
Department of Social Systems and Management

Discussion Paper Series

No. 1241

Constant Rebalanced Portfolio Optimization
under Nonlinear Transaction Costs

by

Yuichi Takano and Jun-ya Gotoh

July 2009

UNIVERSITY OF TSUKUBA

Tsukuba, Ibaraki 305-8573

JAPAN



Constant Rebalanced Portfolio Optimization

under Nonlinear Transaction Costs

Yuichi Takano ∗ † Jun-ya Gotoh‡

July 15, 2009

Abstract

In this paper, we study a multi-period portfolio optimization where conditional value-at-
risk (CVaR) is controlled as well as expected return, and the so-called constant rebalancing
strategy is employed under nonlinear transaction costs. In general, the optimization of this
strategy itself is, however, difficult to attain a globally optimal solution because of the non-
convexity. In addition, nonlinearity of the transaction cost and CVaR functions makes things
worse, and even a locally optimal solution may not be reached via a state-of-the-art nonlinear
programming solver when the size of the problem is large. In order to provide a practical
solution to the highly complex problem, we propose a local search algorithm where linear
approximation problems and nonlinear equations are iteratively solved. Computational re-
sults are presented, showing that the proposed algorithm attains a good solution in practical
time even when a revised version of an existing global optimization approach cannot return
any feasible solutions.

Keywords: Multi-period portfolio optimization, Constant rebalancing, Transaction cost,
Conditional value-at-risk, Market impact cost

1 Introduction

Multi-Period Portfolio Optimization. Since the seminal work of Markowitz (1952), opti-

mization methods for portfolio selection have been actively studied and playing an important role

in financial decision makings (see, e.g., Cornuejols and Tütüncü, 2007). Since the early stage,

it has been recognized that multi-period model is essential for long-term portfolio management

(e.g., Markowitz, 1991) as well as the single-period models as in Markowitz (1952). It was, how-

ever, difficult at that time to solve even single-period problems because of the computational
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burden, and accordingly, recent developments of computational environment and stochastic pro-

gramming models had been required for constructing a multi-period portfolio. Intractability of

multi-period models depends on how to describe uncertainty in values of investable assets and

on how to formulate investment strategies.

Description of Uncertainty for Multi-Period Model. Multi-period portfolio optimiza-

tion was first introduced as a dynamic stochastic programming (stochastic control problem) (e.g.,

Merton, 1969; Samuelson, 1969; Merton, 1971) (see Infanger, 2006, for detailed references). Al-

though closed-form solutions to those problems can be derived under strong assumptions, such

an approach cannot be easily generalized in the presence of market frictions, e.g., transaction

costs. Moreover, it requires to overcome a heavy computational burden for actual numerical im-

plementation (Brennan et al., 1997; Brandt, 1999), and therefore, alternative various stochastic

programming models have been proposed for multi-period portfolio optimization (e.g., Kusy and

Ziemba, 1986; Mulvey and Vladimirou, 1989; Dantzig and Infanger, 1993; Cariño et al., 1994).

Mainly studied models, e.g., in Mulvey and Ziemba (1995); Ziemba and Mulvey (1998), employs

a scenario tree for representing the uncertainty of asset values. However, seeking accuracy in

the uncertainty representation, the size of the optimization problem may grow exponentially

(Ermoliev and Wets, 1988). On the other hand, simulated path model, in which scenarios are

represented by sample paths generated by a Monte Carlo simulation method, yields better accu-

racy in describing uncertainty (Hibiki, 2003). Incorporating the benefits of the two approaches,

Hibiki (2003) proposed a hybrid (bundling simulated path) model which is designed not only to

describe uncertainty on a simulated path structure but also to enable one to make conditional

decisions in a tree structure. In this paper, taking into account the compatibility with constant

rebalancing strategy, the simulated path model is employed.

Advantages of Constant Rebalancing Strategy. Among investment strategies for long-

term asset management, buy-and-hold and periodical rebalancing are two of the most popular

policies (see Perold and Sharpe, 1995, for detailed discussion on various investment strategies).

The former is an investment strategy in which an investor buys financial assets and holds them

throughout the planning period. On the other hand, rebalancing strategy is a dynamic approach

to investment decision making, and the most familiar one is constant rebalancing (in other words,

fixed mix, constant mix and the like). This rebalancing strategy requires purchase and sale of
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assets so that investment proportion would be restored to the original one at the beginning of

each period.

The advantages of constant rebalancing are as follows:

1. [ Advantage as an Optimization Model. ] In formulating the rebalancing on a simulated path

model, we can do without introducing decision variables of investment proportion sepa-

rately for each period, which means that only variables of the number of assets are required.

2. [ Advantage for Financial Institutions. ] In practice, it is easy to explain this rebalancing pol-

icy to customers due to its simplicity.

3. [ Validity as an Investment Strategy. ] The constant rebalancing is a kind of contrarian in-

vestment strategy, which suggests to purchase assets whose price has decreased and to sell

ones whose price has increased, and it is widely believed among investors that it is effective

for mid/long term investment.

Solution to Constant Rebalanced Portfolio Optimization. Multi-period portfolio op-

timization with constant rebalancing strategy is relatively easy to solve in case of log-optimal

portfolio (Cover, 1991), in which the asymptotically optimal portfolio is determined by maximiz-

ing the expected log return. However, it becomes a nonconvex problem and difficult to attain a

globally optimal solution in general when a risk measure (e.g., variance of returns) is introduced

(Maranas et al., 1997). Moreover, the problems with various constraints and objectives are much

harder to solve. In addition, if the problem size is large, any locally optimal solutions may not

be reached via state-of-the-art nonlinear programming (NLP) solvers. Maranas et al. (1997)

considered multi-period mean-variance portfolio optimization with constant rebalancing strat-

egy for long-term financial planning. They proposed a rectangular branch-and-bound algorithm

in order to globally solve this problem. By enjoying the fact that the number of assets is only

up to nine, their deterministic algorithm attains a globally optimal solution in practical time.

