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Abstract

We evaluate the required size of a possible proof of Arrow’s impossibility theorem
in a proof-theoretic manner. The primary purpose is the consideration of (content-
wise) complexity required for some statements, and Arrow’s theorem is taken as
an instance in order to show the possibility that even in a finite case, the required
proof is inevitably gigantic. We consider the simplest case with two individuals,
three social alternatives, and linear orderings for individual and social preferences.
We formulate Arrow’s theorem in propositional classical logic in the Gentzen-style
proof theory. The size of a proof is measured by the number of leaves of a proof
tree. We show that a proof is necessarily gigantic; a lower bound is 636 and an
upper bound 637 + 420. These numbers exceed the limit of human manageability
to construct such a proof, but we have a proof of Arrow’s theorem, which appears
contradictory. We discuss this result from various points of views such as deductive
and inductive game theoretical points of view.

1. Introduction

1.1. General Motivation and Background

It is informative to start with describing the main result of the paper, since its motivation
has some distance from the subject and result and needs a slightly long explanation.
We formulate Arrow’s [2] impossibility theorem in propositional classical logic in the
Gentzen-style sequent calculus. The size of a proof is measured by its width, i.e., the
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number of leaves of a proof tree. We consider the simplest case with 2 individuals, 3
social alternatives, and linear orderings for individual preferences and social orderings.
We show that a proof is necessarily gigantic; a lower bound is 636 and an upper bound
637 + 420. This is interpreted as meaning that required deductive inferences to prove
Arrow’s theorem exceed practical manageability.

We aim to understand limitations on human inferential abilities and their behavioral
consequences, and are motivated with inductive game theory and more specifically with
epistemic logics with shallow depths. We choose Arrow’s theorem as an example, since
it has various interesting features and is fairly complicated. We start with explaining
our general motivation from the view point of inductive game theory and epistemic
logics of shallow depths. Since we are not motivated by social choice theory/welfare
economics, we will give only a small consideration of the result from the viewpoint of
social choice theory in Section 6.1

Our basic motivation is to study the origin/emergence of beliefs/knowledge, which
was the target of inductive game theory. Kaneko-Kline [11] described a basic scenario
for inductive game theory from experimentations to inductive derivations of personal
views, to behavioral uses, and again to experimentations. In this scenario, inductive
inferences are emphasized, but at various steps, deductive inferences also appear. A lot
of limitations are and/or should be involved in both experiences and inferences at those
steps. We need to evaluate such limitations. The other side of evaluating a limitation
is to evaluate the complexity of the structure to which a limitation is applied. In this
paper, we will discuss certain features of complexity of deductive inferences, which gives
also some implications to inductive game theory.

The concept of “computational complexity” has been discussed a lot in computer
science. Computational complexity is applied to a set consisting of a countably infinite
number of problem instances (cf. Grey-Johnson [8], Urquhart [24]); this is natural in
computer science, since its aim is to implement some computational method for it,
ultimately, with a computer. In our context, an implementation with a computer is not
a problem, but our problem is to measure inferences required in a particular problem.
Thus, we would like to see “complexity” of inferences for a particular problem instance.
Here, we consider a required size of a proof of a particular problem instance; we take
Arrow’s theorem as such a particular instance specified in the above mentioned form.

Now, let us see our subject from the viewpoint of epistemic logic (cf., Meyer-van der
Hoek [19], Kaneko [13]). In the literature of epistemic logic, common knowledge has
been focussed a lot, which is rather opposite to the limited case of inferences in that it
is an ideal approximation in terms of an infinite nesting structure: “I know you know I
know, and so on”. Common knowledge has been often regarded as necessary in the game

1Ågotnes et al [1] formulated Arrow’s theorem in a modal- and model-theoretic manner, and provided
several model theoretic considerations such as model-checking.
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theory literature, but only very shallow depths of interpersonal inferences are typically
feasible. To capture such limitations, the concept of a finite epistemic structure was
introduced in Kaneko-Suzuki [14], [15] and [16]. This is about interpersonal complexity
required for a game theoretical problem.

A more basic problem than interpersonal complexity is of intrapersonal inferences.
This is the direct and natural continuation of the introduction of limitations to epistemic
logic. In this paper, we target this intrapersonal complexity of inferences, but do not
discuss interpersonal complexity. That is, we do not touch epistemic logic in the strict
sense, but the background should be kept in mind.

The result of lower bound 636 and upper bound 637 + 420 for any proofs of Arrow’s
theorem is interpreted as meaning that a player cannot find a proof. Hence, if it is in-
volved in his mind for his decision making, it cannot be used. Moreover, we, researchers,
would meet the question why we can have Arrow’s theorem. Some different structures
must be hidden in our thinking (or method). This must have great implications to
epistemic logic as well as game theory. To discuss such implications, we need a more
specific description of our problem.

1.2. Specific Description of our Problem

Deductive inferences have been studied in mathematical logic, particularly, in proof
theory. In mathematical logic, provability (equivalently, validity in model theory) is
typically considered, which is characterized as a deductive closure of specified inferences:
It describes the complete deductive ability relative to the specified inference rules. This
concept does not distinguish between easy and difficult statements. One possibility to
distinguish between them is to measure the required inferences for these statements.

Proof theory has various logical systems: The representatives are the Hilbert-style
formulation and Gentzen-style (sequent) formulation (cf. Kleene [18] and Kaneko [13])2.
The former system has a simpler representation and targets to express the provability
of each statement. But it does not give a clear-cut description of a proof. On the other
hand, the latter is a heavier system, but is constructed in order to discuss a structure of a
proof. For this reason, the Hilbert-style is often used to discuss provability together with
its semantic counterpart, but when we discuss a proof itself, the Gentzen-style is much
more useful. For our problem, since we care about a proof structure of a statement, we
will adopt the Gentzen-style sequent formulation.

This required size of a proof of each statement (theorem) was first introduced in
Kaneko-Suzuki [17], which they called the contentwise complexity measure, in short,
contemplexity measure. In [17], general properties of the contemplexity measure are
studied and various relatively small examples are examined. In this paper, we apply

2Gentzen [7] gave also the system of natural deduction.
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the measure to Arrow’s theorem, and show that the contemplexity value is gigantic, as
already stated in Section 1.1.

Arrow’s theorem involves various higher-order concepts as variables: For examples,
“a preference ordering” is already a 2nd-order concept, and also since a social welfare
function is defined over the set of all preference orderings, it is even a higher-order con-
cept. Nevertheless, we confine ourselves to a finite case. It is a thesis in mathematical
logic that any finite mathematical problem can be expressed in a propositional logic.
Following this thesis, Arrow’s problem in a finite case should be formulated in propo-
sitional logic, though it includes higher-order concepts such as orderings and functions
over them.

We adopt a nominalistic method, i.e., we give names to identify orderings and social
welfare functions. This nominalistic method is possible, since we assume that the struc-
ture of the problem is all finite. By this method, we can formulate Arrow’s theorem in a
propositional logic. With giving names to each higher-order concepts, we will overcome
the difficulty arising from them.

In fact, the nominalistic method to treat the higher-order concepts is one reason for
our result, as stated already, that we have lower bound 636 and upper bound 637+420 for
the possible proofs of Arrow’s theorem. The nominalist method in propositional logic
needs to enumerate all cases, but cannot abbreviate those cases by a “representative
case”. The concept of a “representative case” is a free variable, which is very often in
our ordinary thinking. From the viewpoint of mathematical logic, “free variable” is a
concept in predicate logic. We will not touch this problem in this paper, but we cannot
avoid “free variables” at the meta-level.

