞

0

e−stV (t, z)dt ; ŵz(s) =

∫ ∞

0

e−stdWz(t) . (3.2)
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One easily sees that there exists a dual relationship between M(t) and Tz specified by

V (t, z) = P [M(t) < z] = P [Tz > t] = W z(t) , (3.3)

where W z(t) = 1 − Wz(t) is the survival function of Tz. In this section, we derive ŵz(s)

explicitly based on (3.3).

We assume that the system starts anew at time t = 0. For k = 1, 2, · · · , the shock vector

X(k) at the k-th renewal epoch is correlated only to the time interval Y (k) since the (k−1)st

renewal epoch and does not affect the future events. The following theorem then holds.

Theorem 3.1. Let φ̂Y (s) be the Laplace transform of fY (t) in (2.3), i.e. φ̂Y (s)
def
=∫ ∞

0
e−stfY (t)dt. One then has

V̂ (z, s) =
1 − φ̂Y (s)

s{1 − ĜX(z, s)}
, Re(s) ≥ 0 .

Proof. Since V (z, t) is the probability that the maximum value of Xi(k) has not exceeded

the level zi for 0 ≤ k ≤ N(t) for k = 1, 2, · · · and i ∈ J , by conditioning on the first renewal

time Y (1) and using the regenerative property of the paired process [X(k), Y (k)] at Y (1),

one sees that

V (z, t) = F Y (t) +

∫ t

0

GX(z, y)V (z, t − y)dy . (3.4)

By taking the Laplace transform of both sides of (3.4) with respect to t, it can be seen that

V̂ (z, s) =
1 − φ̂Y (s)

s
+ ĜX(z, s)V̂ (z, s) .

This equation can be solved for V̂ (z, s), completing the proof.

The system lifetime Tz has the dual relationship with M(t) given in (3.3). The Laplace

transform ŵz(s) = E[e−sTz ] is then easily found from Theorem 3.1.

Theorem 3.2.

ŵz(s) =
φ̂Y (s) − ĜX(z, s)

1 − ĜX(z, s)
, Re(s) ≥ 0 .

Proof. From (3.3), one finds that V̂ (z, s) =
1−ŵz(s)

s
, so that ŵz(s) = 1 − sV̂ (z, s). The

theorem now follows from Theorem 3.1.

By differentiating ŵz(s) at s = 0, the mean and the variance of Tz can be obtained.

Corollary 3.2.1.

a) E[Tz] =
E[Y ]

1 − FX(z)

b) V ar[Tz] =
E[Y 2]

1 − FX(z)
+

E[Y ]

(1 − FX(z))2

{
2FX(z)E[Y |X < z] − E[Y ]

}
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The Laplace transform ŵz(s) = E[e−sTz ] has the following real-domain form.

wz(t) = fY (t) +
∞∑

k=1

fY (t) ∗ G
(k)
X (z, t) −

∞∑
k=1

G
(k)
X (z, t) (3.5)

where G
(k+1)
X (z, t) =

∫ t

0
GX(z, t−τ)G

(k)
X (z, τ)dτ and the asterisk denotes similar convolution

in t.

As the threshold levels zi for i ∈ J tend to approach ∞, the system failure becomes a

rare event. Accordingly, it may be expected that Tz/E[Tz] converges in distribution to the

exponential variate E of mean one. This type of exponential limit theorems is originated

from Keilson [2,3] involving rare events in regenerative processes. Since the historical max-

imum is monotonically non-decreasing in time t, Keilson’s theorem does not seem to be

directly applicable here. However, Shanthikumar and Sumita [5] find the structural similar-

ity between rare events in regenerative processes and those in historical maximum processes,

proving a generalized version of the original theorem by Keilson [2,3].