However, transaction costs are not considered in Maranas et al. (1997) and cannot be easily

dealt with in their framework because introducing cost functions would prevent the problem

from having a compact representation they enjoyed. Hibiki (2006) proposed an iterative opti-

mization algorithm by alternately fixing decision variables for approximately solving the hybrid

model with a fixed-proportion strategy. In this strategy, investment proportions have the same

value for all simulated paths passing the same bundle of states. Although this algorithm works
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well by employing a good initial solution, it may not work in the constant rebalanced portfolio

optimization in question because initial solution can be hardly improved due to the excessive

reduction of degree of freedom. Besides, transaction costs are not considered in Hibiki (2006).

Transaction Costs. Transaction costs have also been a subject of concerns in the literature,

and should be taken into consideration for successful investing in practice. In particular, a large

amount of transactions usually make asset price move in an unfavorable direction. Such an effect

is known as market impact, and the associated cost is nonnegligible for institutional investors.

In this paper, we consider a convex cost function which is supposed to represent market impact.

Among recent papers on multi-period portfolio optimization under transaction costs are the

model minimizing one-sided deviation measure (Pinar, 2007), the robust optimization approach

(Bertsimas and Pachamanova, 2008), the policy optimization approach (Calafiore, 2008; Skaf

and Boyd, 2008), and the like. However in those papers, constant rebalancing strategy is not

considered, and only linear transaction costs are considered. Gaivoronski and Stella (2003)

proposed a log-optimal portfolio with transaction costs for an adaptive portfolio selection policy.

Zhang and Zhang (2009) proposed a hybrid model under linear transaction costs in which CVaR

is employed as a risk measure, and solve the resulting nonconvex program by applying a genetic

algorithm.

The purpose of this paper is to propose a local search algorithm for solving the constant

rebalanced portfolio optimization under nonlinear transaction costs. In this algorithm, linear

approximation problems and nonlinear equations are iteratively solved via linear programming

(LP) solver and Newton’s method respectively. In contrast to the use of nonlinear programming

solver, the proposed strategy can provide a solution to the complex problem. Moreover, an

incumbent solution can be improved better than the alternating optimization (Hibiki, 2006).

The effectiveness of the proposed local search algorithm is examined through computational

experiments where the performance is compared to the buy-and-hold strategy.

The rest of the paper is organized as follows. In Section 2, a mathematical description of

a constant rebalancing model under transaction costs is given. Section 3 explains the portfolio

optimization problems via conditional value-at-risk (CVaR) minimization, and in Section 4,

the local search algorithm for solving them is proposed. Computational results are presented

in Section 5, showing the comparative superiority of the proposed approach and the constant
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Figure 1: Example of Constant Rebalancing

rebalancing strategy.

2 Constant Rebalancing under Transaction Costs

In this section, we give a mathematical description of a constant rebalancing model under

transaction costs.

To begin with, let us define the index sets as follows:

I := {1, ..., n} : index set of investable financial assets

T := {1, ..., t} : index set of time periods in the future

J := {1, ..., m} : index set of given scenarios, or in other words, index set of simulated

paths (see Figure 2).

Let γi : IR → IR be a function representing the transaction cost of asset i ∈ I for the amount

of transactions ξ. In this paper, we assume that γi is a convex function representing a market

impact cost:

γi(ξ) := ai [−ξ ]+ exp (−biξ) + ci [ ξ ]+ exp (diξ) , (1)

where ai, bi, ci, di (i ∈ I) are non-negative parameters to be estimated, and [ ξ ]+ := max{ξ, 0}.
The value of γi is almost zero in case of small amount of transactions and grows exponentially

as a function of the amount of transactions. Besides, the linear transaction costs which are

considered in, e.g., Pinar (2007); Bertsimas and Pachamanova (2008); Calafiore (2008); Skaf

and Boyd (2008) can be represented by placing zero as bi and di.
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Figure 1 shows an example of constant rebalancing. Let us assume that 4.0, 3.0 and 3.0 billion

Japanese yen are invested in Stock A, Stock B and Bond C respectively at the beginning of a

period. In a period, investment proportion will be different from the initial one, i.e., 40%, 30%

and 30% due to the changes in asset prices. Then, the constant rebalancing strategy compels to

purchase assets whose price has decreased and to sell assets whose price has increased so that

the proportion is restored to be 40%, 30% and 30% at the beginning of the next period.

Let

ȳi : initial investment unit in asset i (given parameters, i ∈ I)

p0,i : initial price of asset i per unit (given parameters, i ∈ I)

pj
τ,i : price of asset i per unit at the end of period τ under the scenario j

(given parameters, τ ∈ T, j ∈ J, i ∈ I)

dj
τ,i : dividend of asset i per unit holding at the end of period τ under the scenario j

(given parameters, τ ∈ T, j ∈ J, i ∈ I)

v0 : initial wealth (given parameter)

vj
τ : portfolio value before rebalancing at the end of period τ under the scenario j

(decision variables, τ ∈ T, j ∈ J)

u0 : portfolio value after the initial rebalancing (decision variable)

uj
τ : portfolio value after rebalancing at the end of period τ under the scenario j

(decision variables, τ ∈ T \ {t}, j ∈ J)

wi : investment proportion in asset i satisfying
∑
i∈I

wi = 1 (decision variables, i ∈ I).

We assume that the investor has an initial portfolio ȳ at the beginning of the investment.

