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Abstract

The potential of the Internet has been expanded substantially by a new gen-
eration of mobile devices, opening the door for rapid growth of m-commerce.
While the traditional PC access to the Internet continues to be vital for
exploiting the advantages of the Internet, the mobile access appears to at-
tract more people because of flexible accesses to the Internet in a ubiquitous
manner. Accordingly, e-commerce is now in the process of being converted
into m-commerce. The purpose of this paper is to develop and analyze a
mathematical model for comparing e-commerce via the traditional PC ac-
cess only with m-commerce which accommodates both the traditional PC
access and the mobile access. The distribution of the number of products
purchased by time t and the distribution of the time required for selling K
products are derived explicitly, enabling one to assess the impact of mobile
devices on e-businesses. Numerical examples are given for illustrating behav-
ioral differences between m-commerce consumers and traditional e-commerce
consumers.

Key words: M-commerce, E-commerce, Consumer behavior, Semi-Markov
process, Sales completion time

Preprint submitted to Elsevier February 17, 2009



1. Introduction

The potential of the Internet has been expanded substantially by a new
generation of mobile devices, opening the door for rapid growth of m-commerce.
While the traditional PC access to the Internet continues to be vital for ex-
ploiting the advantages of the Internet, the mobile access appears to attract
more people because of flexible accesses to the Internet in a ubiquitous man-
ner. Accordingly, e-commerce is now in the process of being converted into
m-commerce.

Because of the fact that the mobile technology is still young, the study
of the impacts of mobile devices on e-businesses is also rather new in the
literature. Roto[1] and Kim[2] provide the current state of mobile devices
and m-businesses. Chae and Kim[3] discuss the business implications of m-
commerce, and Barwise[4] and Hammond[5] predict the evolutional trend of
m-commerce in the foreseeable future. Wu and Hisa[6] propose the hyper-
cube innovation model for analyzing the characteristics of m-commerce with
focus on three axes: changes in business models, changes in core components
and stake holders. Siau, Sheng and Nah[7], and Park and Fader[8] investigate
the benefits of m-commerce to consumers and how e-commerce has changed
the consumer behavior. Büyüközkan[9] develops an analytical approach for
determining the mobile commerce user requirements. All of these papers are
either empirical, qualitative or static in their analytical nature and, to the
best knowledge of the authors, no study exists in the literature for captur-
ing behavioral differences between e-commerce and m-commerce based on a
mathematical stochastic model.

The purpose of this paper is to develop and analyze a mathematical
model for comparing e-commerce via the traditional PC access only with
m-commerce which accommodates both the traditional PC access and the
mobile access. More specifically, a consumer behavior for m-commerce is
formulated as a semi-Markov process having three transient states and two
absorbing states. The three transient states describe the first period of a day
in which the mobile access is available from time to time for the private use
of the Internet (e.g. working hours), the second period of a day in which
the PC access is available from time to time (e.g. evening hours at home),
and the third period of a day in which the consumer is inactive in using the
Internet (e.g. sleeping hours). Given a specific product under consideration,
the two absorbing states represent the decision of purchasing the product and
that of not purchasing the product. For the case of e-commerce, the access
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to the Internet by a user is not allowed in both the first period and the third
period. In modeling m-commerce, the access to the Internet is allowed in
the first two periods but not in the third period. By considering a group
of such consumers, the two stochastic performance measures of interest can
be evaluated: the distribution of the number of products sold by time t and
the distribution of the time required for selling K products. This analysis,
in turn, enables one to assess the impact of mobile devices on e-businesses
by comparing such stochastic performance measures for m-commerce against
those for traditional e-commerce.

The structure of this paper is as follows. In Section 2, a mathemati-
cal model is developed for capturing the consumer behavior in m-commerce
based on a semi-Markov process approach. Section 3 is devoted to dynamic
analysis of the semi-Markov model. The two stochastic performance mea-
sures are introduced in Section 4 and the associated distributions are derived
explicitly, which can be computed based on the results in Section 3. Numer-
ical examples are given in Section 5, for illustrating behavioral differences
between m-commerce consumers and traditional e-commerce consumers.

Throughout the paper, vectors and matrices are indicated by underbar
and doubleunderbar respectively, e.g. ξ, P (t), etc. The vector with all com-
ponents equal to 0 is denoted by 0. The identity matrix is denoted by I.
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2. Development of Mathematical Model for m-Commerce Con-
sumer Behavior: Semi-Markov Process Approach

We consider an m-commerce consumer who intends to decide whether or
not he/she should buy a product by exploring the Internet for information.
In order to capture the behavioral pattern of the m-commerce consumer,
each day is decomposed into three periods. During the first period of a day,
only the mobile access is available from time to time for the private use of
the Internet (e.g. working hours). Throughout the second period of a day,
the PC access is available from time to time, overriding the mobile access
to the Internet (e.g. evening hours at home). The third period of a day
represents to take a rest in which the m-commerce consumer is inactive in
using the Internet (e.g. sleeping hours). Each time the Internet is accessed
for information, he/she makes one of the three decisions: to purchase the
product, not to purchase the product, or to remain undecided. Of interest is
then to find out what the status of the m-commerce consumer would be at
time t.