The limit theorem of [5] involves a sequence of non-negative random vectors V (k) =

[X(k), Y (k)] where X(k) and Y (k) may be correlated but V (k)’s are i.i.d. Then the state

space N = R2
+ = {(x, y) : x ≥ 0, y ≥ 0} is decomposed into G(z) and B(z) with G(z) ̸= ∅,

B(z) ̸= ∅, G(z) ∩ B(z) = ∅ and G(z) ∪ B(z) = N , and the following experiment is consid-

ered. If V (k) ∈ G(z), the experiment continues and V (k + 1) is chosen. The experiment

stops when a random vector falls in the region B(z). The system failure time Sz is then

defined as the sum of y-coordinates of all random vectors up to the stopping point. It is

shown in Shanthikumar and Sumita [5] that, if pz = P [V ∈ B(z)] → 0 as z → ∞, then

Sz/E[Sz] → E as z → ∞. In this paper, one has V (k) = [X(k), Y (k)], i.e. the first process

becomes multivariate. This requires to redefine N , G(z), B(z) and pz. However, the system

failure time remains to be expressed as the sum of y-coordinates of all random vectors up

to the stopping point in the random experiment. Since pz = P [V (k) ∈ B(z)] → 0 if zi → ∞
for all i ∈ J , the following theorem can be shown along the line of the proof of Theorem

1.A4 in [5].

Theorem 3.3. Let E be the exponential random variate of mean one and suppose 0 <

FX,Y (x, y) < 1 for 0 < x < ∞, 0 < y < ∞, and E[Y ] < ∞. Then Tz/E[Tz]
d→ E as z → ∞

.

It is trivial that the almost sure dominance of Tz2
over Tz1

is present whenever 0 ≤ z1 ≤
z2. We formally state this result.

Theorem 3.4.

0 ≤ z1 ≤ z2 ⇒ Tz1
≤a.s. Tz2

4. Probability of System Failure Caused by the i-th Component

Given a threshold vector z, we next turn our attention to evaluate the probability ρi(z)

of system failure caused by the i-th component for i ∈ J . For this purpose, let τk be the
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k-th renewal epoch for k = 1, 2, · · · and define ηJ (z, t, k) to describe the event that the

system failure is avoided at the k-th renewal epoch with the marginal probability density

of t at t = τk. Since [X(k), Y (k)] constitute a sequence of i.i.d. random vectors, ηJ (z, t, 1)

represents the avoidance of system failure at any single renewal epoch. It can be seen that

ηJ (z, t)
def
= ηJ (z, t, 1) =

d

dt
FX,Y (z, t)

=

∫ zJ

0

· · ·
∫ z1

0

fX,Y (x, t)dx1 · · · dxJ . (4.1)

For k ≥ 2, one sees that

ηJ (z, t, k)
def
=

d

dt
P [Xi(m) < zi for all i ∈ J and m = 1, · · · , k, τk ≤ t]

=

∫ t

0

ηJ (z, τ, k − 1)ηJ (z, t − τ)dτ . (4.2)

By taking Laplace transforms of (4.1) and (4.2) with respect to t, one finds by induction

that

η̂J (z, s, k) =

∫ ∞

0

e−stηJ (z, t, k)dt = η̂J (z, s)k, k = 1, 2, · · · , (4.3)

where

η̂J (z, s) =

∫ ∞

0

e−stηJ (z, t)dt . (4.4)

Let Fi(J ) be the family of subsets of J containing i, that is,

Fi(J )
def
= {A : i ∈ A,A ⊂ J} , (4.5)

and define ηi:A,J\A(z, t, k) to be the probability that the system failure is triggered by the

i-th component and all the components in A ∈ Fi(J ) exceed the corresponding threshold

levels at the k-th renewal epoch while Xj(k) for j ∈ J \A remains below zj, with the

marginal probability density of t at t = τk. More specifically, we define, for k ≥ 2,

ηi:A,J\A(z, t, k)

def
=

d

dt
P [Xi(m) < zi for all i ∈ J and m = 1, · · · , k − 1, and (4.6)

Xj(k) > zj for j ∈ A,Xj(k) < zj for j ∈ J \A,Xi(k) = max
j∈A

{Xj(k)}, τk ≤ t].