The use of “free variables” at the meta-level enables us to prove our result. Our
proof of an upper bound is to give a specific proof of Arrow’s theorem, which appears
contradictory in that we cannot practically give a proof of size 637 + 420. The key
for this seeming contradiction is the distinction between the target problem and the
meta-treatment of it. This will be found clearly in Section 8. This observation resolves
the doubt caused by “these numbers exceeding the limit of human manageability to
construct such a proof” stated in the beginning of Section 1.1.

An implication of our result to epistemic logic is also important. It is straightforward
to embed our result to the system of epistemic logic with a shallow depth in Kaneko-
Suzuki [14]3. Our result can be interpreted from the viewpoint of a player rather than
a logician: If a player has a limited logical ability and if a too long process of inferences
is needed, then he cannot derive a conclusion. Our result for Arrow’s theorem is one
(extreme) example for a statement. Also, it implies that if a player’ beliefs are (ob-
jectively) inconsistent but if they need a too long process to derive a contradiction, he

3In Kaneko-Suzuki [17], the base logic of the epistemic logic is taken as intuitionistic logic. The
contemplexity measure behaves more regularly than the case of classical logic. Thus, it can give more
precise treatments of the contemplexity measure.
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would keep his beliefs without noticing the inconsistency of his beliefs.
It is also important to notice that it takes so many steps to reach a contradiction.

Once a contradiction is reached, any statement can be derived; the axiomatic system
effectively collapses. Before reaching a contradiction, the system works properly. This is
interpreted as suggesting a possibility that a person has an inconsistent set of beliefs but
does not find its inconsistency while keeping his beliefs. This will raise an interesting
future research topic.

This paper is written in the following format. Section 2 summarizes the simplest
version of Arrow’s theorem. Section 3 gives a formalized language and the Gentzen-
style sequent calculus of classical logic, and then formulates the contemplexity measure
with some illustrative examples. Then, Section 4 formulates Arrow’s theorem in the
formalized language, and Section 5 present our main theorem. Section 6 summarizes
our considerations and give some discussions on possible implications from our result.
Then, Section 7 proves the lower bound assertion. Section 8 gives a proof of the upper
bound assertion. In proof theory, there are several systems, from which we choose the
Gentzen-style sequent calculus of classical logic.

2. The Simplest Version of Arrow’s Impossibility Theorem

We have two individuals: 1, 2, and three social alternatives: α,β, γ. Consider the set
SO := {Â1, ...,Â6} of all strict orderings over A := {α,β, γ}, where these are specified
as follows:

Â 1 : α,β, γ; Â2: β, γ,α; Â3: γ,α,β (2.1)

Â 4 : γ,β,α; Â5: β,α, γ; Â6: α, γ,β.

In Â2, for example, β is the best, γ is the second, and α is the worst. For an ordering
Â in SO, we write u Â v (also v ≺ u) for (u, v) ∈ Â . When an ordering in SO is an
individual preference relation, we use the symbol Â for it, and when it a social ordering,
we use the symbol 3 .

Each pair of the product set SO2 := SO × SO is called a profile of individual
preferences. A profile is denoted by Ât= (Ât11 ,Â

t2
2 ), where t1, t2 are from 6 : = {1, ..., 6}.

A social welfare function ϕ in Arrow’s sense takes the following form:

ϕ : SO2 → SO. (2.2)

The value ϕ(Ât) = ϕ(Ât11 ,Â
t2
2 ) is a social (strict) ordering 3 in SO.

In the literature of social choice theory, there are various formulations of Arrow’s
theorem (cf. Arrow et al. [3]). Here, we follow one simplest form, which is a simpler
variant of Feldman’s [4] formulation of Arrow’s theorem. It is quite typical that four
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conditions are imposed in Arrow’s theorem. Here, the domain of a social welfare function
in (2.2) is already assumed to be SO2. This assumption is called the unrestricted domain
UD. In this paper, condition UD is always assumed, and thus we will not mention it in
an explicit manner.

Now, we give other three conditions for Arrow’s theorem. The first is the Pareto
rule.

Pareto-Rule (PR): Let u, v ∈ A and Ât= (Ât11 ,Â
t2
2 ) ∈ SO2 with ϕ(Ât) = 3t. If

u Ât11 v and u Â
t2
2 u, then u 3t v.

The following formulation of the IIA condition is slightly weaker than the standard
formulation.

Independence of Irrelevant Alternatives (IIA): Let any u, v ∈ A, Ât,Ât0∈ SO2
with ϕ(Ât) = 3t, ϕ(Ât0) = 3t0, and {i, j} = {1, 2}. If u Âtii v, v Â

tj
j u and u 3t v, then

u Ât
0
i
i v and v Â

t0j
j u imply u 3t

0
v.

The standard formulation of IIA for the case of strict orderings takes care of the two
other cases:

(1): if u Âtii v, u Â
tj
j v and u 3t v, then u Â

t0i
i v and u Â

t0j
j v imply u 3t

0
v;

(2): if u Âtii v, u Â
tj
j v and v 3t u, then u Â

t0i
i v and u Â

t0j
j v imply v 3t

0
u.

But PR takes care of both cases, i.e., the above IIA is equivalent to the standard one
under PR. In the proof-theoretical treatment, there is a large difference between the
above two formulations; the form we adopt is much simpler than the standard one.

The third means that a social ordering should not be totally determined by one
individual.

Non-Dictatorship (ND): For neither i = 1, 2, it holds that for any u, v ∈ A and
Ât= (Ât11 ,Â

t2
2 ) ∈ SO2 with ϕ(Ât) = 3t, if u Âtii v, then u 3t v.

Now, Arrow’s theorem is stated as follows.

Theorem 2.1 (Arrow’s Impossibility Theorem: the Simplest Version): There
is no social welfare function in the form of (2.2) satisfying the three conditions, PR,IIA
and ND. In other words, PR,IIA and ND (also UD) on social welfare functions are
contradictory.

This is a simplification of Feldman’s [4] version of Arrow’s theorem in that social
orderings are assumed here to be strict ones, while they may be complete preorderings
in [4].

The number of possible candidates for a social welfare function in the sense of (2.2)
is calculated as

636 = 10314424798490535546171949056 > 1028 + 293
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Our question is whether these gigantic number of cases are essential or not. We will
give an affirmative answer in the propositional formulation. For the later purpose, it
would be convenient to name these social welfare functions:

ϕ1, ϕ2, ..., ϕ636 . (2.3)

For example, ϕ1 is fixed to be the social welfare function with dictator 1, i.e., for all
profiles Ât= (Ât11 ,Â

t1
1 ) ∈ SO2 with ϕ1(Ât) = 3t and for all u, v ∈ A, u Ât11 v implies

u 3t v. This naming will be used in Section 3.
In the literature of social choice theory, we have various impossibility theorems

besides Arrow’s theorem. Some are variants of Arrow’s theorem, e.g., the Gibbart-
Satterthwaite Theorem (cf. Peleg [21]), Sen’s Libertarian Impossibility Theorem (cf.,
Sen [23], Chap.6). Since they are similar to Arrow’s theorem, once Arrow’s theorem
is evaluated from the viewpoint of contemplexity, we could have similar estimates for
those theorems.

However, we have some other simpler contradictory statements. In order to see how
our theory distinguish between such statements and Arrow’s theorem, we consider one
very simple example. The comparison will be continued in the formalized language in
Section 4. Consider a binary relation D over A = {α,β, γ}. We assume the following
two conditions:

Transitivity (TR) : for any u, v, w ∈ A, D(u, v) and D(v, w) imply D(u,w);
Asymmetry (AS): for any u, v ∈ A, D(u, v) imply not D(v, u).
Then, we state the following as a theorem.