The constant rebalancing strategy enforces the rebalancing to a constant proportion w at the

beginning of each discrete investment period. In case of initial rebalancing, the invested amount

p0,iȳi is adjusted to u0wi, and at the same time, portfolio value u0 is calculated by subtracting

the transaction cost from initial wealth v0. The relation between initial wealth v0 and portfolio

value u0 is given by

v0 = u0 +
∑

i∈I

γi(u0wi − p0,iȳi). (2)

Due to asset price changes and receipt of dividends, the portfolio value changes over the

period 1. Accordingly, portfolio value before rebalancing at the end of period 1 under the

scenario j is given by

vj
1 = u0

∑

i∈I

(1 + xj
1,i)wi, (3)
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Period

Figure 2: Simulated Paths of Portfolio Value

where xj
τ,i is calculated as follows:

xj
1,i :=

pj
1,i − p0,i + dj

1,i

p0,i
; xj

τ,i :=
pj

τ,i − pj
τ−1,i + dj

τ,i

pj
τ−1,i

, τ ∈ T \ {1}, (4)

and represents the return of asset i at the period τ under the scenario j.

Taking it into consideration that the investment unit in asset i right before the rebalancing

is (u0wi)/p0,i, in the same way as Equation (2), the relation between portfolio values vj
1 and uj

1

under the scenario j is given by

vj
1 = uj

1 +
∑

i∈I

γi

(
uj

1wi −
pj
1,iu0wi

p0,i

)
. (5)

Similarly, portfolio value before rebalancing at the end of period τ ∈ T \ {1} under the

scenario j is given by

vj
τ = uj

τ−1

∑

i∈I

(1 + xj
τ,i)wi, (6)

and the relation between portfolio values vj
τ and uj

τ at the end of period τ ∈ T \ {1, t} under the

scenario j is given by

vj
τ = uj

τ +
∑

i∈I

γi

(
uj

τwi −
pj

τ,iu
j
τ−1wi

pj
τ−1,i

)
. (7)

In Figure 2, an example of changes in portfolio value is illustrated. The portfolio value falls

at the beginning of each period due to transaction costs associated with the rebalancing (see

Equations (2), (5) and (7)).
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Probability

Loss

ProbabilityProbability

Figure 3: Value-at Risk and Conditional Value-at-Risk

3 Conditional Value-at-Risk and Portfolio Optimization Prob-
lem

In this section, we introduce a risk measure known as conditional value-at-risk (CVaR), and

formulate a constant rebalanced portfolio optimization problem in which CVaR is controlled as

well as expected return.

3.1 Conditional Value-at-Risk

Portfolio optimization problem is usually formulated via two-parameter approach as in the

Markowitz’s mean-variance model (Markowitz, 1952) where the two parameters represent ex-

pected return and variance of a portfolio return. Among various risk measures examined in

the literature (see, e.g., Cornuejols and Tütüncü, 2007), we employ conditional value-at-risk

(CVaR). Let β ∈ (0, 1) be a parameter representing confidence level. (In numerical experiments

of Section 5, we set β = 0.95.) β-CVaR is then explained as the conditional expectation of

random loss X̃ exceeding value-at-risk (VaR), the β-quantile of the loss, as Figure 3 indicates.

It is worth noting that CVaR has various desirable properties as a risk measure in computational

and theoretical aspects (see, e.g., Pflug, 2000; Rockafellar and Uryasev, 2002).

If the support or realizations of random loss X̃ is given by a finite set {Xj | j ∈ J}, β-CVaR

is evaluated by the optimal value of the following convex program (Rockafellar and Uryasev,

2002):

minimize
ρ∈IR

ρ +
1

1− β

∑

j∈J

pj [Xj − ρ]+, (8)
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where pj are the occurrence probability of scenario j ∈ J . Moreover, Problem (8) can be

rewritten as the following linear programming problem (Rockafellar and Uryasev, 2002):

minimize
(ρ,z)∈IR×IRm

ρ +
1

1− β

∑

j∈J

pjzj

subject to zj ≥ Xj − ρ, zj ≥ 0, j ∈ J.

(9)

3.2 Formulation

In the rest part of the paper, we assume that occurrence probability of scenario j ∈ J = {1, ..., m}
is 1/m. In the formulation, we consider the following constraints:

Portfolio Dynamics Equation




v0 = u0 +
∑

i∈I

γi(u0wi − p0,iȳi), · · · (10. a)

vj
1 = uj

1 +
∑

i∈I

γi

(
uj

1wi −
pj
1,iu0wi

p0,i

)
, j ∈ J · · · (10. b)

vj
τ = uj

τ +
∑

i∈I

γi

(
uj

τwi −
pj

τ,iu
j
τ−1wi

pj
τ−1,i

)
, τ ∈ T \ {1, t}, j ∈ J · · · (10. c)

vj
1 = u0

∑

i∈I

(1 + xj
1,i)wi, j ∈ J · · · (10. d)

vj
τ = uj

τ−1

∑

i∈I

(1 + xj
τ,i)wi, τ ∈ T \ {1}, j ∈ J · · · (10. e)

(10)

Investment Proportion Constraint




wL
i ≤ wi ≤ wU

i , i ∈ I · · · (11. a)
∑

i∈I

wi = 1, · · · (11.b)
(11)

where wL
i (wU

i ) is a lower (upper) limit of investment proportion in asset i ∈ I.

In the following formulation, the random loss regarding the definition of CVaR is defined as

“(−1)×(portfolio value at the end of period t),” that is, −vj
t , and both the maximization of the

expected portfolio value at the end of period t and the minimization of CVaR are considered at

the same time via an objective function:

maximize
u,v,ρ,w

λ


 1

m

∑

j∈J

vj
t


− (1− λ)


ρ +

1
(1− β)m

∑

j∈J

[
−vj

t − ρ
]+




subject to Portfolio Dynamics Equation (10),

Investment Proportion Constraint (11),

(12)
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Feasible Region1.
2. 1. 2. 1. 2.