For capturing the m-commerce consumer behavior described above more
formally, we consider a semi-Markov process {J(t) : t ≥ 0} defined on N =
{0, 1, 2, 3, 4}. Here, the i-th period of a day is represented by state i, i =
1, 2, 3. The two states 0 and 4 are absorbing, where the former corresponds to
the decision of purchasing the product while the latter represents the decision
of not purchasing the product. Given that neither the decision of purchasing
nor that of not purchasing is made, we assume, for the time being, that the
dwell time of the semi-Markov process in state i is absolutely continuous with
probability density function (p.d.f.) ai(x), i = 1, 2, 3. The corresponding
distribution function, the survival function and the hazard rate function are
denoted by

Ai(x) =

∫ x

0

ai(x)dx ; Āi(x) = 1− Ai(x) ; ηi(x) =
ai(x)

Āi(x)
. (2.1)

In state i for i = 1, 2, the Internet accesses occur according to a Poisson
process with intensity λi. For each access, the decision of purchasing ( not
purchasing ) the product is made with probability αi ( βi ) where 0 < αi+βi <
1. With probability 1 − (αi + βi) > 0, the m-commerce consumer remains
undecided. The transition structure of the semi-Markov process is depicted
in Figure 1.1, where ξi = αiλi and θi = βiλi represent the hazard rates
from state i to state 0 and 4 respectively for i = 1, 2. In order to deal with
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the case in which the three periods are constant, we subsequently choose,
for each i ∈ {1, 2, 3}, a sequence of distribution functions (Ai(k, x))∞k=1 such
that Ai(k, x) → U(x) as k → ∞, where U(x) is a step function defined by
U(x) = 1 for x ≥ 0 and U(x) = 0 for x < 0.
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００００

３３３３
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1x

3x
2x ( )22 xη
( )11 xη
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222 λβθ =
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Figure 1.1：Transition Structure of the Semi-Markov Process
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3. Dynamic Analysis of the Semi-Markov Process

In this section, we derive explicitly the transition probability matrix P (t)
of the semi-Markov process J(t), where P (t) is defined by

P (t) = [Pij(t)] ; Pij(t)
def
= P[J(t) = j|J(0) = i] , i, j ∈ N . (3.1)

For this purpose, the age process X(t) associated with the semi-Markov
process J(t) is introduced as the elapsed time since the last transition of J(t)
into the current state at time t. Clearly the bivariate process [J(t), X(t)]
becomes Markov and the first step of our analysis is to evaluate the joint
distribution function defined by

Fij(x, t) = P[X(t) ≤ x, J(t) = j|J(0) = i] , (3.2)

and the corresponding joint p.d.f.

d

dx
Fij(x, t) = fij(x, t) , (3.3)

where the delta function δ(t) is employed for describing the boundary condi-
tions with respect to x. More specifically, one sees that

fi1(0+, t) = δ{i=1}δ(t) +

∫ ∞

0

fi3(x, t)η3(x)dx , (3.4)

fi2(0+, t) = δ{i=2}δ(t) +

∫ ∞

0

fi1(x, t)η1(x)dx , (3.5)

fi3(0+, t) = δ{i=3}δ(t) +

∫ ∞

0

fi2(x, t)η2(x)dx . (3.6)

Here, δ{STATEMENT} = 1 if STATEMENT is true, δ{STATEMENT} = 0 other-
wise, and the delta function δ(t) is the unit operator associated with con-
volution, i.e. g(t) =

∫∞
0

g(x)δ(t − x)dx for any integrable function g(t) on
[0,∞).

In order to evaluate the joint p.d.f. given in (3.3), we introduce the
following Laplace transforms.

αi(s) =

∫ ∞

0

e−sxai(x)dx for i = 1, 2, 3 (3.7)
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βi(s) =

∫ ∞

0

e−sxĀi(x)dx =
1− αi(s)

s
for i = 1, 2, 3 (3.8)

ζ̂(0+, s) = [ζ̂ij(0+, s)] ; ζ̂ij(0+, s)
def
=

∫ ∞

0

e−stfij(0+, t)dt for i, j ∈ N
(3.9)

ϕ̂(x, s) = [ϕ̂ij(x, s)] ; ϕ̂ij(x, s)
def
=

∫ ∞

0

e−stfij(x, t)dt for i, j ∈ N (3.10)

ˆ̂ϕ(v, s) = [ ˆ̂ϕij(v, s)] ; ˆ̂ϕij(v, s)
def
=

∫ ∞

0

e−vxϕ̂ij(x, s)dx for i, j ∈ N
(3.11)