Theorem 2.2.(Cyclical Impossibility): There is no binary relation D satisfying
Φ = {D(α,β),D(β, γ),D(γ,α)}, TR and AS. In other words, the set of conditions
Φ, TR,AS is contradictory.

Proof. A proof is simple: By D(α,β),D(β, γ) and TR, we have D(α, γ). By AS, we
have not D(γ,α). However, we have D(γ,α) as an assumption in Φ. Hence, Φ, TR,AS
are contradictory.

Both theorems exhibit impossibility results. We may say that Arrow’s theorem
seems to require a much more complex proof than Theorem 2.2. Nevertheless, this
statement is informal in the above formulations, and we cannot evaluate which is really
more complex. Our contemplexity measure will separate these theorems, which will be
discussed in the subsequent sections.
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3. Classical Logic in the Gentzen-style and the Contemplexity Measure

3.1. Language and the Formal System

Here, we give a formal language in which Arrow’s impossibility theorem is formalized.
First, we prepare:

alternative constants: α,β, γ;

binary preference letters: Rtii : i = 1, 2 and ti ∈ 6;
binary social ordering predicate letters: P ts : s = 1, ..., 6

36 and t = (t1, t2) ∈ 62;
[for the formalization of Theorem 2.2, we add one more binary predicate D]

logical connectives: ¬ (not), ⊃ (implies), ∧ (and), ∨ (or)4;
auxiliary symbols: (, ) (parentheses), {, } (the set-braces), , (comma).

Using those symbols, we define the formulae. The symbol Rtii is intended to express the
ti-th preference ordering of individual i, and P

t
s to express the social ordering given by

the s-th social welfare function and the profile named t = (t1, t2). These correspond to
the nonformalized concepts Âtii and 3ts given in Section 2. Here, social welfare functions
are all named by s = 1, ..., 636.

To avoid some complications, we use a finite multi-set rather than a finite set. It
counts the occurrences of each element, but not the order of the occurrences of elements.
For example, {x, x, y} differs from {x, y}, but is the same as {x, y, x}.More precisely, The
mutli-sets {x1, ..., xm} is characterized as the set of all sequences (y1, ..., ym) obtained
from (x1, ..., xm) with permutations. This remark will be elaborated after our logical
system is given.

First, the atomic formulae are defined as follows:

(i): for any preference letters Rtii and any u, v in A, R
ti
i (u, v) is an atomic formula;

(ii): for any social ordering predicate P ti and any u, v inA, P
t
s(u, v) is an atomic formula;

[(iii): also for the formalization of Theorem 2.2, for any u, v in A, D(u, v) is an atomic
formula].

Then, we define formulae by the following induction:

(0): any atomic formula is a formula;

(1): if A and B are formulae, so are (¬A) and (A ⊃ B);
(2): if {A1, ..., Am} is a nonempty multi-set of formulae, then ∧{A1, ..., Am} and ∨{A1,

4It is known that in classical logic, we could choose some subset of these connectives and can define
the other connectives by the chosen ones. We have two reasons for the choice of four connectives. The
conept of a proof depends upon this choice: Hence, it would be natural to use the four connectives.
Another reason is that we would like to connect our consideration to the case of intuitionistic logic: In
intuitionistic logic, these four connectives are independent.
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..., Am} are formulae;
(3): any formula is generated by a finite number of applications of (0) - (2).

We denote the set of all formulae by P.
We abbreviate some parentheses as far as no confusions are expected. Also, we will

write ∨{A1, A2},∧{A1, A2, A3}, etc., as A1 ∨A2, A1 ∧A2 ∧A3.
In the above language, the identity of a “social welfare function” will be determined

by the index s. For each s, a profile Rt = (Rt11 , R
t2
2 ) and two social alternatives u, v,

social preference relation P ts(u, v) or ¬P ts(u, v) is determined. In Section 4, we will
formulate conditions, PR, IIA and ND in this language.

We adopt propositional classical logic in the Gentzen-style sequent formulation (cf.
Gentzen [7] and Kleene [18]). Classical logic in the Gentzen style is governed by one
axiom schema and twelve inference rules. First, it needs the concept of a sequent. We
prepare another auxiliary symbol→ for the system. Let Γ,Θ be finite (possibly empty)
multi-sets of formulae. Then, we call the expression Γ → Θ a sequent5, and Γ,Θ the
antecedent and succedent of the sequent, respectively. When Γ = ∅ or Θ = ∅, we write
→ Θ or Γ→ .

When Γ = {A1, ..., Am} and Θ = {B1, ..., Bn}, the intended meaning of Γ → Θ is
∧{A1, ..., Am} ⊃ ∨{B1, ..., Bn} : In particular, if Γ = ∅ or Θ = ∅, then it is intended to
means (¬A) ∨A ⊃ ∨Θ or ∧Γ ⊃ (¬A) ∧A.

We make the following abbreviations: ∆ ∪ Γ → Θ ∪ Λ as ∆,Γ → Θ,Λ, and also
{A},Γ → Θ, {B} as A,Γ → Θ, B6. Here, we allow the sets ∆,Γ and Θ,Λ to have
nonempty intersections. In particular, A→ A means {A}→ {A}.

The sequent calculus consists of one axiomatic schema and twelve inference rules.
Each inference is formulated as

ξ1, ..., ξk
ξ0

,

where each ξ0, ξ1, ..., ξk (1 ≤ k) are sequents. This means that under the assumption
that ξ1, ..., ξk are already proved, ξ0 is inferred from those ξ1, ..., ξk. The concept of a
proof is defined by means of axioms and inference rules.

Now, we give the axiom schema and the twelve rules.

Axiom Schema (Initial Sequent): A→ A, where A is any formula.

Structural Rules: The following three types of inference rules are called the thinning,

5In the Gentzen’s [7] original formulation, Γ and Θ are assumed to be finite sequences of formulae.
Hence, the original system has the exchange rule.

6When Γ = {A1, ..., Am} and ∆ = {B1, ..., Bn}, the union of the multi-sets Γ and ∆ is defined by
Γ ∪∆ = {A1, ..., Am, B1, ..., Bn}. In this paper, we talk only about the emptiness or nonemptiness of
the intersection of multi-sets Γ and ∆ : It is empty if and only if Γ and ∆ have a common element.
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contraction and cut rules:
Γ→ Θ

∆,Γ→ Θ,Λ (th)

A,A,Γ→ Θ
A,Γ→ Θ (c→) Γ→ Θ, A,A

Γ→ Θ, A (→ c)

Γ→ Θ, A A,∆→ Λ
Γ,∆→ Θ,Λ (cut)

In these rules, the mutli-sets Γ,Θ,∆ and Λ may be empty. Hence, (th) is allowed to
be a trivial inference having the same upper and lower sequents. In particular, we call
formulae in ∆ and Λ in (th) thinning formulae.

Operational Rules:

Γ→ Θ, A
¬A,Γ→ Θ (¬→) A,Γ→ Θ

Γ→ Θ,¬A (→ ¬)

Γ→ Θ, A B,Γ→ Θ
A ⊃ B,Γ→ Θ (⊃→) A,Γ→ Θ, B

Γ→ A ⊃ B,Θ (→⊃)

A,Γ→ Θ
∧Φ,Γ→ Θ (∧ →), where A ∈ Φ {Γ→ Θ, A : A ∈ Φ}

Γ→ Θ,∧Φ (→ ∧)

{A,Γ→ Θ : A ∈ Φ}
∨Φ,Γ→ Θ (∨ →) Γ→ Θ, A

Γ→ Θ,∨Φ (→ ∨), where A ∈ Φ.