1. Solving a linear approximation problem, 2. Solving nonlinear equations

Figure 4: Geometric Interpretation of the Local Search Algorithm

where λ ∈ [0, 1] is a trade-off parameter between the expected return and the CVaR.

A large number of bilinear terms of decision variables (u0wi, uj
τwi and the like) appear in

Constraint (10). Therefore, Problem (12) is nonconvex and difficult to attain a globally optimal

solution in general (Konno et al., 1997; Tuy, 1998). Moreover, in particular if the number of

scenarios is so large, the problem size becomes huge, and consequently, even a state-of-the-art

NLP solver such as NUOPT may not provide any solutions. Thus in this paper, we propose an

iterative local search algorithm repeating the following two steps (Figure 4):

1. Solving a linear approximation problem for problem (12)

2. Solving nonlinear equations (10) via Newton’s method

Fleten et al. (2002) stated that for their data sets, constant rebalanced portfolio optimization

problems are virtually convex since their local search method using many different starting

values for each instance always converged to the same solution. Although in their problem,

risk is measured by the expected accumulated quadratic shortfalls and transaction costs are

not considered, their statement on the convexity of the problem motivates us to apply a local

search approach to Problem (12). Since we only solve an “approximation” problem for Problem

(12), the obtained solution does not necessarily satisfy Constraint (10). Therefore, we need to

find a feasible solution via Newton’s method where a solution to the approximation problem is

employed as a starting value.
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In addition, our local search algorithm is suited to more general formulations. For example,

let us consider the following problem

maximize
u,v,ρ,w

1
m

∑

j∈J

vj
t

subject to ρ1 +
1

(1− β)m

∑

j∈J

[
v0 − vj

1 − ρ1

]+
≤ α1,

ρτ +
1

(1− β)m

∑

j∈J

[
vj
τ−1 − vj

τ − ρτ

]+
≤ ατ , τ ∈ T \ {1}

Portfolio Dynamics Equation (10),

Investment Proportion Constraint (11),

(13)

where ατ are user-defined parameters for representing upper bounds of CVaR value at the end

of each period τ ∈ T , and β-CVaR at each period is defined in terms of the “decrease in portfolio

value during the period τ ,” that is, vj
τ−1 − vj

τ . Imposing CVaR constraints on each rebalancing

is meaningful in practice since it is frequently uncertain when long-term investment will be

discontinued due to a large unrealized loss.

3.3 Other Algorithms in the Literature

Maranas et al. (1997) proposed a rectangular branch-and-bound algorithm for the constant

rebalanced mean-variance portfolio optimization under no transaction costs by enjoying the

fact that the constraints for representing the portfolio dynamics can be moved to the objective

by eliminating the associated decision variables (see Section 5.1.1 for detailed explanation).

However, such a variable elimination is impossible under transaction costs, and therefore their

algorithm cannot be applied to Problem (12). In addition, even if there are no transaction costs,

the performance of the branch-and-bound procedure for Problem (13) deteriorates since the size

of subproblems becomes large due to the CVaR constraints.

On the other hand, a typical heuristic algorithm for the problem, in which a large number

of bilinear terms of decision variables appear, is an iterative optimization by alternately fixing

decision variables, w and u, which compose the bilinear terms. For instance, given w̄, Problem

(12) is solved subject to w = w̄, which is a convex program. Then, for the obtained solution

ū, Problem (12) is solved subject to u = ū, resulting in a new w̄. By repeating this procedure,

the sequence of the obtained solutions is expected to improve. However, if decision variable u is

fixed, degree of freedom of the other variables is excessively reduced as well. As a result, local
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search of Problem (12) subject to u = ū provides a solution w which is almost the same as in the

former iteration, and therefore the sequence of the obtained solutions is not improved enough.

Hibiki (2006) proposed an alternating optimization for approximately solving his model. His

algorithm works well if a good initial solution is obtained. For the problem in hand, however,

this alternating strategy fails to improve the incumbent solutions due to the excessive reduction

of the feasibility of the subproblems. In addition, transaction costs are not considered in Hibiki

(2006).

4 Local Search Algorithm

In this section, we explain the local search algorithm for solving Problem (12) in detail. The

algorithm consists of two procedures: (i) solving a linear approximation problem, and (ii) finding

a feasible solution.

4.1 Linear Approximation Problem for Problem (12)

The linear approximation problem for Problem (12), called LAP(ū,w̄), is formulated as follows.

First, the objective function is linearized by introducing auxiliary variables zj
t (see the relation

between Problems (8) and (9)). Next, the nonlinear terms of decision variables in Constraint

(10) are approximated in a linear manner at (ū, w̄) with respect to u, w (see Appendix A). As

a result, LAP(ū,w̄) is formulated as the following problem:

LAP(ū, w̄)

maximize
u,v,ρ,w,z

λ


 1

m

∑

j∈J

vj
t


− (1− λ)


ρ +

1
(1− β)m

∑

j∈J

zj
t




subject to zj
t ≥ −vj

t − ρ, zj
t ≥ 0, j ∈ J

Linearly Approximated Portfolio Dynamics Equation (19),

Investment Proportion Constraint (11),

w ∈ N (w̄),

(14)

where N (w̄) is a neighborhood of w̄, given by

N (w̄) := {w | w̄i − κi ≤ wi ≤ w̄i + κi, i ∈ I}, (15)

where κi > 0 are step size parameters regarding investment proportion of asset i ∈ I. The

constraint w ∈ N (w̄) is imposed so that the solution to the linearly approximated problem will

not be far from the incumbent point (ū,w̄).
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4.2 Finding a Feasible Solution via Newton’s Method

In order to approximate Problem (12) in a linear manner, we need a feasible (ū,w̄) at each

iteration, but a solution to LAP(ū,w̄) does not necessarily satisfy Constraint (10). In the

following, we explain the procedure for finding a feasible (ū,w̄) by starting from a (possibly

infeasible) solution of LAP(ū,w̄).