For k = 1, the first half of the conditions in the above probability would be ignored, i.e

ηi:A,J\A(z, t, 1) (4.7)

def
=

d

dt
P [Xj(1) > zj for j ∈ A,Xj(1) < zj for j ∈ J \A,Xi(1) = max

j∈A
{Xj(1)}, τ1 ≤ t].
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As before, since [X(k), Y (k)] are i.i.d. random vectors, ηi:A,J\A(z, t, 1) represents a system

failure at any single renewal epoch with the probability density of the renewal lifetime being

at t. It can be seen that, with ηi:A,J\A(z, t)
def
= ηi:A,J\A(z, t, 1), and for k ≥ 2,

ηi:A,J\A(z, t, k) =

∫ t

0

ηJ (z, τ, k − 1)ηi:A,J\A(z, t − τ)dτ . (4.8)

Adding ηi:A,J\A(z, t, k) over A ∈ Fi(J ), one obtains the probability that the system failure

is triggered by the i-th component at the k-th renewal epoch with the marginal probability

density of t at t = τk . We define

ξi(z, t)
def
= ξi(z, t, 1)

def
=

∑
A∈Fi(J )

ηi:A,J\A(z, t) , (4.9)

and

ξi(z, t, k)
def
=

∑
A∈Fi(J )

ηi:A,J\A(z, t, k) . (4.10)

It then follows from (4.8) through (4.10) that, for k ≥ 2,

ξi(z, t, k) =

∫ t

0

ηJ (z, τ, k − 1)ξi(z, t − τ)dτ . (4.11)

Let the Laplace transform of ξi(z, t) with respect to t be defined by

ξ̂i(z, s)
def
=

∫ ∞

0

e−stξi(z, t)dt . (4.12)

From (4.3) and (4.11), one then has, for k ≥ 2,

ξ̂i(z, s, k)
def
=

∫ ∞

0

e−stξi(z, t, k)dt = {η̂J (z, s)}k−1ξ̂i(z, s) . (4.13)

We note that this Laplace transform result is valid even for k = 1, yielding the definition

ξ̂i(z, s, 1) = ξ̂i(z, s). The corresponding Laplace transform generating function can then be

obtained as

ˆ̂
ξi(z, s, u)

def
=

∞∑
k=1

ξ̂i(z, s, k)uk =
u · ξ̂i(z, s)

1 − u · η̂J (z, s)
. (4.14)

We are now in a position to prove the main theorem of this section.

Theorem 4.1. Given a threshold level vector z, let ρi(z) be the probability that the system

failure is eventually caused by the i-th component. Then one has

ρi(z) =

∫ ∞
0

ξi(z, t)dt

1 −
∫ ∞

0
ηJ (z, t)dt

. (4.15)

Proof. Since ρi(z) =
ˆ̂
ξi(z, 0, 1), the theorem follows immediately from (4.14).
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Remark 4.2. In e-commerce, the probability ρi(z) that Product i is chosen to be purchased

over Product j, j ∈ J \ {i}, represents the strength of Product i against other competitive

products. If the brand power of Product i is strong, customers would not require much

information about Product i. This means that a smaller value of zi is likely to convince

customers to purchase. Given zi, if the website of Product i is well organized, it is likely to

enable customers to reach zi sooner. Consequently, one may expect that ρi(z) increases as

zi decreases or Xi increases stochastically. It is non-trivial to prove this conjecture based on

Theorem 4.1. However, we will demonstrate this conjecture through numerical examples.

In Theorem 4.1, the denominator of ρi(z) can be computed rather easily from (4.1). As

can be seen from (4.15), the numerator, however, requires the summation over A ∈ Fi(J )

which grows exponentially as a function of J . Accordingly, it is not easy to compute the

numerator when J is large. If the threshold level of each component is identical, i.e. z = z1

where 1 is the vector having all components equal to 1, the computation of the numerator

can be simplified significantly. Namely, one has

ξi(z1, t) =
d

dt
P [Xi(1) = max

j∈J
{Xj(1)} > z, τ1 ≤ t]

=

∫ ∞

z

dxi

∫ xi1\i

0\i
fX,Y (x, t)dx , (4.16)

where a\i def
= [a1, · · · , ai−1, ai+1, · · · , aJ ]T .