In those operational rules, we say that the formula(s) to be changes in the upperse-
quent(s) the side formula(s), and that the formula formed in the lower sequent is the
principal formula. For example, in (⊃→), (the designated occurrences of) A,B are side
formulae and (the designated occurrence of) A ⊃ B is the principal formula7.

A proof P is defined to be a triple (T,<,ψ) with the following properties:

(i): (T,<) is a finite tree and its immediate successor relation is denoted by <I ;

(ii): ψ is a function associating a sequent ψ(n) = ∆→ Λ to each node n ∈ T ;
(a): for any leaf (maximal node) n in (T,<), ψ(n) is an instance of the axiom;

(b): for any non-leaf n ∈ T,
{ψ(n0) : n <I n0}

ψ(n)

is an instance of one inference rule.

7Exactly speaking, these are attributes of occurrences, since Γ,Θ may contain the same formulae as
well. But this slightly abused wording will cause no confusion in this paper.
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Let Γ → Θ be a sequent. We say that P = (T,<,ψ) is a proof of Γ → Θ iff P is
a proof with ψ(n0) = Γ → Θ, where n0 is the root of (T,<). We say that Γ → Θ is
provable iff there is a proof of Γ → Θ, in which case we denote ` Γ → Θ. When it is
unprovable, we denote 0 Γ→ Θ.

The reader may be more familiar to classical logic in the Hilbert-style (cf. Mendelson
[20] and Kaneko [13]). The above Gentzen-style formulation is directly comparable to
the system of classical logic given in [13] (cf. Kaneko-Nagashima [12]). These formal
systems are equivalent with respect to provability, but have significant differences in other
respects. The aim of the Gentzen-style formulation is to study logical inferences, while
the emphasis of the Hilbert-style is to express provability. This will be clear presently.

Arrow’s theorem is a contradictory statement. A contradictory statement in the
above system is formulated as

` Γ→ . (3.1)

This is equivalent to

` Γ→ ¬A ∧A for any formula A. (3.2)

Indeed, if (3.1) holds, Γ → ¬A ∧ A is inferred from Γ → by (th). Conversely, if (3.2)
holds, then we have

· · ·
Γ→ ¬A ∧A

· · ·
¬A ∧A→

Γ→ (cut).

The right-upper part of this proof is given as

A→ A

¬A,A→ (¬→)

¬A ∧A,A→ (∧ →)

¬A ∧A,¬A ∧A→
¬A ∧A→ (c→)

(∧ →) (3.3)

We will use the expression of the form (3.1) for our evaluation of Arrow’s impossibility
theorem, rather than (3.2).

In (3.3), the uses of mutli-sets and the contraction rule are observed. If sets of
formulae are used rather than multi-sets, then we would not need the contraction rules
(c→) and (→c), e.g., the 2nd line from the bottom would disappear in (3.3). This
simplification might require unnecessary attention to avoid some mistakes. Therefore,
we adopt mutli-sets for sequents and the contraction rules; accordingly ∧,∨ are applied
to also mutli-sets of formulae.

One important theorem differentiating the Gentzen-style sequent calculus from the
Hilbert-style is the cut-elimination theorem, proved by Gentzen [7].
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Theorem 3.1. (Cut-Elimination): Suppose ` Γ→ Θ. Then, there is a cut-free proof
of Γ→ Θ.

That is, for any proof, we can find a proof so that it has no (cut)’s but has the
same endsequent. Although the Hilbert-style calculus is equivalent to the Gentzen-style
calculus with respect to provability, the Hilbert-style has is no counterpart of Theorem
3.1.

Theorem 3.1 has an important implication, which will be used in Section 7.

Theorem 3.2. (Subformula Property): Let P = (T,<,ψ) be any cut-free proof of
Γ→ Θ. Then, if a formula A occurs in any sequent ψ(n) in P, then A must occur (as a
subformula of some formula) in the endsequent Γ→ Θ.

3.2. The Contemplexity Measure

Now, we define the contemplexity measure η for a proof. That is, for each proof P =
(T,<,ψ), we define

η(P ) = the number of the leaves of the tree (T,<). (3.4)

We count the number of leaves even if some leaves have the same initial sequents. Thus,
η measures the width of P but does not count its depth.

The width and depth of a proof is affected by inference rules. Looking at the list of
inference rules given in Section 3.2, we find that they are classified into

(⊃→), (→ ∧), (∨ →), (cut); and (3.5)

(th), (c→), (→ c), (¬→), (→ ¬), (∧ →), (→ ∨). (3.6)

Each of (3.5) has two or more uppersequents, while each of (3.6) has only one upperse-
quent. Hence, an occurrence of an inference rule in the former makes a proof larger,
but any in the latter affects only the depth. Some proofs may have just contemplexity
1, but their depths are quite large. For example, the proof of ¬A ∧ A → given in in
(3.3) has contemplexity 1, but its depth is 5.

First, consider the inference rules in (3.5). In these inferences, the lower sequent is
either a logical weakening or a logically equivalent of the upper sequent. These rules
only change expressions. The contemplexity η(P ) ignores these inferences. On the
other hand, each of (3.6) has two or more upper sequents. Each combines two or more
essential cases into one lower sequent. The definition of (3.4) counts these branchings.

In fact, the contemplexity η(P ) can be written using the numbers of occurrences of
these inferences, which is given in Kaneko-Suzuki [17].
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Example 3.1. In the above logical system, it holds that

` Θ, Rt11 (α,β) ∧R
t2
2 (α,β) ⊃ P ts(α,β)→ P ts(α,β), (3.7)

where Θ is the (multi-) set {Rt11 (α,β), R
t2
2 (α,β)}. That is, when (partial) Pareto con-

dition from α to β is assumed and both individuals prefer α to β, society also prefers
α to β. Abbreviating Rt11 (α,β), R

t2
2 (α,β), P

t
s(α,β) as r1αβ, r2αβ and psαβ, we have the

following proof:

r1αβ → r1αβ
Θ→ r1αβ

(th)
r2αβ → r2αβ
Θ→ r2αβ

(th)

Θ→ r1αβ ∧ r2αβ
(→ ∧) psαβ → psαβ

psαβ,Θ→ psαβ
(th)

Θ, r1αβ ∧ r2αβ ⊃ psαβ → psαβ
(⊃→)

(3.8)

This proof P has three leaves and its contemplexity is 3.

Our ultimate goal is to study the contemplexity measure for sequents, rather than
proofs. A provable sequent may have many proofs. Hence, we need the following
definition.

Definition 3.1 (Contemplexity). We define the contemplexity measure η for a se-
quent Γ→ Θ as follows:

η(Γ→ Θ) =

⎧⎨⎩
min{η(P ) : P is a cut-free proof of σ} if ` Γ→ Θ

+∞ otherwise. (3.9)

Any proof of Γ → Θ has at least this width η(Γ → Θ) whenever it is provable. If
it is unprovable, we set η(Γ → Θ) = +∞. Sometimes, η(Γ → Θ) is simply 1, which
means that Γ → Θ is obtained by changing and/or adding expressions. The depth of
such a proof may be quite long, but we are not interested in this depth. For example,
η(¬A ∧A→ ) = 1, but its (minimum) depth is 5. When η(Γ→ Θ) is large, a proof is
necessarily wide and requires many essential cases. In this paper, we will evaluate this
value for Arrow’s theorem.