For notational convenience, we also define Ci = ξi + θi for i = 1, 2 and

d(ξ, θ, s) = 1− α1(s + C1)α2(s + C2)α3(s) (3.12)

ψ
0
(ξ, θ, s) =




ξ1β1(s + C1) + ξ2β2(s + C2)α1(s + C1)
ξ1β1(s + C1)α2(s + C2)α3(s) + ξ2β2(s + C2)

ξ1β1(s + C1)α3(s) + ξ2β2(s + C2)α1(s + C1)α3(s)


 (3.13)

ψ
4
(ξ, θ, s) =




θ1β1(s + C1) + θ2β2(s + C2)α1(s + C1)
θ1β1(s + C1)α2(s + C2)α3(s) + θ2β2(s + C2)

θ1β1(s + C1)α3(s) + θ2β2(s + C2)α1(s + C1)α3(s)


 (3.14)

B(ξ, θ, s) =




1 α1(s + C1) α1(s + C1)α2(s + C2)
α2(s + C2)α3(s) 1 α2(s + C2)

α3(s) α1(s + C1)α3(s) 1




(3.15)
Then the following theorem holds.

Theorem 3.1. Let ζ̂(0+, s) and ˆ̂ϕ(v, s) be as in (3.9) and (3.11) respec-

tively. One then has:

a) ζ̂(0+, s) =
1

d(ξ, θ, s)




0 0T 0
ψ

0
(ξ, θ, s) B(ξ, θ, s) ψ

4
(ξ, θ, s)

0 0T 0


 ,

where d(ξ, θ, s) , ψ
0
(ξ, θ, s) , ψ

4
(ξ, θ, s) and B(ξ, θ, s) are as given in (3.12)

, (3.13) , (3.14) and (3.15) respectively.

b) ˆ̂ϕ(v, s) = ζ̂(0+, s)

× diag

{
1

s + v
, β1(s + v + C1) , β2(s + v + C2) , β3(s + v) ,

1

s + v

}
,
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where diag{a1, . . . , an} denotes an n × n diagonal matrix with diagonal ele-
ments a1, . . . , an.

Proof. In addition to the boundary conditions in (3.4), (3.5) and (3.6) for
states 1, 2 and 3 respectively, one sees that, for state 0 and 4,

fi0(0+, t) = ξ1

∫ ∞

0

fi1(x, t)dx + ξ2

∫ ∞

0

fi2(x, t)dx (3.16)

and

fi4(0+, t) = θ1

∫ ∞

0

fi1(x, t)dx + θ2

∫ ∞

0

fi2(x, t)dx . (3.17)

By taking the Laplace transform of (3.4) through (3.6) and the above two
equations with respect to t, one finds that

ζ̂i0(0+, s) =
2∑

j=1

ξj ζ̂ij(0+, s)βj(s + Cj) , (3.18)

ζ̂i1(0+, s) = δ{i=1} + ζ̂i3(0+, s)α3(s) , (3.19)

ζ̂i2(0+, s) = δ{i=2} + ζ̂i1(0+, s)α1(s + C1) , (3.20)

ζ̂i3(0+, s) = δ{i=3} + ζ̂i2(0+, s)α2(s + C2) , (3.21)

ζ̂i4(0+, s) =
2∑

j=1

θj ζ̂ij(0+, s)βj(s + Cj) . (3.22)

By describing (3.18) through (3.22) in matrix form, it follows that

ζ̂
T
(0+, s) =




0T

uT
1

uT
2

uT
3

0T




+ ζ̂
T
(0+, s) γ(ξ, θ, s) ,

where ui is the i-th unit vector in R5 and

γ(ξ, θ, s) =




0 0 0 0 0
ξ1β1(s + C1) 0 α1(s + C1) 0 θ1β1(s + C1)
ξ2β2(s + C2) 0 0 α2(s + C2) θ2β2(s + C2)

0 α3(s) 0 0 0
0 0 0 0 0




.

(3.23)
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It then leads to

ζ̂
T
(0+, s) =




0T

uT
1

uT
2

uT
3

0T




[
I − γ(ξ, θ, s)

]−1

. (3.24)

It can be shown from (3.23), after a little algebra, that

[
I − γ(ξ, θ, s)

]−1

=
1

d(ξ, θ, s)




d(ξ, θ, s) 0T 0
ψ

0
(ξ, θ, s) B(ξ, θ, s) ψ

4
(ξ, θ, s)

0 0T d(ξ, θ, s)


 ,

and part a) follows from (3.24).

For part b), we note that

fi0(x, t) = fi0(0+, t− x) , (3.25)

fij(x, t) = fij(0+, t− x)Āj(x)e−Cjx j = 1, 2 , (3.26)

fi3(x, t) = fi3(0+, t− x)Ā3(x) , (3.27)

fi4(x, t) = fi4(0+, t− x) . (3.28)

Since states 0 and 4 are absorbing, for the process to be in one of the two
states at time t with age x, it should have entered the state at time t − x,
explaining (3.25) and (3.28). For the process to be in state j at time t for
j = 1, 2, as shown in (3.26), it should have entered the state at time t − x,
having no transition to any other state until time t. The case for state 3 in
(3.27) is similar except that transitions from state 3 to state 0 or state 4 are
not possible.