When J = {1, 2}, the summation over A ∈ Fi(J ) can be written explicitly, enabling one

to evaluate ρi(z1, z2). More specifically, one has

ξ1(z1, z2, t) = η1,2(z1, z2, t) + η1:1,2(z1, z2, t) (4.17)

ξ2(z1, z2, t) = η1,2(z1, z2, t) + η2:1,2(z1, z2, t) (4.18)

where

η1,2(z1, z2, t) =

∫ z2

0

∫ ∞

z1

fX,Y (x1, x2, t)dx1dx2 ; (4.19)

η1,2(z1, z2, t) =

∫ ∞

z2

∫ z1

0

fX,Y (x1, x2, t)dx1dx2 ; (4.20)

and

η1:1,2(z1, z2, t)
def
=

d

dt
P [X1(1) ≥ z1, X2(1) ≥ z2, X1(1) > X2(1), τ1 ≤ t] ; (4.21)

η2:1,2(z1, z2, t)
def
=

d

dt
P [X1(1) ≥ z1, X2(1) ≥ z2, X1(1) < X2(1), τ1 ≤ t] . (4.22)

When z1 > z2, (4.21) and (4.22) are given by

η1:1,2(z1, z2, t) =

∫ ∞

z1

[∫ x1

z2

fX,Y (x1, x2, t)dx2

]
dx1 ; (4.23)

η2:1,2(z1, z2, t) =

∫ ∞

z1

[∫ x2

z1

fX,Y (x1, x2, t)dx1

]
dx2 . (4.24)

9



For z1 ≤ z2, one has

η1:1,2(z1, z2, t) =

∫ ∞

z2

[∫ x1

z2

fX,Y (x1, x2, t)dx2

]
dx1 ; (4.25)

η2:1,2(z1, z2, t) =

∫ ∞

z2

[∫ x2

z1

fX,Y (x1, x2, t)dx1

]
dx2 . (4.26)

The results in (4.17) through (4.26) will be used for numerical examples to be presented in

the next section.

5. Application to Analysis of the Browsing Behavior of Users of the Internet

We suppose that a consumer visits various websites in order to gather information about

two products of the same type. Let X1(k) be the value of information about the product

P1 of Company C1 that the consumer gains from the k-th search with length of Y (k), and

X2(k) is defined similarly for the product P2 of Company C2. We assume that both X1(k)

and X2(k) consist of two parts: a part independent of Y (k) and another part proportional to

Y (k). The former parts for X1(k) and X2(k) are denoted by X̂1(k) and X̂2(k) respectively.

More formally, we define

X1(k) = X̂1(k) + α1Y (k) ; X2(k) = X̂2(k) + α2Y (k) . (5.1)

It is assumed that X̂1(k), X̂2(k) and Y (k) constitute three independent renewal sequences

with respect to k, but X1(k) and X2(k) are not independent because of sharing the common

value of Y (k).

Let FX,Y (x1, x2, y) = P [X1(k) < x1, X2(k) < x2, Y (k) ≤ y], and let the distribution

functions of X̂1 and X̂2 be denoted by FX̂1
(x) and FX̂2

(x) respectively. From (5.1), by

conditioning on Y , one finds that

FX,Y (x1, x2, y) =

∫ min{y,
x1
α1

,
x2
α2

}

0

FX̂1
(x1 − α1τ)FX̂2

(x2 − α2τ)fY (τ)dτ. (5.2)

From (2.2), it then follows that

fX,Y (x1, x2, y) = fX̂1
(x1 − α1y)fX̂2

(x2 − α2y)fY (y) · I{0 ≤ y ≤ min{x1

α1

,
x2

α2

}}, (5.3)

where I{ST} = 1 if statement ST is true, I{ST} = 0 otherwise. We assume that X̂1(k),

X̂2(k) and Y (k) are exponentially distributed with respective probability density functions

given by

fX̂1
(x̂1) = µ1e

−µ1x̂1 ; fX̂2
(x̂2) = µ2e

−µ2x̂2 ; fY (y) = λe−λy. (5.4)