If we eliminate cut-freeness in the first case of (3.9), then the resulting value ηwc(Γ→
Θ) may differ from η(Γ→ Θ). Since a cut-free proof is a proof, we have

ηwc(Γ→ Θ) ≤ η(Γ→ Θ). (3.10)

The difference was discussed in [17]. In this paper, we will consider only the measure η.
Before going to the application of η to Arrow’s theorem, perhaps, some small ex-

amples would help the reader understand the measure η. In Example 3.1, η(P ) = 3,
but this fact implies only η(Θ, r1αβ ∧ r2αβ ⊃ psαβ → psαβ) ≤ 3, since we do not know
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its minimality. Actually, we can prove the equality for this, but we need some detailed
argument.

Let us consider another example.

Example 3.2. Consider the sequent Θ, Rt11 (α,β) ⊃ P ts(α,β)→ P ts(α,β), where Θ is the
same as {Rt11 (α,β), R

t2
2 (α,β)} in Example 3.1. It states that if the (local) dictatorship

from α to β is assumed and both individuals prefer α to β, then society also prefers α
to β. This has a simpler proof:

r1αβ → r1αβ
Θ→ r1αβ

(th)
psαβ → psαβ
psαβ,Θ→ psαβ

(th)

Θ, r1αβ ⊃ psαβ → psαβ
(⊃→)

Hence, this proof has a contemplexity 2. Also, we can prove η(Θ, r1αβ ⊃ psαβ → psαβ) =
2. Suppose, on the contrary, that this was 1, i.e., there is a proof P of this sequent
which has no application of (⊃→) with the principal formula r1αβ ⊃ psαβ. Tracing the
occurrences of r1αβ ⊃ psαβ in P, we find that the uppermost occurrence is introduced
by (th), because otherwise, the uppermost ancestor of P is an initial sequent having
r1αβ ⊃ psαβ as the antecedent but the succedent has the descendant r1αβ ⊃ psαβ in the
endsequent, which is not the case. Thus, η(Θ, r1αβ ⊃ psαβ → psαβ) is not 1. Hence, the
contemplexity is 2.

Finally, let us look at one example to have at least two proofs with different con-
templexities. We combine the above example with Example 3.1: Let us denote

Ξ = {Rt11 (α,β) ∧R
t2
2 (α,β) ⊃ P ts(α,β), R

t1
1 (α,β) ⊃ P ts(α,β)}.

Then, the sequent Θ,Ξ → P ts(α,β) has two different proofs: One is obtained from the
proof in Example 3.1 by adding (th):

· · ·
Θ, r1αβ ∧ r2αβ ⊃ psαβ → psαβ

Θ,Ξ→ psαβ
(th)

(⊃→)

Thus, this has contemplexity 3. The other is obtained from the proof in Example 3.2
by adding (th) :

· · ·
Θ, r1αβ ⊃ psαβ → psαβ

Θ,Ξ→ psαβ
(th)

(⊃→)

This has contemplexity 2. Thus, η(Θ,Ξ→ psαβ) ≤ 2 by (3.9).
Actually, we can prove η(Θ,Ξ → psαβ) = 2 in the same way as in the proof of

η(Θ, r1αβ ⊃ psαβ → psαβ) = 2.
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These two examples show that it would not be easy to calculate the exact contem-
plexity value η(Γ → Θ), though the existence of it is apparent. Therefore, Kaneko-
Suzuki [17] gave a certain method of determine the value η(Γ → Θ), which is not
straightforward, too. In this paper, we will calculate certain lower bound and upper
bound for Arrow’s theorem.

4. Formalization of Arrow’s Theorem and its Contemplexity

In this section, first, we formulate individual and social preferences in our formal lan-
guage. Then, we give the axioms for a social welfare function. For this formulation,
we adopt the nominalistic method: In Section 3, we gave names to each individual
preferences, social orderings and social welfare functions but did not fix their intended
meanings. Now, we need to determine the intended meanings of these symbols. Then,
we state the three axioms, Arrow’s theorem.

4.1. Individual Preferences and Social Orderings

We express the six orderings over α,β, γ listed in (2.1) using the preference symbols Rki
(k ∈ 6 and i = 1, 2). Here, we repeat the orderings listed in (2.1):

(1) : α,β, γ; (2) : β, γ,α; (3) : γ,α,β

(4) : γ,β,α; (5) : β,α, γ; (6) : α, γ,β.

For example, (1) means that the three alternatives are ordered as α,β, γ. Suppose
that this ordering is a preference relation of individual i = 1, 2. Then this ordering is
expressed by R1i as the (multi-) set Π

1
i =:

{R1i (α,β),¬R1i (β,α), R1i (β, γ),¬R1i (γ,β), R1i (α, γ),¬R1i (γ,α)}. (4.1)

Similarly, we have the set Πki by using R
k
i describing the k-th preference relation of

individual i. Then, we define

Πi = Π
1
i ∪ ... ∪Π6i for i = 1, 2; and Π = Π1 ∪Π2. (4.2)

The first is the set of possible preference relations for individual i, and Π is the set of
possible preference relations for two individuals.

A particular profile of preference orderings is represented by Πt11 ∪ Π
t2
2 . This is the

formalization, in our language, of the profile (≺t11 ,≺
t2
2 ) in the sense of Section 2.

In a similar manner, we can enumerate all the possible social orderings. However,
there are 636 number of social welfare functions. Hence, it would be simpler to define
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them in an abstract way (in the metalanguage) than to give a specific way to enumerate
them8. Let Σ be a set consisting formulae of the form

P ts(u, v) or ¬P ts(u, v), (4.3)

where distinct u, v ∈ A, t ∈ 62 and s = 1, ..., 636. First, for each s = 1, ..., 636, we assume
that for all distinct u, v, w ∈ A and t ∈ 62;
Total: either P ts(u, v) ∈ Σ or P ts(v, u) ∈ Σ;
Asymmetry: P ts(u, v) ∈ Σ implies ¬P ts(v, u) ∈ Σ;
Transitivity: P ts(u, v) ∈ Σ and P ts(v,w) ∈ Σ imply P ts(u,w) ∈ Σ.
In addition, we assume the following:

Distinctiveness: for any distinct s, s0 = 1, ..., 636, P ts(u, v) ∈ Σ and P ts0(u, v) /∈ Σ for
some t ∈ 62 and distinct u, v ∈ A2.

To save spaces, we introduce the set of distinct ordered pairs in A, denoted by A2−.
It would be a good idea to see that these conditions determine Σ to capture the

intended meaning of the “set of all social welfare functions”. First, let Σts be the set:

{P ts(u, v) ∈ Σ : (u, v) ∈ A2−}∪{¬P ts(u, v) ∈ Σ : (u, v) ∈ A2−}.

This is the set of “social preferences” for given s and t = (t1, t2). Also, the social welfare
function, ϕs, named s is defined to be Σs =

S
t∈62 Σ

t
s.

The following lemma states that the set Σ enumerates all possible social welfare
functions; their names are s = 1, ..., 636. Thus, we have a complete enumeration of
social welfare functions.

Lemma 4.1.(1): For any s = 1, ..., 636 and t = (t1, t2) ∈ 62, Σts can be expressed as:
for some u, v, w with {u, v, w} = {α,β, γ},

Σts = {P ts(u, v),¬P ts(v, u), P ts(v, w),¬P ts(w, v), P ts(u,w),¬P ts(w,u)}.