Let (uLAP, vLAP, ρLAP, wLAP, zLAP) be a solution to LAP(ū,w̄). Obviously, wLAP is

feasible to Problem (12) since Constraint (11) is included in LAP(ū,w̄). In the procedure

explained below, we find a feasible solution (wLAP, ū, v̄) to Problem (12) by substituting wLAP

into Constraint (10) and solving the nonlinear equations in u and v.

1. Finding feasible u0 via Constraint (10. a). In Constraint (10. a), if we substitute

wLAP, only u0 is variable. Considering that the right-hand side is convex in u0, we can find ū0

which satisfies Constraint (10. a) by applying Newton’s method in u0.

2. Finding feasible vj
1 (j ∈ J) via Constraint (10. d). By substituting wLAP and ū0 in

Constraint (10. d), v̄j
1 (j ∈ J) are determined.

3. Finding feasible uj
1 (j ∈ J) via Constraint (10. b). Now in Constraint (10. b), only

uj
1 (j ∈ J) are variables. In the same manner as in case of Constraint (10. a), we can find

uj
1 (j ∈ J) by applying Newton’s method m = |J | times.

4. Finding feasible vj
τ (τ ∈ T \ {1}, j ∈ J) and uj

τ (τ ∈ T \ {1, t}, j ∈ J) via Constraints

(10. e) and (10. c). In the same way as described above, by repeating the following procedures

until τ = t is satisfied, we obtain a feasible solution (wLAP,ū,v̄) to Problem (12).

• By substituting wLAP and ūj
τ−1 (j ∈ J) in Constraint (10. e), v̄j

τ (j ∈ J) are determined.

• In Constraint (10. c), if we substitute wLAP, ūj
τ−1 (j ∈ J) and v̄j

τ (j ∈ J), we can find

ūj
τ (j ∈ J) by applying Newton’s method m times.

5. Evaluation of objective value. Employing the obtained v̄j
t (j ∈ J) in the above

procedures, the objective value of Problem (12) is calculated.

4.3 Outline of Algorithmic Steps

We are now in a position to describe the local search algorithm.



Constant Rebalanced Portfolio under Nonlinear Costs 14

¶ ³
Local Search Algorithm for Problem (12)
Step 0. [ Initialization. ] Set w̄ which is feasible to Problem (12) and the maximum

number of iterations.
Step 1. [ Newton’s method. ] Substitute w̄ in Equations (10), and find a feasible solu-

tion to Problem (12) by solving Equations (10) via Newton’s method. Set the obtained
solution as (ū, v̄).

Step 2. [ Termination check. ] If the evaluated objective value is not improved or the
maximum number of iterations is reached, terminate the algorithm with the best
solution obtained so far. Otherwise, go to Step 3.

Step 3. [ Linear approximation problem. ] Solve the linear approximation problem
LAP(ū,w̄), and let (uLAP, vLAP, ρLAP,wLAP, zLAP) be a solution to it. Set w̄ ←
wLAP, and go to Step 1.

µ ´

5 Computational Results

In this section, we show computational results and evaluate the effectiveness of the proposed

algorithm and the performance of the constant rebalancing strategy. All computations are

conducted on a Windows XP personal computer with AMD Athlon 64 Processor (2.41GHz)

and 2GB memory, and NUOPT (ver.10.1.4), a mathematical programming software package

developed by Mathematical System, Inc., is employed for solving all the optimization problems.

Problem Setting. Ten financial assets are considered over five periods, and the number of

scenarios (simulated paths) is 1,000 (i.e., n := 10, t := 5 and m := 1, 000). Asset i = 1 is cash

with no transaction cost, and Assets i = 2, 3, 4, 8, 10 are low-risk assets with low transaction

costs (e.g., bond), and Assets i = 5, 6, 7, 9 are high-risk assets with high transaction costs (e.g.,

stock) as shown in Figure 5. On the advice of Mizuho-DL Financial Technology Co., Ltd., the

parameters regarding transaction costs are estimated using historical data, and the value of price

and dividend in each scenario are generated via a bootstrap method. Lower limits of investment

proportion are all zero (i.e., wL := 0), and the initial investment unit ȳ is set as ȳ := 0, and

the initial wealth v0 is 1.0 trillion Japanese yen.

Parameter Setting of the Local Search Algorithm. Step size parameters κi are set as

κ1 := 1, κi := 0.1 (i ∈ I \ {1}), and let the maximum number of iterations be eleven, i.e.,

the linear approximation problem is solved ten times so that all investment proportions can be

reached from any starting value, w̄, with step size of 0.1.
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Figure 5: Mean and Standard Deviation of Asset Return

5.1 Comparison with the Rectangular Branch-and-Bound Algorithm

Maranas et al. (1997) proposed a rectangular branch-and-bound algorithm for globally solving

the constant rebalanced mean-variance portfolio optimization. In this subsection, we revise their

algorithm so that mean-CVaR portfolio optimization in this paper can be solved, and compare

the performance of the proposed local search algorithm with that of the revised version of the

branch-and-bound algorithm.