By taking the Laplace transform of (3.25) through (3.28) with respect to
t, it can be seen that

ϕ̂i0(x, s) = ζ̂i0(0+, s)e−sx , (3.29)

ϕ̂ij(x, s) = ζ̂ij(0+, s)e−(s+Cj)xĀj(x) j = 1, 2 , (3.30)

ϕ̂i3(x, s) = ζ̂i3(0+, s)e−sxĀ3(x) , (3.31)

ϕ̂i4(x, s) = ζ̂i4(0+, s)e−sx . (3.32)

Again by taking the Laplace transform of (3.29) through (3.32) with respect
to x and putting the results into matrix form, the theorem follows.
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Let the Laplace transform of P (t) with respect to t be denoted by π(s),
i.e.

π(s) =

∫ ∞

0

e−stP (t)dt . (3.33)

From the definition of P (t) in (3.1), one easily sees that π(s) = ˆ̂ϕ(0, s). The

next theorem is then immediate from Theorem 3.1.

Theorem 3.2.

π(s) = ζ̂(0+, s) diag

{
1

s
, β1(s + C1) , β2(s + C2) , β3(s) ,

1

s

}

So far, we have assumed that the dwell time of the semi-Markov process
in state i is absolutely continuous with p.d.f. ai(x), i = 1, 2, 3, given that
neither the decision of purchasing nor that of not purchasing is made. In
reality, however, the three periods of a day should be treated as constants
τ1, τ2 and τ3. This case can be dealt with by considering a sequence of
Laplace transforms of p.d.f’s (αi(k, s))∞k=1 where αi(k, s) → e−sτi as k →∞,
i = 1, 2, 3. We emphasize the limit by using the symbol～, i.e. α̃i(s) = e−sτi .
At the limit, the corresponding Laplace transform π̃(s) of the transition

probability matrix P̃ (t) can be obtained by substituting α̃i(s) = e−sτi into
Theorems 3.1 and 3.2. Assuming that a day starts with period 1, of particular
interest to our analysis are π̃10(s) and π̃14(s) as summarized in the next
theorem.

Theorem 3.3. Suppose that the three periods of a day are represented by
constants τ1, τ2 and τ3. Let τ = τ1 + τ2 + τ3. One then has:

a) π̃10(s) =
1

s
· 1

1− e−(sτ+C1τ1+C2τ2)

×
{

ξ1
1− e−(s+C1)τ1

s + C1

+ ξ2e
−(s+C1)τ1

1− e−(s+C2)τ2

s + C2

}
,

b) π̃14(s) =
1

s
· 1

1− e−(sτ+C1τ1+C2τ2)

×
{

θ1
1− e−(s+C1)τ1

s + C1

+ θ2e
−(s+C1)τ1

1− e−(s+C2)τ2

s + C2

}
.
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We are now in a position to prove the following main theorem by inverting
the results in Theorem 3.3 a) and b) into the real domain. For notational
convenience, the following intervals are introduced for k = 0, 1, 2, · · · .

Int[k, 1] = {t : kτ ≤ t < kτ + τ1} (3.34)

Int[k, 2] = {t : kτ + τ1 ≤ t < kτ + τ1 + τ2} (3.35)

Int[k, 3] = {t : kτ + τ1 + τ2 ≤ t < (k + 1)τ} (3.36)

We also write [x] to mean the integer part of a real number x.

Theorem 3.4. Let Int[k, 1], Int[k, 2] and Int[k, 3] be as in (3.34), (3.35)
and (3.36) respectively. Let τ and Ci be as in Theorem 3.3 and define m(t) =
[ t
τ
]. Then the probability P̃10(t) can be obtained as follows.

i) If t ∈ Int[m(t), 1], then

P̃10(t) =
ξ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)

+
ξ1

C1

e−(C1τ1+C2τ2−C1τ)m(t)
(
e−C1m(t)τ − e−C1t

)

+
ξ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)
.

ii) If t ∈ Int[m(t), 2], then

P̃10(t) =
ξ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)

+
ξ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)

+
ξ2

C2

e−(C1−C2)τ1e−(C1τ1+C2τ2−C2τ)m(t)
(
e−C2(m(t)τ+τ1) − e−C2t

)
.

iii) If t ∈ Int[m(t), 3], then

P̃10(t) =
ξ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)

+
ξ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)
.
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Proof. From Theorem 3.3, one sees that

sπ̃10(s) =
1

1− e−(sτ+C1τ1+C2τ2)

{
ξ1

1− e−(s+C1)τ1

s + C1

+ ξ2e
−(s+C1)τ1

1− e−(s+C2)τ2

s + C2

}
.