Suppose that the consumer will stop the search process whenever the desired information

for either product, specified by z1 or z2, is obtained. Let γ∗ and γ∗ be defined as

γ∗ def
= min{ z1

α1

,
z2

α2

} ; γ∗ def
= max{ z1

α1

,
z2

α2

} , (5.5)
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and let A(s), B(s), C(s) and D(s) be given by

A(s) =
λe−µ1z1(1 − e−(s+λ−µ1α1)γ∗

)

s + λ − µ1α1

; B(s) =
λe−µ2z2(1 − e−(s+λ−µ2α2)γ∗

)

s + λ − µ2α2

C(s) =
λe−(µ1z1+µ2z2)(1 − e−(s+λ−µ1α1−µ2α2)γ∗

)

s + λ − µ1α1 − µ2α2

; D(s) =
λe−(s+λ)γ∗

s + λ
. (5.6)

Then from Theorem 3.2 and Equations (5.1) through (5.6), one has the following theorem.

Theorem 5.1. Let Tz be the web search completion time as defined in (2.8). Then its

Laplace transform is given by

ŵz(s) =
{

1 +
s

s+λ

A(s) + B(s) − C(s) + D(s)

}−1

.

Proof. From Equations (5.2) through (5.4), one has

fX,Y (x1, x2, y) = µ1e
−µ1(x1−α1y)µ2e

−µ2(x2−α2y)λe−λyI{0 ≤ y ≤ min(
x1

α1

,
x2

α2

)} .

For notational convenience, let

f̃X,Y (x1, x2, y)
def
= µ1e

−µ1(x1−α1y)µ2e
−µ2(x2−α2y)λe−λy . (5.7)

It can be seen that

GX,Y (z1, z2, y) =

∫ z2

0

{∫ z1

0

fX,Y (x1, x2, y)dx1

}
dx2

=

∫ z2

0

{∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ x1 ≤
α1

α2

x2 ≤ z1}dx1

+

∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ x1 ≤ z1 ≤
α1

α2

x2}dx1

+

∫ z1

0

f̃X,Y (x1, x2, y)I{α1y ≤ α1

α2

x2 ≤ x1 ≤ z1}dx1

}
dx2 ,

which leads to

GX,Y (z1, z2, y) =

∫ z2

0

[ ∫ α1
α2

x2

α1y

f̃X,Y (x1, x2, y)dx1I{α1y ≤ α1

α2

x2 ≤ z1}

+

∫ z1

α1y

f̃X,Y (x1, x2, y)dx1I{α1y ≤ z1 ≤
α1

α2

x2}

+

∫ z1

α1
α2

x2

f̃X,Y (x1, x2, y)dx1I{α1y ≤ α1

α2

x2 ≤ z1}

]
dx2 .

Since the first term and the third term in the last part of the above equation can be combined

as a single integral from α1y to z1, one finds that

GX,Y (z1, z2, y)

=

∫ z2

0

[∫ z1

α1y

f̃X,Y (x1, x2, y)dx1

{
I{α1y ≤ z1 ≤

α1

α2

x2} + I{α1y ≤ α1

α2

x2 ≤ z1}

}]
dx2 .

11



Substituting (5.7) into the above equation, one has

GX,Y (z1, z2, y) = λe−(λ−µ1α1−µ2α2)y[e−µ1α1y − e−µ1z1 ]

×
∫ z2

0

µ2e
−µ2x2

{
I{α2y ≤ α2

α1

z1 ≤ x2} + I{α2y ≤ x2 ≤
α2

α1

z1}

}
dx2 .