5.1.1 Rectangular Branch-and-Bound Algorithm in Maranas et al. (1997)

When no transaction cost is considered, one has u = v in Constraints (10. a), (10. b) and

(10. c), and accordingly, decision variable u can be eliminated. Then, by eliminating v, the

multiplicative return can be explicitly represented in the objectives, and Problem (12) is reduced

to the following formulation with only n + 1 variables and simple linear constraints:

maximize
(ρ,w)∈IR×IRn

λ


 1

m

∑

j∈J

v0

t∏

τ=1

{∑

i∈I

(1 + xj
τ,i)wi

}


−(1− λ)


ρ +

1
(1− β)m

∑

j∈J

φ

(
−v0

t∏

τ=1

{∑

i∈I

(1 + xj
τ,i)wi

}
− ρ

)


subject to Investment Proportion Constraint (11),

(16)
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(a) Under no transaction costs (b) Under transaction costs

Figure 6: Efficient Frontier by Applying the Local Search Algorithm and the Rectangular
Branch-and-Bound Algorithm

where φ : IR → IR is a smoothing function of nondifferentiable plus function [ ξ ]+. In this paper,

we adopt

φ(ξ) :=

√
ξ2 + 4δ2 + ξ

2
, (17)

where δ > 0 is a parameter representing approximation accuracy (Pang and Leyffer, 2004). A

rectangular branch-and-bound algorithm proposed in Maranas et al. (1997) is a solution method

for the constant rebalanced mean-variance portfolio optimization under no transaction costs,

where the feasible region is partitioned into rectangles. The algorithm is explained in Maranas

et al. (1997) in detail, and a revised version of convex subproblem over the subrectangle is shown

in Appendix B. When the number of assets, n, is small, Problem (16) is a small size problem

and the algorithm works well. However, Problem (16) is not easily solved when the number of

assets, n, is large, and in addition, variable elimination mentioned above is impossible under

transaction costs.

5.1.2 Discussion on Results

Efficient Frontier. Figure 6 shows the efficient frontier of the solutions obtained by the two

algorithms. The horizontal axis is the expected portfolio value at the end of period t, that is

1
m

∑
j∈J vj

t , and the vertical axis is the CVaR representing a risk of decrease in portfolio value

at the end of period t, that is min{ ρ + 1
(1−β)m

∑
j∈J [−vj

t − ρ ]+ | ρ ∈ IR}. We choose λ from

{0.01, 0.5, 0.525, 0.55, 0.575, 0.6, 0.625, 0.65, 0.675, 0.7, 0.99}.
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Figure 7: Optimal Investment Proportion Provided by the Local Search Algorithm

Figure 6 (a) depicts two efficient frontiers under no transaction costs. We see that the two

frontiers almost coincide, which indicates that the local search algorithm attains almost optimal

solutions in the sense that the branch-and-bound algorithm achieves the global optimality 1.

Next, Figure 6 (b) shows the results under transaction costs, where the efficient frontier of the

branch-and-bound algorithm is drawn with the solutions to Problem (16) in which no transaction

cost is considered. We see that the branch-and-bound algorithm can provide highly inefficient

solutions, and especially if one seeks high return, large transaction costs occur through the

investment. This result implies that solving the problem under no transaction costs results

in an insufficient investment in the presence of transaction costs. Consequently, the problem

needs to be solved by applying the local search algorithm if transaction costs occur through the

investment.

Optimal Investment Proportion. Figure 7 shows the optimal investment proportion pro-

vided by the local search algorithm. Comparing the results under no transaction costs (Figure 7

(a)) with those under transaction costs (Figure 7 (b)), they are similar in that investment pro-

portion in Asset 1 (cash) is large in case of small λ (i.e., low-risk investment). On the other hand,

in case of large λ (i.e., high-return investment), investment proportion in Asset 7 is large under

no transaction costs, and investments are diversified among four or five assets under transaction

costs. If investment proportion in an asset is so large, large transaction costs are incurred, and

hence by diversification, transaction costs are small.
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5.2 Comparison with the Buy-and-Hold Strategy

Buy-and-hold strategy is an investment strategy in which investor buys financial assets at the

beginning and holds them until the end of planning period without trading. This strategy is

popular and simple, and therefore, can be a benchmark. In this subsection, we compare the

performance of the two strategies, both of which take the transaction costs into account.

5.2.1 Buy-and-Hold Strategy

Portfolio optimization problem with buy-and-hold strategy under transaction costs is formulated

as the following problem:

maximize
,v,y

1
m

∑

j∈J

vj
t

subject to ρ1 +
1

(1− β)m

∑

j∈J

[
v0 − vj

1 − ρ1

]+
≤ α1,

ρτ +
1

(1− β)m

∑

j∈J

[
vj
τ−1 − vj

τ − ρτ

]+
≤ ατ , τ ∈ T \ {1}

∑

i∈I

p0,i yi +
∑

i∈I

γi(p0,iyi − p0,iȳi) ≤ v0,

vj
τ =

∑

i∈I

(
pj

τ,iyi +
τ∑

θ=1

dj
θ,iyi

)
, τ ∈ T, j ∈ J

yL
i ≤ yi ≤ yU

i , i ∈ I,

(18)

where yi denotes investment unit in asset i ∈ I, and yL
i (yU

i ) is a lower (upper) limit of investment

unit in asset i ∈ I. In the paper, lower limits of investment unit are all zero (i.e., yL := 0).

Since the transaction cost is represented by the convex function (1), Problem (18) is a convex

problem and is solved by employing NUOPT, an NLP solver mentioned above. In this problem,

the decision variables for representing portfolio are not investment proportion w, but investment

unit y, and portfolio value vj
τ (τ ∈ T, j ∈ J) is defined as the sum of asset values in market at

the end of period τ and dividends obtained by the end of period τ .

5.2.2 Discussion on Results

Efficient Frontier. Figure 8 shows the efficient frontier of the two strategies. Upper bounds

of CVaR, ατ , at periods τ ∈ T are all the same (i.e., ατ := α, τ ∈ T ), and we choose α from

{0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1} in case of no transaction costs and from {0.05, 0.1, 0.15,
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Figure 8: Efficient Frontier of the Constant Rebalancing Strategy and the Buy-and-Hold Strat-
egy

0.2, 0.25, 0.3, 0.35, 1} in case of transaction costs. “Constant rebalancing” and “Buy-and-hold”

correspond to the solutions of Problem (13) via our local search algorithm2 and Problem (18)

via the NLP solver, respectively. Then, the horizontal axis is the expected portfolio value at

the end of period t, and the vertical axis is the maximum value of CVaR with respect to period

τ ∈ T .