(2): If s 6= s0, then Σs 6= Σs0 .
(3): Let ϕ : SO2 → SO be an arbitrary social welfare function. Then, there is a unique
s such that for any t = (t1, t2) ∈ 62, ϕ(≺t11 ,≺

t2
2 )(u, v) holds if and only if P

t
s(u, v) ∈ Σts.

Proof.(1): This follows from (4.3) and the three conditions.

(2): This follows from Distinctiveness.

8It is not difficult to enumerate all the social welfare functions in a concrete manner; one possiblity
is to use the lexicographic ordering.
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(3): This is obtained by (2) and by comparing the number of social welfare functions
with s = 1, ..., 636.

We should mention the following lemma, which will be used in Section 7.

Lemma 4.2. The set Π ∪ Σ is consistent in classical logic.
This lemma can be proved by using the soundness theorem for classical logic, i.e.,

to find a truth assignment satisfying Π∪Σ. See Kaneko [13], Sec.3.2. This implies that
any subset of Π ∪Σ is consistent. This fact will be referred as part of Lemma 4.2.

4.2. Three Conditions for a Social Welfare Function

In our formalized language, the three conditions for Arrow’s theorem are formalized in
the following way: Let s be any number from 1 to 636.

PR(s):
V
t∈62

V
(u,v)∈A2−

¡
Rt11 (u, v) ∧R

t2
2 (u, v) ⊃ P ts(u, v)

¢
.

IIA(s):
V
t,t0∈62

V
(u,v)∈A2−³

Rt11 (u, v) ∧R
t2
2 (v, u) ∧ P ts(u, v) ⊃ [R

t01
1 (u, v) ∧R

t02
2 (v, u) ⊃ P t

0
s (u, v)]

´
∧³

Rt11 (u, v) ∧R
t2
2 (v, u) ∧ P ts(v, u) ⊃ [R

t01
1 (u, v) ∧R

t02
2 (v, u) ⊃ P t

0
s (v, u)]

´
.

ND(s): ¬
W
i=1,2

V
t∈62

V
(u,v)∈A2−

¡
Rtii (u, v) ⊃ P ts(u, v)

¢
.

Recall the remark stated in (3.1) and (3.2), Arrow’s impossibility theorem is stated
as follows:

Theorem 4.3 (Arrow’s Impossibility in the Formal System):

` Π,Σ,
636W
s=1

(PR(s) ∧ IIA(s) ∧ND(s))→ . (4.4)

All the profiles are expressed by Π and all the welfare functions are expressed by
Σ. A contradiction is derived from the existence of a social welfare function satisfying
these conditions and Π, Σ. A proof for an upper bound to be given in Section 8 will be
also a proof of Theorem 4.3.

We obtain the following from (4.4) by an application of (→ ¬) :

` Π,Σ→ ¬
636W
s=1

(PR(s) ∧ IIA(s) ∧ND(s)) . (4.5)

This is rather the standard statement of Arrow’s theorem that there is no social welfare
function satisfying the required three conditions. In this paper, we will evaluate the
contemplexity of the sequent of (4.4) rather than (4.5).
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5. Contemplexity for Arrow’s Theorem

We give the contemplexity theorem for Arrow’s Impossibility Theorem and compare it
with the contemplexity required for the Cyclical Impossibility Theorem.

5.1. Upper and Lower Bounds

Now, we present the main theorem of the paper, which will be proved in Sections 7 and

8. We denote the sequent Π,Σ,
W636
s=1 (PR(s) ∧ IIA(s) ∧ND(s))→ by σ.

Theorem 5.1 (Upper and Lower Bounds): 636 ≤ η(σ) ≤ 637 + 420.
This states that Arrow’s theorem in the case with 2 individuals and 3 social alter-

natives necessarily requires a proof of width at least 636 and at most 637 + 420. These
numbers are much larger than the Avogadro number 6× 1023. If all these cases should
be covered, it would be practically impossible to be treated. It is an implication that
any proof of Arrow’s impossibility theorem cannot be practically written down.

In fact, we can improve the evaluation of the lower bound to 3× 636. In addition to
the proof for the lower bound given in Section 7, however, we need another long proof
for this multiplication of 3 with the lower bound. This improvement means that each of
636 cases is essential for Arrow’s theorem. However, we omit this improvement in this
paper, since the effect of additional 3 on implications would be negligible.

Some reader doubts that something may be wrong with the above claim that Ar-
row’s theorem cannot practically be proved, since Arrow [2] himself proved it (a more
general version) and many other people checked it and/or reproved it. A resolution of
this doubt is related to one point we mentioned in Section 1. In the case of proposition
logic, all details and all cases are described in a proof, and “a free variable” represent-
ing “an arbitrary element” is excluded from the object-expressions. In nonformalized
mathematics, a free variable is used so often even unconsciously: For example, “a simi-
lar manner” includes “a free variable”. At the meta-level, we use free variables even in
propositional logic.

In the nonformalized proofs of Arrow’s theorem, such free variables are used a lot.
In our proof of the upper bound given in Theorem 5.1, free variables will be used in
metalanguage.

One strength of mathematical logic is a division of treatments between the object-
level and meta-level. At the object-level, a free variable is a concept in predicate logic.
Thus, it is an implication of Theorem 5.1 that Arrow’s theorem involves so many steps if
we adopt the propositional logic - the complete enumeration method - for its proof, and
that practically the use of “a free variable” is inevitable. For a further development of
inductive game theory and epistemic logic, we should take free variables more seriously
and explicitly. One possibility is to incorporate predicate logic into them even with a
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finite structure. This will belong to a future project.
Now, let us talk about the proof of Theorem 5.1: It consists of two parts: (A):

636 ≤ η(σ); and (B) η(σ) ≤ 637+420. They will be given in Sections 7 and 8, respectively.
Part A is genuinely a proof-theoretic argument; we evaluate a given cut-free proof

of σ. The main part of the proof is to show that the proof has at least one application

of (∨ →) with its principal formula
W636
s=1 (PR(s) ∧ IIA(s) ∧ND(s)) . This means that

this inference has 636 upper sequents, and thus, the proof tree has at least 636 leaves.

In other words,
W636
s=1 (PR(s) ∧ IIA(s) ∧ND(s)) is essential. Although this may sound

trivial, it would take an accurate proof-theoretic evaluation of a given cut-proof. It will
be remarked in Section 6.2 about the case where (cut)’s are allowed.

Part B is proved by giving a particular proof of Arrow’s theorem. Our task is to
evaluate it in terms of contemplexity. Therefore, our proof is more precise than the
standard one in that we cannot abbreviate some cases as “similar”. We should also
avoid calling some cases “trivial”, since those cases may be even more difficult than
“nontrivial” cases. Of course, if some cases are truly parallel to some other cases by
permutations of components, we would abbreviate them. By our proof, we will obtain
some additional statement.

Theorem 5.2 (No Entanglement of the three Conditions): For each s = 1, ..., 636,
either ` Σs, PR(s)→ , ` Σs, IIA(s)→ or ` Σs, ND(s)→ .

That is, it is not the case that two or three conditions of PR(s), IIA(s) andND(s) are
entangled for the proof of inconsistency.

5.2. Comparison with the Cyclical Impossibility Theorem

In Section 3, we looked at a few examples for contemplexity, which show that these
contemplexities are rather tiny. It may be a good idea to compare the Cyclical Impos-
sibility Theorem with respect to contemplexity to Theorem 5.1. For this, transitivity
and asymmetry are formulated as follows:

Transitivity (Tr) for D:
V
{u,v,w}=A (D(u, v) ∧D(v, w) ⊃ D(u,w)) ;

Asymmetry (As) for D:
V
(u,v)∈A2 (D(u, v) ⊃ ¬D(v, u)) .