By repeating this procedure with respect to x2, one concludes that

GX,Y (z1, z2, y) =

{
e−(µ1z1+µ2z2)λe−(λ−µ1α1−µ2α2)y − e−µ1z1λe−(λ−µ1α1)y

−e−µ2z2λe−(λ−µ2α2)y + λe−λy

}
· I{0 ≤ y ≤ γ∗} , (5.8)

where γ∗ def
= min{ z1

α1
, z2

α2
} is as in (5.5). By taking the Laplace transform of both sides of

(5.8) with respect to y, it follows that

ĜX,Y (z1, z2, s)
def
=

∫ ∞

0

e−syGX,Y (z1, z2, y)dy

=
λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) − λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
)

− λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
) +

λ

s + λ
(1 − e−(s+λ)γ∗

) .

Since

φY (s)
def
=

∫ ∞

0

e−syλe−λydy =
λ

s + λ
,

one sees that,

φY (s) − ĜX,Y (z1, z2, s)

=
λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
) +

λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
)

− λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) +

λ

s + λ
e−(s+λ)γ∗

,

and

1 − ĜX,Y (z1, z2, s)

=
λe−µ1z1

s + λ − µ1α1

(1 − e−(s+λ−µ1α1)γ∗
) +

λe−µ2z2

s + λ − µ2α2

(1 − e−(s+λ−µ2α2)γ∗
)

− λe−(µ1z1+µ2z2)

s + λ − µ1α1 − µ2α2

(1 − e−(s+λ−µ1α1−µ2α2)γ∗
) +

s + λe−(s+λ)γ∗

s + λ
.

With A(s), B(s), C(s) and D(s) as defined in (5.6), it can be seen that

ŵz(s) =
φ̂Y (s) − ĜX(z, s)

1 − ĜX(z, s)
=

{
1 +

s
s+λ

A(s) + B(s) − C(s) + D(s)

}−1

,

completing the proof.
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Figure 1: Mean Search Time ( µ1 = 2.7, µ2 = 2.7, α1 = 0.2, α2 = 0.1, λ = 6 )

For this example, E[Tz] can be evaluated explicitly from Corollary 3.2.1, as depicted in

Figure 1. We note that the monotonicity of E[Tz] in z can be observed.

The probability of Product i being purchased can be derived directly from Equations

(4.16) through (4.25) and Theorem 4.1. Let γ∗, γ∗ and A(s), B(s), C(s) and D(s) be as in

(5.5) and (5.6) respectively. One then has the following theorem. Proof is rather mechanical

and is omitted here.

Theorem 5.2. The probability of Product i being purchased can be evaluated through the

four cases below:
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Case 1: z1 > z2, α1 > α2

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

}
I

{
z1

α1

≤ z2

α2

}

+
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+[e−(µ1z1+µ2z2) − µ1

µ1 + µ2

e−(µ1z1+µ2z1)]
λ[1 − e−(λ−µ1α1−µ2α2)γ∗

]

λ − µ1α1 − µ2α2

+
λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

− µ1

µ1 + µ2

· λ[e
−(λ−µ2α2+µ2α1)

z1
α1 − e

−(λ−µ2α2+µ2α1)
z2
α2 ]

λ − µ2α2 + µ2α1

I

{
z1

α1

≤ z2

α2

}

− λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α2 ]I

{
z2

α2

≤ z1

α1

}

−µ1λe−(µ1z1+µ2z2)

µ1 + µ2

· [e
−(λ−µ1α1−µ2α2)

z2
α2 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

I

{
z2

α2

≤ z1

α1

}

+e−λγ∗
+

λe−(λ−µ2α2+µ2α1)γ∗

λ − µ2α2 + µ2α1

}

ρ2(z) =
1

A(0) + B(0) − C(0) + e−(λ)γ∗

×

{
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−(s+λ)
z2
α2 − e

−(λ)
z1
α1 ] − λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α1 ]

}

+
µ1λe−(µ1+µ2)z1

µ1 + µ2

· 1 − e
−(λ−µ1α1−µ2α2)

z1
α1

λ − µ1α1 − µ2α2

+
µ1λ

µ1 + µ2

· e
−(λ−µ2α2+µ2α1)

z1
α1

λ − µ2α2 + µ2α1

}
Case 2: z1 ≤ z2, α1 > α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

+
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+
λµ2α2

µ1α1 + µ2α2

·

{
e
−(µ1

α1
α2

z2+µ2z2)
[1 − e

(λ−µ1α1−µ2α2)
z2
α2 ]