Comparing the results under no transaction costs (Figure 8 (a)), the two frontiers are almost

the same at the left part of the figure (i.e., low-risk investment). On the other hand at the right

part of the figure (i.e., high-return investment), the constant rebalancing strategy dominates

the buy-and-hold strategy. One reason for this is that the obtained dividends can be invested

in high-return assets in case of constant rebalancing. Next, let us consider the results under

transaction costs (Figure 8 (b)). The frontier provided by the constant rebalancing strategy

dominates that provided by the buy-and-hold strategy at the right part of the figure (i.e., high-

return investment); however, the difference is small compared to the results under no transaction

costs. It follows from that since rebalancing requires transaction costs, the performance of the

constant rebalancing deteriorates somewhat.

Optimal Investment Proportion. Figure 9 shows the optimal investment proportion of the

constant rebalancing strategy and the buy-and-hold strategy. The two strategies provide similar

investment proportion under no transaction costs (Figure 9 (a) and (c)) and under transaction
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Figure 9: Optimal Investment Proportion of the Constant Rebalancing Strategy and the Buy-
and-Hold Strategy

costs (Figure 9 (b) and (d)), respectively. The smaller the upper bound of CVaR is, the larger

the investment proportion in cash becomes, and the larger the upper bound of CVaR is, the

larger the investment proportions in high-risk assets become. In addition, whereas investment

proportion in Asset 7 is so large under no transaction costs, investments are diversified among

four to six assets under transaction costs.

Computational Time. In drawing the efficient frontier in Figure 8 (a) or (b), eight problems

are solved with different parameter values. For drawing the efficient frontier of the constant

rebalancing strategy, we sequentially solve the problems by gradually increasing the parameter
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Figure 10: Out-of-Sample Performance of the Constant Rebalancing Strategy under Transaction
Costs

of the upper bound of CVaR, α. The obtained solution under the previous α is employed as the

initial solution to the problem for the next α. First, starting value of investment proportion, w̄,

is set as w̄1 := 1, w̄i := 0 (i ∈ I \{1}), and the lowest risk investment problem (say, α = 0.05) is

solved. This investment proportion w̄ satisfies Constraint (11) and probably CVaR constraints

of Problem (13) since cash is the lowest risk asset. Next, the obtained solution is employed as

a starting value, w̄, and the second lowest risk investment problem (say, α = 0.1) is solved.

Repeating this procedure to the highest return investment problem (say, α = 1), an efficient

frontier is drawn with the small number of iterations of the algorithm. In the experiments, the

algorithm for constant rebalancing terminates with three iterations, i.e., the linear approximation

problem is solved only twice for all the problems under transaction costs; the average CPU time

is 287.6 seconds, whereas the average CPU time of the buy-and-hold strategy is 18.5 seconds.

5.3 Out-of-Sample Performance

In this subsection, we conduct experiments for evaluating the out-of-sample performance of the

constant rebalancing strategy under transaction costs. Scenario sets A and B, each containing

1,000 scenarios, are generated via a bootstrap method using the same historical data. Figure
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10 shows the efficient frontiers where the setting is the same as that in Figure 8 (b). In the

results using the scenario set B (Figure 10 (b)), the frontier of out-of-sample solutions differs

from that of in-sample solutions at high-return points, however the two frontiers are almost the

same. Then, although it has been shown in recent papers (e.g., DeMiguel et al., 2009) that

equally weighted portfolio performs well in out-of-sample tests, the performance of 1/n-portfolio

is dominated by that of the optimization problem. This is common in the observation reported in

Fleten et al. (2002) that the constant rebalancing approach performs better in the out-of-sample

result than in the in-sample result compared to the stochastic dynamic approach.

6 Conclusion

In this paper, we formulate the constant rebalanced portfolio optimization problem under non-

linear transaction costs, and propose a solution method based on a local search approach. This

problem is a nonconvex optimization including a large number of bilinear terms of decision vari-

ables in a number of constraints and difficult to attain a globally optimal solution in general.

When a huge number of scenarios are considered, it becomes further difficult to attain a locally

optimal solution via a state-of-the-art NLP solver. Then, we propose an iterative local search

algorithm based on LP solution, which is easily attained even if the problem size is large, and on

Newton’s method for solving nonlinear equations. In the computational results, the proposed

local search algorithm attains as good solution as the global optimization approach. Then, we

show that the problem under transaction costs needs to be solved so as to obtain an efficient

solution. Moreover, we see that the constant rebalancing strategy outperforms the buy-and-hold

strategy when high return is sought. Furthermore in the out-of-sample performance, the con-

stant rebalancing strategy is superior to the equally weighted portfolio. In addition, it should

be noted that the proposed local search algorithm can deal with general nonlinear transaction

costs.