The geometric expansion of the first factor on the right hand side of the
above equation then leads to

sπ̃10(s) =
∞∑

k=0

e−(sτ+C1τ1+C2τ2)k

{
ξ1

1− e−(s+C1)τ1

s + C1

+ ξ2e
−(s+C1)τ1

1− e−(s+C2)τ2

s + C2

}
.

By arranging terms involving k or s appropriately, it follows that

sπ̃10(s) =
ξ1

s + C1

∞∑

k=0

e−(C1τ1+C2τ2)ke−skτ

− ξ1e
−C1τ1

s + C1

∞∑

k=0

e−(C1τ1+C2τ2)ke−s(kτ+τ1)

+
ξ2e

−C1τ1

s + C2

∞∑

k=0

e−(C1τ1+C2τ2)ke−s(kτ+τ1)

− ξ2e
−(C1τ1+C2τ2)

s + C2

∞∑

k=0

e−(C1τ1+C2τ2)ke−s(kτ+τ1+τ2) . (3.37)

We recall that the Laplace transform 1
s+α

e−sβ can be inverted into the real

domain as L−1
[

1
s+α

e−sβ
]

= e−αt ∗ δ(t − β) =
∫ t

0
e−α(t−y)δ(y − β) dy =

δ{0≤β≤t}e−α(t−β) . Applying this inversion formula to (3.37) and noticing

P̃10(0) = 0, one finds, after a little algebra, that

d

dt
P̃10(t) = ξ1e

−C1t

∞∑

k=0

δ{kτ≤t}e
−(C1τ1+C2τ2−C1τ)k

−ξ1e
−C1t

∞∑

k=0

δ{kτ+τ1≤t}e
−(C1τ1+C2τ2−C1τ)k

+ξ2e
−(C1−C2)τ1e−C2t

∞∑

k=0

δ{kτ+τ1≤t}e
−(C1τ1+C2τ2−C2τ)k

−ξ2e
−(C1−C2)τ1e−C2t

∞∑

k=0

δ{kτ+τ1+τ2≤t}e
−(C1τ1+C2τ2−C2τ)k .
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Since δ{kτ≤t}−δ{kτ+τ1≤t} = δ{t∈Int[k,1]} and δ{kτ+τ1≤t}−δ{kτ+τ1+τ2≤t} = δ{t∈Int[k,2]},
this then leads to

d

dt
P̃10(t) = ξ1e

−C1t

∞∑

k=0

δ{t∈Int[k,1]}e
−(C1τ1+C2τ2−C1τ)k

+ ξ2e
−(C1−C2)τ1e−C2t

∞∑

k=0

δ{t∈Int[k,2]}e
−(C1τ1+C2τ2−C2τ)k . (3.38)

By integrating both sides of the above equation from 0 to t, it can be seen
that

P̃10(t) = ξ1

∞∑

k=0

e−(C1τ1+C2τ2−C1τ)k

∫ t

0

δ{t′∈Int[k,1]}e
−C1t′dt′

+ ξ2e
−(C1−C2)τ1

∞∑

k=0

e−(C1τ1+C2τ2−C2τ)k

∫ t

0

δ{t′∈Int[k,2]}e
−C2t′dt′ . (3.39)

We now consider the following three cases separately.

i) t ∈ Int[m(t), 1]
In this case, m(t) days have passed and it is currently in the first period

of the m(t)-th day. Accordingly, one has

P̃10(t) = ξ1

m(t)−1∑

k=0

{
e−(C1τ1+C2τ2−C1τ)k

∫ kτ+τ1

kτ

e−C1t′dt′
}

+ ξ1e
−(C1τ1+C2τ2−C1τ)m(t)

∫ t

m(t)τ

e−C1t′dt′

+ ξ2e
−(C1−C2)τ1

m(t)−1∑

k=0

e−(C1τ1+C2τ2−C2τ)k

∫ kτ+τ1+τ2

kτ+τ1

e−C2t′dt′ ,

where
∑b

a = 0 if a > b according to the mathematical convention. Calculat-
ing the exponential integrals and summing the resulting geometric sequences,
part i) follows.

ii) t ∈ Int[m(t), 2]
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This case implies that m(t) days have passed and it is currently in the
second period of the m(t)-th day. Hence one sees that

P̃10(t) = ξ1

m(t)∑

k=0

e−(C1τ1+C2τ2−C1τ)k

∫ kτ+τ1

kτ

e−C1t′dt′

+ ξ2e
−(C1−C2)τ1

m(t)−1∑

k=0

e−(C1τ1+C2τ2−C2τ)k

∫ kτ+τ1+τ2

kτ+τ1

e−C2t′dt′

+ ξ2e
−(C1−C2)τ1e−(C1τ1+C2τ2−C2τ)m(t)

∫ t

m(t)τ+τ1

e−C2t′dt′ .