λ − µ1α1 − µ2α2

+
1

λ
e
−λ

z2
α2

}}
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ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z2
α2 − e

−λ
z1
α1 ] − λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α1 ]

}

+
λ[e−µ1z1 − µ2

µ1+µ2
e−(µ1+µ2)z1 ][1 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
λe−µ2z2 [e

−λ−µ2α2)
z1
α1 − e

−(λ−µ2α2)
z2
α1 ]

λ − µ2α2

− µ2

µ1 + µ2

· λe−(µ1+µ2)z2 [e
−(λ−µ1α1−µ2α2)

z1
α1 − e

−(λ−µ1α1−µ2α2)
z2
α1 ]

λ − µ1α1 − µ2α2

+
µ1

µ1 + µ2

· λe
−(λ−µ2α2+µ2α1)

z2
α1

λ − µ2α2 + µ2α1

}

Case 3: z1 > z2, α1 ≤ α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z1
α1 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]

}

+
µ1λe−(µ1+µ2)z2

µ1 + µ2

· 1 − e
−(λ−µ1α1−µ2α2)

z2
α2

λ − µ1α1 − µ2α2

+
µ1λ

µ1 + µ2

· e
−(λ−µ2α2+µ2α1)

z1
α1

λ − µ2α2 + µ2α1

}

ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+[e−(µ1z1+µ2z2) − µ1

µ1 + µ2

e−(µ1z1+µ2z1)]
λ[1 − e−(λ−µ1α1−µ2α2)γ∗

]

λ − µ1α1 − µ2α2

+
λe−µ1z1

λ − µ1α1

[e
−(λ−µ1α1)

z2
α2 − e

−(λ−µ1α1)
z1
α2 ]

−µ1λe−(µ1z1+µ2z2)

µ1 + µ2

· [e
−(λ−µ1α1−µ2α2)

z2
α2 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+e−λγ∗
+

λe−(λ−µ2α2+µ2α1)γ∗

λ − µ2α2 + µ2α1

}
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Case 4: z1 ≤ z2, α1 ≤ α2,

ρ1(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λe−µ1z1

λ − µ1α1

[1 − e−(λ−µ1α1)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

+

{
[e

−λ
z2
α2 − e

−λ
z2
α2 ] − λe−µ2z2

λ − µ1α1

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ1α1)
z1
α1 ]

}

+
λ[e−µ1z1 − µ2

µ1+µ2
e−(µ1+µ2)z1 ][1 − e

−(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
λe−µ2z2 [e

−(λ−µ2α2)
z1
α1 − e

−(λ−µ2α2)
z2
α1 ]

λ − µ2α2

− µ1

µ1 + µ2

· λe−(µ1+µ2)z1 [e
−(λ−µ1α1−µ2α2)

z1
α1 − e

−(λ−µ1α1−µ2α2)
z2
α1 ]

λ − µ1α1 − µ2α2

+
µ1

µ1 + µ2

· λe
−(λ−µ2α2+µ2α1)

z2
α1

λ − µ2α2 + µ2α1

}

ρ2(z) =
1

A(0) + B(0) − C(0) + e−λγ∗

×

{
λ

λ
[e

−λ
z1
α1 − e

−λ
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

− λe−µ2z2

s + λ − µ2α2

[e
−(λ−µ2α2)

z1
α1 − e

−(λ−µ2α2)
z2
α2 ]I

{
z1

α1

≤ z2

α2

}

+
λe−µ2z2

λ − µ2α2

[1 − e−(λ−µ2α2)γ∗
] − λe−(µ1z1+µ2z2)

λ − µ1α1 − µ2α2

[1 − e−(λ−µ1α1−µ2α2)γ∗
]

− λµ1α1

µ1α1 + µ2α2

{
e
−(µ1

α1
α2

z2+µ2z2)
[1 − e

(λ−µ1α1−µ2α2)
z1
α1 ]

λ − µ1α1 − µ2α2

+
1

λ
e
−λ

z2
α2

}}
We are now in a position to demonstrate numerical examples based on Theorem 5.2.