Then we have the following theorem.

Theorem 5.3 (Cyclical Impossibility): Recall Φ = {D(α,β), D(β, γ), D(γ,α)}.
(1): ` Φ, T r,As→ ;

(2): η(Φ, T r,As→ ) = 4.

To obtain the exact statement of (2), we need more precise proof-theoretic develop-
ments. Here, we prove (1) and only (2

0
): η(Φ, T r,As→ ) ≤ 4. The exact evaluation of

(2) needs certain result given in Kaneko-Suzuki [17].
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Theorem 5.3 shows that our formal approach separates Arrow’s impossibility theo-
rem from the cyclic impossibility theorem.

Proof of Theorem 5.3.(1) and (20): Here, we can give a full detailed proof of the
sequent in (1). We denote D(α,β),D(β, γ), ... by Dαβ,Dβγ etc. First, we have

Dαβ→Dαβ

Φ,Dαγ ⊃ ¬Dγα →Dαβ
(th)

Dβγ→Dβγ

Φ,Dαγ ⊃ ¬Dγα→Dβγ
(th)

Φ,Dαγ ⊃ ¬Dγα → Dαβ∧Dβγ
(→ ∧)

Then, combining this proof with the proof of Φ,Dαγ ,Dαγ ⊃ ¬Dγα → , we have

· · ·
Φ,Dαγ ⊃ ¬Dγα → Dαβ∧Dβγ

(→ ∧)
Dαγ→Dαγ

Φ,Dαγ→Dαγ
(th)

Dγα→Dγα

¬Dγα,Dγα→ (¬→)
¬Dγα,Φ→ (th)

Φ,Dαγ ,Dαγ ⊃ ¬Dγα→ (⊃→)
Φ,Dαβ∧Dβγ ⊃ Dαγ ,Dαγ⊃¬Dγα →

Φ,Tr,Dαγ⊃¬Dγα→
Φ,Tr,As → (∧→)

(∧ →)
(⊃→)

In inference (⊃→) in the middle of the above proof, we used the fact that Dγα ∈ Φ.
This proof shows (1). Then, this proof has contemplexity 4. Hence, we have η(Φ, T r,As
→ ) ≤ 4.

6. Discussions and Various Remarks

6.1. Discussions

We have evaluated Arrow’s impossibility theorem σ in terms of the contemplexity mea-
sure η. We gave a lower bound and an upper bound of the contemplexity η(σ), which
are 636 and 637+420, respectively. If we take these bounds faithfully, it would be prac-
tically impossible to have a proof of Arrow’s theorem. As mentioned after Theorem 5.1,
Arrow’s theorem in the specific case will be proved in Section 8, and a more general
version of it has been proved. This appears to be contradictory.

The above seeming contradiction may be resolved by finding that our theorem is for-
mulated in a formalized propositional logic, while an actual proof uses “a free variable”
expressing “something arbitrary”. In mathematical logic, a free variable is a concept in
predicate logic, and is typically regarded as necessary when some mathematical struc-
ture involves an infinite number of objects. Our result states that the use of a free
variable or predicate logic is practically necessary even for finite problems.

A free variable will be a key for our future analysis of human thinking: It requires
specific detailed instances and also some abstraction. It is an imWithout abstraction,
even a finite problem would be too complicated to manage it practically. This is an im-
plication of Theorem 5.1 that a free variable, a fortiori, predicate logic will be important
for our future analysis of finite epistemic problems.
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Once it is understood that contemplexity may give a stringent constraint on a
player’s thinking, it would be a problematic to confine our research to provability (va-
lidity in the semantical sense), since provability makes no distinction between large
and small contemplexity. This fact requires us to rethink the present and traditional
axiomatic attitude in the research of epistemic logic.

According this tradition, the belief set Γ for a player is also regarded as a set of
axioms and must be well-prepared; for example, it satisfies some criteria: consistency,
independence and some simplicity. However, independence and simplicity for Γ make
a derivation of a theorem A from Γ to become long. Our theorem has an implication
that a derivation is too long for the player. Also, even if he succeeds in deriving A
from Γ, he may not recall the derivation. This suggests that for the consideration of a
player’s beliefs/knowledge, we should forget to consider requirement that the player can
practices the derivation always unless it exceeds some bound. Rather, once he derives
A from Γ, he can add A to Γ;

from Γ to Γ ∪ {A}.

Thus, the belief set Γ is regarded as changing with time.
Once we adopt the above view of changing the belief set, the additional Amay be not

only a theorem from the previous Γ but also something taught through communication
to other people or formal education. From this point of view, the belief set Γ may be no
longer independent or simple. It may consists of a lot of accumulated beliefs, in which
case a derivation of a new statement may become shorter.

The treatment of an inconsistent belief set, discussed in Section 1.2, may be more
meaningful. Originally, the player has a belief set, which is inconsistent objectively but
appears to be no problem for him. He adds new facts, which are sometimes derived
from his previous beliefs or sometimes else educated to him, to his belief set. His belief
set is getting larger, and finally he notices inconsistency of his beliefs9.

Thus, Theorem 5.1 has a lot of implicatons and suggestions for new research topics
for game theory as well as epistemic logic (rather logic in general). However, those are
new problems for these disciplines, and remain to be important open problems.

6.2. Remarks

Remark 1 (General but still Finite Version of Arrow’s Theorem): When more
individuals and more social alternatives, the lower bound part of Theorem 5.1 can be
extended in a straightforward way. The key was the number of social welfare functions
636. In the case with 3 individuals and 3 social alternatives, the key number becomes

9The theory of belief-revision (cf., Gördenfors [6] and Schulte [22]) has a conceptual difficulty with
the adoption of provability. If we take the above view, it would make more sense since belief revisions
can be discussed in a dynamic context.
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66
3
= 6216. In the general case with m individuals and k social alternatives, the key

number becomes (k!)(k!)
m
.

So far, we do not have an upper bound part of the general version of Theorem 5.1.
In an existing proof of Arrow’s theorem (cf., Luce-Raiffa [9], Chap.14, Arrow et al. [3],
Chap.1), a lot of meta-treatments such as a minimal decisive set are used and give
difficulties to translate it into a formalization in propositional logic. It remains open to
evaluate an upper bound of the general version.

Remark 2 (Embedding into an Epistemic Logic): As mentioned in Section 1, one
of our motivations is to develop epistemic logic. We evaluated Arrow’s impossibility
theorem in classical logic, but this evaluation is directly translated into epistemic logic
such as GLEF of Kaneko-Suzuki [14]. That is, the proof of Arrow’s theorem was done
in the mind of player i. Our result means that Arrow’s theorem is an example to show
a gigantic contemplexity value from a relatively tiny problem: As far as his inferences
are following the propositional logic, he cannot manage the proof. Thus, predicate logic
will be important in the study of epistemic logic for a situation including no infinity.

Remark 3 (Total number of Sequents): Our contemplexity measure η(P ) is defined
to be the width of the proof P. The reason for taking the width was explained in Section
3. Some reader may be interested in counting all the sequents in P. Let us modify η(P )
to the number of sequents in P, which is denoted by ηT (P ). In the same as (3.9), we
define ηT (Γ→ Θ) to be the smallest number in {ηT (P ) : P is a proof of Γ→ Θ}. Since
η(Γ→ Θ) ≤ ηT (Γ→ Θ) in general, 636 is still a lower bound of ηT (σ). Looking at the
proof given in Section 8, we can calculate one upper bound of ηT (σ):

ηT (σ) ≤ (636 − 2)× 19 + 2× 711 = 636 × 19 + 711. (6.1)

Thus, we can use the total number of sequents in a proof for a measure of the size
of a proof. But, for the reasons given in Section 3, we take the measure η(P ) as the
definition of the size of P.