Future tasks include improving the efficiency of the solution method and comparing the

out-of-sample performance of the constant rebalancing strategy with that of the other various

strategies. In a practical situation, the problem with a large number of scenarios (e.g., 10,000 or

100,000 scenarios) is desired to be solved. Therefore, we need to improve the algorithm for solving

the problem with a large number of scenarios. On the other hand, dynamic stochastic approach

(e.g. Infanger, 2006), hybrid model (Hibiki, 2003, 2006) and the like are not tested for comparing
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with the constant rebalancing strategy in this paper. Although these are partly conducted in

(Fleten et al., 2002; Hibiki, 2006), more detailed and inclusive comparison is essential for showing

the effectiveness of the constant rebalancing strategy especially in out-of-sample performance.
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Appendix A

Linearly Approximated Portfolio Dynamics Equation. In order to formulate LAP(ū,w̄)

which is a linear approximation problem for Problem (12), the nonlinear terms of decision

variables in Constraint (10) are approximated in a linear manner at (ū, w̄) with respect to u,

w as follows:




v0 = u0 +
∑

i∈I

γi(ū0w̄i − p0,iȳi) + (u0 − ū0)
∑

i∈I

γ′i(ū0w̄i − p0,iȳi)w̄i

+ ū0

∑

i∈I

γ′i(ū0w̄i − p0,iȳi)(wi − w̄i),

vj
1 = uj

1 +
∑

i∈I

γi

(
ūj

1w̄i −
pj
1,iū0w̄i

p0,i

)
+ (uj

1 − ūj
1)

∑

i∈I

γ′i

(
ūj

1w̄i −
pj
1,iū0w̄i

p0,i

)
w̄i

− (u0 − ū0)
∑

i∈I

γ′i

(
ūj

1w̄i −
pj
1,iū0w̄i

p0,i

)
pj
1,iw̄i

p0,i

+
∑

i∈I

γ′i

(
ūj

1w̄i −
pj
1,iū0w̄i

p0,i

)(
ūj

1 −
pj
1,iū0

p0,i

)
(wi − w̄i), j ∈ J

vτ
j = uj

τ +
∑

i∈I

γi

(
ūj

τ w̄i −
pj

τ,iū
j
τ−1w̄i

pj
τ−1,i

)
+ (uj

τ − ūj
τ )

∑

i∈I

γ′i

(
ūj

τ w̄i −
pj

τ,iū
j
τ−1w̄i

pj
τ−1,i

)
w̄i

− (uj
τ−1 − ūj

τ−1)
∑

i∈I

γ′i

(
ūj

τ w̄i −
pj

τ,iū
j
τ−1w̄i

pj
τ−1,i

)
pj

τ,iw̄i

pj
τ−1,i

+
∑

i∈I

γ′i

(
ūj

τ w̄i −
pj

τ,iū
j
τ−1w̄i

pj
τ−1,i

)(
ūj

τ −
pj

τ,iū
j
τ−1

pj
τ−1,i

)
(wi − w̄i), τ ∈ T \ {1, t}, j ∈ J

vj
1 = ū0

∑

i∈I

(1 + xj
1,i)w̄i + (u0 − ū0)

∑

i∈I

(1 + xj
1,i)w̄i + ū0

∑

i∈I

(1 + xj
1,i)(wi − w̄i), j ∈ J

vj
τ = ūj

τ−1

∑

i∈I

(1 + xj
τ,i)w̄i + (uj

τ−1 − ūj
τ−1)

∑

i∈I

(1 + xj
τ,i)w̄i

+ ūj
τ−1

∑

i∈I

(1 + xj
τ,i)(wi − w̄i), τ ∈ T \ {1}, j ∈ J,

(19)

where γ′i : IR → IR (i ∈ I) represents a subderivative of γi, that is

γ′i(ξ) :=





(diξ + 1)ci exp(diξ) if ξ > 0

0 if ξ = 0

(biξ − 1)ai exp(−biξ) if ξ < 0.

(20)
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Appendix B

Convex Subproblem over the Subrectangle. In the rectangular branch-and-bound algo-

rithm for Problem (16), the problem over a subrectangle [wL, wU ] is relaxed by adding the extra

quadratic term to the objective function:

maximize
(ρ,w)∈IR×IRn

λ


 1

m

∑

j∈J

v0

t∏

τ=1

{∑

i∈I

(1 + xj
τ,i)wi

}


−(1− λ)


ρ +

1
(1− β)m

∑

j∈J

φ

(
−v0

t∏

τ=1

{∑

i∈I

(1 + xj
τ,i)wi

}
− ρ

)


−α
∑

i∈I

(wLi − wi)(wUi − wi) · · · (21. a)

subject to Investment Proportion Constraint (11),

wLi ≤ wi ≤ wUi , i ∈ I,

(21)

where α > 0 is a scalar parameter.

Proposition 1 Function (21. a) is concave in (ρ, w) for a sufficiently large α. ?

Proof. Let H = (hij) ∈ IR(1+n)×(1+n) be a Hessian matrix of “(−1)×(Function (21. a))” with

respect to (ρ,w). To complete the proof it is only necessary to show that H is positive semidef-

inite. Because φ′′( · ) > 0 due to a property of smoothing function (Pang and Leyffer, 2004), we

have

h11 =
∂2

∂ρ∂ρ

(
(−1)×(Function (21. a))

)

=
(1− λ)

(1− β)m

∑

j∈J

φ′′
(
−v0

t∏

τ=1

{∑

i∈I

(1 + xj
τ,i)wi

}
− ρ

)
≥ 0.

We show that (ρ,w)>H(ρ, w) ≥ 0 for all (ρ, w). If w 6= 0,

(ρ,w)>H(ρ,w) = 2α
n∑

i=1

w2
i + · · · · · ·︸ ︷︷ ︸

α does not appear

,

is nonnegative for a sufficiently large α. Otherwise w = 0, and then we have (ρ,w)>H(ρ,w) =

ρ2h11 ≥ 0. ¥
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Notes

1In Appendix B, the subproblems are proved to be convex when a parameter α is sufficiently large. It is,
however, difficult to ascertain whether the parameter value is properly set (see Maranas and Floudas, 1994, for
the details) and accordingly, it is possible that a globally optimal solution may not be reached in experimental
results.

2Although the proposed algorithm does not necessarily attain a solution satisfying the CVaR constraints, the
attained solution almost satisfies them.
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