As for part i), a little algebra then would prove part ii).

iii) t ∈ Int[m(t), 3]
In the third case, m(t) days have passed and it is currently in the third

period of the m(t)-th day. It can be seen that

P̃10(t) = ξ1

m(t)∑

k=0

e−(C1τ1+C2τ2−C1τ)k

∫ kτ+τ1

kτ

e−C1t′dt′

+ ξ2e
−(C1−C2)τ1

m(t)∑

k=0

e−(C1τ1+C2τ2−C2τ)k

∫ kτ+τ1+τ2

kτ+τ1

e−C2t′dt′ .

By conducting integrations and summations as for part i) and part ii), the
theorem follows.

¤

The counterpart of Theorem 3.4 for P̃14(t) can be obtained via similar
arguments, as shown in Theorem 3.5 below. Proof is omitted.

Theorem 3.5. Let Int[k, 1], Int[k, 2] and Int[k, 3] be as in (3.34), (3.35)
and (3.36) respectively. Let τ and Ci be as in Theorem 3.3 and define m(t) =
[ t
τ
]. Then the probability P̃14(t) can be obtained as follows.
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i) If t ∈ Int[m(t), 1], then

P̃14(t) =
θ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)

+
θ1

C1

e−(C1τ1+C2τ2−C1τ)m(t)
(
e−C1m(t)τ − e−C1t

)

+
θ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)
.

ii) If t ∈ Int[m(t), 2], then

P̃14(t) =
θ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)

+
θ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)m(t)

1− e−(C1τ1+C2τ2)

+
θ2

C2

e−(C1−C2)τ1e−(C1τ1+C2τ2−C2τ)m(t)
(
e−C2(m(t)τ+τ1) − e−C2t

)
.

iii) If t ∈ Int[m(t), 3], then

P̃14(t) =
θ1

C1

(
1− e−C1τ1

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)

+
θ2

C2

e−C1τ1
(
1− e−C2τ2

) 1− e−(C1τ1+C2τ2)(m(t)+1)

1− e−(C1τ1+C2τ2)
.

From Theorems 3.4 and 3.5, the two absorbing probabilities e0 and e4 can
be obtained by letting t →∞.

Theorem 3.6. Let e0 and e4 be the absorbing probabilities in state 0 and
state 4 respectively. One then has

e0 = P̃10(∞) =

{
ξ1

C1

(
1− e−C1τ1

)
+

ξ2

C2

e−C1τ1
(
1− e−C2τ2

)} 1

1− e−(C1τ1+C2τ2)
,

e4 = P̃14(∞) =

{
θ1

C1

(
1− e−C1τ1

)
+

θ2

C2

e−C1τ1
(
1− e−C2τ2

)} 1

1− e−(C1τ1+C2τ2)
.

For those users who have only the PC access to the Internet, the coun-
terparts of Theorems 3.4 through 3.6 can be obtained, in principle, by set-
ting ξ1 = θ1 = 0. Since some terms take an indefinite form in that both
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the denominator and the numerator vanish as ξ1 and θ1 go to 0, however,
L’Hopital’s rule should be employed wherever appropriate. The resulting
transition probability matrix at the limit is denoted by Q̃(t) = [Q̃ij(t)]. The

next two theorems then hold true.

Theorem 3.7. Let Int[k, 1], Int[k, 2] and Int[k, 3] be as in (3.34), (3.35)
and (3.36) respectively. Let τ and C2 be as in Theorem 3.3 and define m(t) =
[ t
τ
]. Then the probability Q̃10(t) can be obtained as follows.

i) If t ∈ Int[m(t), 1], then

Q̃10(t) =
ξ2

C2

(
1− e−C2τ2m(t)

)
.

ii) If t ∈ Int[m(t), 2], then

Q̃10(t) =
ξ2

C2

(
1− e−C2[t−(τ−τ2)m(t)−τ1]

)
.

iii) If t ∈ Int[m(t), 3], then

Q̃10(t) =
ξ2

C2

(
1− e−C2τ2[m(t)+1]

)
.

Theorem 3.8. Let Int[k, 1], Int[k, 2] and Int[k, 3] be as in (3.34), (3.35)
and (3.36) respectively. Let τ and C2 be as in Theorem 3.3 and define m(t) =
[ t
τ
]. Then the probability Q̃14(t) can be obtained as follows.

i) If t ∈ Int[m(t), 1], then

Q̃14(t) =
θ2

C2

(
1− e−C2τ2m(t)

)
.

ii) If t ∈ Int[m(t), 2], then

Q̃14(t) =
θ2

C2

(
1− e−C2[t−(τ−τ2)m(t)−τ1]

)
.

iii) If t ∈ Int[m(t), 3], then

Q̃14(t) =
θ2

C2

(
1− e−C2τ2[m(t)+1]

)
.

Corresponding to Theorem 3.6, one has the following theorem by letting
t →∞ in Theorems 3.7 and 3.8.