The basic set of the underlying parameter values is given in Table 5.1.

Table 5.1 : Basic Set of Parameter Values

parameter λ z1 z2 α1 α2 µ1 µ2

value 6.0 3.2 3.2 0.2 0.1 2.7 2.7

Figure 5.2 depicts ρ1(z) and ρ2(z) as functions of µ2 and z2 where µ2 is varied from 0.5

to 5.0, and z2 is varied from 1.0 to 5.5. We recall that the exponential variate E1(µ1) of

mean µ−1
1 is stochastically larger than the exponential variate E2(µ2) of mean µ−1

2 if and

only if µ1 < µ2, i.e.

P [E1(µ1) > x] = e−µ1x > e−µ2x = P [E2(µ2) > x] ⇐⇒ µ1 < µ2 .
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Figure 5.3: Parameter Range Decomposition

Keeping this in mind, one can observe that the conjecture stated in Remark 4.2 holds true

in these numerical examples, that is, ρ2(z) increases as both z2 and µ2 decrease. In order to

see this point more clearly, we decompose the parameter range into four regions as shown

in Figure 5.3. The corresponding graphs of ρ1(z) and ρ2(z) are redrawn for each region, as

given in Figures 5.4 through 5.7. We note that ρ2(z) dominates ρ1(z) in Region (I) with

µ2 < µ1, z2 < z1, while this dominance is reversed in Region (II) with µ2 > µ1, z2 > z1,

as expected. In Region (III) with µ2 > µ1, z2 < z1, it can be seen that ρ2(z) is greater

than ρ1(z) for relatively large µ2 and small z2. This is so because the advantage of P2 in

z2 smaller than z1 overwhelms the disadvantage of P2 in µ2 larger than µ1. However, this

dominance is reversed as µ2 decreases and z2 increases, resulting in crossing of the graphs

of ρ1(z) and ρ2(z). Similar behaviors of ρ1(z) and ρ2(z) can be observed in the opposite

manner in Region (IV), where µ2 < µ1 and z2 > z1.

Figure 5.4: Region (I)

µ2 < µ1 = 2.7, z2 < z1 = 3.2

Figure 5.5: Region (II)

µ2 > µ1 = 2.7, z2 > z1 = 3.2

6. Concluding Remarks

In this paper, the general shock model of Shanthikumar and Sumita [5] is extended so as

to incorporate multiple types of shocks generated from a common renewal sequence. More

specifically, a correlated multivariate shock model is considered where a system is subject to

a sequence of J different shocks triggered by a common renewal process. Let (Y (k))∞k=1 be a

sequence of independently and identically distributed (i.i.d.) nonnegative random variables

associated with the renewal process. For the magnitudes of the k-th shock denoted by a

random vector X(k), it is assumed that [X(k), Y (k)] (k = 1, 2, · · · ) constitute a sequence
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Figure 5.6: Region (III)

µ2 > µ1 = 2.7, z2 < z1 = 3.2

Figure 5.7: Region (IV)

µ2 < µ1 = 2.7, z2 > z1 = 3.2

of i.i.d. random vectors with respect to k while X(k) and Y (k) may be correlated. The

system fails as soon as the historical maximum of the magnitudes of any component of the

random vector exceeds a prespecified level of that component. The Laplace transform of the

probability density function of the system lifetime is derived, and its mean and variance are

obtained explicitly. Furthermore, the probability of system failure due to the i-th component

is obtained explicitly for all i ∈ J = {1, · · · , J}. The model is applied for analyzing the

browsing behavior of internet users.

The model proposed in this paper relies upon the information search completion time

determined by the historical maximum of the value of information gathered by a customer.

In some situations, however, the customer may make a decision based on the cumulative

value of information gathered by time t. While such cumulative shock models with a single

type of shocks have been studied by Sumita and Shanthikumar [7], the multivariate version

has not been studied yet. This research is in progress and will be reported elsewhere.
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