Theorem 3.9. Let q0 and q4 be the absorbing probabilities in state 0 and
state 4 respectively with ξ1 = θ1 = 0. One then has

q0 = Q̃10(∞) =
ξ2

C2

; q4 = Q̃14(∞) =
θ2

C2

.
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4. Analysis of Dynamic Sales Volume and Sales Completion Time

Using the results of the semi-Markov model discussed in Section 3, we are
now in a position to assess the impact of the mobile access to the Internet
on enhancement of e-businesses. In this regard, it should be noted that
the semi-Markov model with ξ1 = θ1 = 0 describes a consumer who does
not have the capability of the mobile access to the Internet and utilizes
the Internet only through the PC access. Let NBOTH be the number of
consumers having both the PC access and the mobile access to the Internet.
Let MPC be the number of consumers who have only the PC access to the
Internet. We recall that the stochastic behavior of those counted for NBOTH

is characterized by P̃ (t) = [P̃ij(t)], while that of those counted for MPC is

described by Q̃(t) = [Q̃ij(t)]. Given NBOTH and MPC , of interest then is

the distribution of the sales volume at time t. Also, of equal importance
would be the distribution of the sales completion time for K products. In
this section, we derive these two distributions explicitly.

In order to capture individual consumer behaviors better from an appli-
cation point of view, we redefine the state space of the semi-Markov model
N = {0, 1, 2, 3, 4} as S = {Buy, UD,¬Buy}, where Buy corresponds to
state 0, UD (UnDecided) aggregates the three states {1, 2, 3}, and ¬Buy
means state 4. Accordingly, we define

PBuy(t) = P̃10(t) ; PUD(t) = P̃11(t) + P̃12(t) + P̃13(t) ; P¬Buy(t) = P̃14(t) ,
(4.1)

and

QBuy(t) = Q̃10(t) ; QUD(t) = Q̃11(t) + Q̃12(t) + Q̃13(t) ; Q¬Buy(t) = Q̃14(t) ,
(4.2)

which can be readily computed from Theorems 3.4, 3.5, 3.7 and 3.8. We now
introduce the following trivariate generating functions.

χIND:P (U, V,W, t) = PBuy(t)U + PUD(t)V + P¬Buy(t)W (4.3)

χIND:Q(U, V,W, t) = QBuy(t)U + QUD(t)V + Q¬Buy(t)W (4.4)

Given NBOTH , let NBuy(t), NUD(t) and N¬Buy(t) be the number of con-
sumers who have bought the product by time t, the number of consumers
who have not decided in either way by time t and the number of consumers
who have decided not to buy the product by time t, respectively, where
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NBOTH = NBuy(t) + NUD(t) + N¬Buy(t) for any t ≥ 0. Assuming that indi-
vidual consumers behave independently of each other, the collective consumer
behavior can then be described by

χNBOTH:P
(U, V,W, t) = E[UNBuy(t)V NUD(t)WN¬Buy(t)]

= { χIND:P (U, V, W, t) }NBOTH . (4.5)

Accordingly, the joint probability of NBuy(t), NUD(t) and N¬Buy(t) is given
by

P [NBuy(t) = N1, NUD(t) = N2, N¬Buy(t) = N3]

=

(
NBOTH

N1, N2, N3

)
PBuy(t)

N1PUD(t)N2P¬Buy(t)
N3 .

Based on these observations, the next theorem can be shown.

Theorem 4.1. Given NBOTH , let KBOTH(t) be the number of products sold
by time t. Then KBOTH(t) has the binomial distribution with mean NBOTH ·
PBuy(t), i.e.

P[KBOTH(t) = k] =

(
NBOTH

k

)
PBuy(t)

k{1− PBuy(t)}NBOTH−k .

Proof. Since E[UNBuy(t)] = χNBOTH:P
(U, 1, 1, t), one sees from (4.3) and (4.5)

that
E[UNBuy(t)] = { PBuy(t)U + (1− PBuy(t)) }NBOTH ,

proving the theorem.
¤

We next turn our attention to the sales completion time for K products
given NBOTH . More formally, let TBOTH(K) be the time until K products
have been sold among NBOTH , i.e.

TBOTH(K) = inf{t : KBOTH(t) = K} . (4.6)

Let H̄BOTH(K)(t) be the survival function of TBOTH(K), i.e.

H̄BOTH(K)(t) = P[TBOTH(K) > t] . (4.7)

The next theorem then holds true.
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Theorem 4.2. Let H̄BOTH(K)(t) be as in (4.7). Then one has

H̄BOTH(K)(t) =
K−1∑

k=0

(
NBOTH

k

)
PBuy(t)

k{1− PBuy(t)}NBOTH−k .

Proof. From (4.6), one easily sees that TBOTH(K) > t if and only if KBOTH(t) <
K. This dual relationship between TBOTH(K) and KBOTH(t) then implies
that

H̄BOTH(K)(t) = P[TBOTH(K) > t] = P[KBOTH(t) < K] ,

proving the theorem.
¤

Clearly, Theorems 4.1 and 4.2 hold true for sales among MPC except that
PBuy(t), PUD(t), P¬Buy(t) should be replaced by QBuy(t), QUD(t), Q¬Buy(t).
These results are summarized below.

Theorem 4.3. Given MPC, let KPC(t) be the number of products sold by
time t. Then KPC(t) has the binomial distribution with mean MPC ·QBuy(t),
i.e.

P[KPC(t) = k] =

(
MPC

k

)
QBuy(t)

k{1−QBuy(t)}MPC−k .

Let TPC(K) be the time until K products have been sold among MPC , i.e.

TPC(K) = inf{t : KPC(t) = K} . (4.8)

Let H̄PC(K)(t) be the survival function of TPC(K), i.e.

H̄PC(K)(t) = P[TPC(K) > t] . (4.9)

Theorem 4.4. Let H̄PC(K)(t) be as in (4.9). Then one has

H̄PC(K)(t) =
K−1∑

k=0

(
MPC

k

)
QBuy(t)

k{1−QBuy(t)}MPC−k .

In general, the market has both types of users and the two distributions
for the whole market should be derived by convolving the corresponding
distributions for NBOTH and MPC . More formally, let L be the number of
consumers in the whole market given by L = NBOTH + MPC . Among L
consumers, let K(t) be the number of products sold by time t, and let T (K)
be the time required for selling K products. One then has the following
theorem.
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Theorem 4.5. Let L, K(t) and T (K) be as described above, and define the
survival function of T (K) by H̄(K)(t) = P[T (K) > t].

a) P[K(t) = k] =
k∑

i=0

P[KBOTH(t) = i] · P[KPC(t) = k − i] ,

where P[KBOTH(t) = k] and P[KPC(t) = k] are as given in Theorems 4.1
and 4.3 respectively.

b) H̄(K)(t) =
K−1∑
i=0

P[K(t) = k]

5. Numerical Examples

The purpose of this section is to explore numerically how the balance
between NBOTH and MPC would affect the distribution of the number of
products sold by time t, and that of sales completion time for K products.
The underlying parameter values are set as given in the following table, unless
specified otherwise. We also set t = 240(hours) and L = NBOTH + MPC =
10000, where NBOTH : MPC is varied as 0 : 100 , 25 : 75 , 50 : 50 , 75 : 25
and 100 : 0.

α1 α2 β1 β2 λ1 λ2 τ1 τ2 τ3

0.03 0.03 0.01 0.01 1/24 1/24 8 8 8

In Figure 5.1, the survival functions for K(240), i.e. the number of prod-
ucts sold by time t = 240, are plotted, where the parameter α1 is changed
with 0.03, 0.06 and 0.09 from the top graph to the bottom graph respectively.
In each graph, the left-most curve corresponds to NBOTH : MPC = 0 : 100
and the right-most curve represents the case of NBOTH : MPC = 100 : 0, or
equivalently, the ratio NBOTH/L moves from 0 to 1 from the left-most curve
to the right-most curve.

We recall that α1 is the probability of making the decision to buy the
product after an access to the Internet, see also Figure 1.1. Accordingly,
K(240) increases stochastically as α1 increases. This point can be observed
by the fact that individual survival functions shift toward the right as α1

increases, except the left-most curve which remains intact because no users
have the mobile access. The degree of this stochastic increase becomes larger
as the ratio NBOTH/L moves from 0 to 1. Given α1, the stochastic dominance
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of K(240) with higher NBOTH/L over K(240) with lower NBOTH/L can also
be seen in each graph. The effect of this stochastic dominance is linear in
NBOTH/L as can be seen in Figure 5.2, where the expected sales volume
increases linearly from 936 to 1755 for α1 = 0.03, from 936 to 2512 for
α1 = 0.06, and from 936 to 3199 for α1 = 0.09, demonstrating the effects of
the mobile access to the Internet in e-businesses.
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Figure 5.1. Survival function of K(t)Mean
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Figure 5.2. Mean and variance of K(t)

21



Figures 5.3 and 5.4 provide the counterparts of Figures 5.1 and 5.2 for
the survival function for T (2000), i.e. the sales completion time for K =
2000 products, except that the left-most curve now corresponds to NBOTH :
MPC = 100 : 0 and the right-most curve represents the case of NBOTH :
MPC = 0 : 100, or equivalently, the ratio NBOTH/L moves from 1 to 0
from the left-most curve to the right-most curve. We observe that T (2000)
decreases stochastically as α1 increases or the ratio NBOTH/L increases. The
stochastic change of T (2000) in NBOTH/L is, however, no longer linear as can
be seen in Figure 5.2. The expected sales completion time decreases from
558 to 275 for α1 = 0.03, from 558 to 177 for α1 = 0.06, and from 558 to
128 for α1 = 0.09, again demonstrating the effects of the mobile access to
the Internet in e-businesses.
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Figure 5.3. Survival function of T (K)
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Figure 5.4. Mean and variance of T (K)
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