Remark 4 (Hilbert-Style Formulation): We have defined the contemplexity mea-
sure η in classical logic in the Gentzen-style sequent formulation. Analogously, we can
use classical logic in the Hilbert-style. There are still many choices of a language and an
axiomatic system. Among them, the system in the Hilbert-style given in Kaneko [13]
is directly comparable with the system of the present paper. The translation between
the Gentzen-style and Hilbert-style is possible, with the use of the cut-inference in the
Gentzen-style. The lower bound part of Theorem 5.1 can be converted to the Hilbert-
style classical logic. The upper bound part is not directly converted. Either to give a
proof in the Hilbert-style once more or to translate each step of the proof in Section
8 to the Hilbert-style. Perhaps, the corresponding upper bound for the contemplexity
becomes larger than 637 + 420.
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Remark 5 (Length of a Proof): In the Hilbert-style, a proof is often formulated as
a finite sequence of formulae (cf. Mendelson [20]). This case is similar to the case of
counting all sequents in a proof tree mentioned in Remark 3. In the case, the length of
a proof depends upon the axiomatic system of classical logic in the Hilbert-style. Nev-
ertheless, we cannot be free from the lower and upper bounds such as 636 and 637+420
or the number given in (6.1).

Remark 6 (Language with Binary Conjunctions and Disjunctions): In the
language P given adopted in Section 3, conjunction symbol ∧ and disjunction symbol ∨
are applied to any finite multi-sets of formulae. Since we take conjunctions and disjunc-
tions for many possible formulae, this definition has saved a lot in various expressions.
However, this is not standard in the logic literature; it is more standard to allow only
binary conjunctions and disjunctions. Here, we consider how the main result (Theorem
5.1) would change if we adopt binary conjunctions and disjunctions.

Now, we take the subset PB of P defined by the restriction that every conjunctive
or disjunction subformula in any formula is binary, i.e., ∧{A1, A2} or ∨{A1, A2}, where
{A1, A2} is a multi-set of formulae. Then, the Gentzen-system defined in Section 3 is
restricted to the language PB. In this language, ∧{A1, ..., Am} is translated, by the
repetition of the binary conjunctions, into:

∧{∧{∧... ∧ {∧{A1, A2}, A3}...}, Am}, (6.2)

and ∨{A1, ..., Am} is similarly translated. With this transformation, the Gentzen-system
within PB is equivalent, with respect to provability, to that within P. Nevertheless, they
may differ with respect to the sizes of proofs.

Thus, the language PB is quite inconvenient when we take a conjunction or disjunc-
tion of many formulae such as PR(s)∧ IIA(s)∧ND(s) and

W636
s=1Ar(s). Also, we need

the corresponding repetitions of (∧ →) and (∨ →). Let us denote the formulae defined
by (6.2) by

V
{A1, ..., Am}, and correspondingly

W
{A1, ..., Am}. Then, for example, the

inference in the language P
{A,Γ→ Θ : A ∈ Φ}
∨Φ,Γ→ Θ (∨ →), where Φ = {A1, ..., Am}

can be changed to

• • •W
{A1, ..., Am−2},Γ→ Θ

(∨ →)
Am−1,Γ→ ΘW

{A1, ..., Am−1},Γ→ Θ
(∨ →)

Am,Γ→ ΘW
Φ,Γ→ Θ (∨ →)

The width does not change as the number of disjuncts m, but the depth of the infer-
ence becomes also m, though it was 2 in the language P. Thus, this language is quite
inconvenient.
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Nevertheless, it would be important to check how Theorem 5.1 changes when we
adopt the language PB. Our conjecture is that the claim remains the same, but the
depth changes drastically. This is an important open problem.

7. Proof of the Lower Bound Part of Theorem 5.1

In Section 7.1, we summarize certain facts about any cut-free proof P of Arrow’s theorem
σ. Then, we prove in Section 7.2 that 636 ≤ η(σ) : Any cut-free proof P of σ has at least

one application of (∨ →) with its principal formula
W636
s=1AR(s). This implies that this

(∨ →) has 636 uppersequents; a fortiori, proof P has at least 636 leaves.
Throughout this section, let P = (T,<,ψ) be any cut-free proof of σ = Π,Σ,

W636
s=1AR(s)

→ .We will change ψ, but will not touch the tree structure (T,<). Later, we will focus
on certain subtrees of (T,<), but we will consider them relative to the entire tree (T,<).
Recall that <I is the immediate predecessor part of < .

7.1. The Ascending Chain containing
W636
s=1AR(s) in P

Consider the root node n0 in the proof P. Now, we trace up nodes n0, n1, ..., nl in T so
that

(1): nk <
I nk+1 for all k = 0, ..., l − 1;

(2): each sequent ψ(nk) contains the formula
W636
s=1AR(s) for k = 0, ..., l;

(3): each sequent ψ(nk) is the lower sequent of (¬ →), (c→), (→c) or (th) for k =
0, ..., l − 1;
(4): at nl, one of the following cases holds:

(4a): ψ(nl) is the lower sequent of (∨ →) with its principal formula
W636
s=1AR(s);

(4b): ψ(nl) is the lower sequent of (th), and in this case, its upper sequent has no

occurrences of
W636
s=1AR(s).

If ψ(nl) is an initial sequent, then it would be ψ(nl) =
W636
s=1AR(s) →

W636
s=1AR(s) by

(2), but this is impossible by the subformula property (Theorem 3.2). Hence, it suffices
to require (4a) and (4b). In fact, this sequence n0, ..., nl is uniquely determined, since
P has no branching in these nodes by (3). We call this sequence the ascending chain

containing
W636
s=1AR(s) from the root node n0.

Recall that P is a cut-free proof and satisfies the subformula property (Theorem
3.2). The sequent ψ(nk) associated with each node nk (k = 0, ..., l) is expressed as

ψ(nk) = Γk,
636W
s=1

AR(s), ...,
636W
s=1

AR(s)→ Θk. (7.1)
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Also, since Π,Σ are literals (i.e., each is an atomic formulae or the negation formula of
an atomic formula), so are Γk,Θk, and in particular, Θk are atomic formulae. We write
this fact:

(5): for k = 0, ..., l, Γk is a subset of Π,Σ and ¬Θk := {¬A : A is in Θ} is a subset of
Π,Σ.

This will be used in the following.

7.2. Proof of 636 ≤ η(σ)

Suppose, on the contrary, that P = (T,<,ψ) has no applications of (∨ →) with its
principal formula

W636
s=1AR(s). Then, for the uppermost node nl in the ascending chain

n0, ..., nl, we have only the possibility (4b). Thus, for any node nk in n0, n1, ..., nl,W636
s=1AR(s) comes from the uppersequent nk+1 or it is introduced by (th). By (3),W636
s=1AR(s) is never a side formula of any operation inference rule in P.

Now, we can eliminate all occurrences of
W636
s=1AR(s) in the sequents in n0, ..., nl.

We define the new function ψ0 so that if n is a node in n0, ..., nl,

ψ0(nk) = Γk → Θk.

and otherwise ψ0(n) = ψ(n). Now, we have (X,<,ψ0).
We show that (X,<,ψ0) is also a proof. For any node n ∈ X, define Xn = {n0 ∈ X :

n0 = n or n0 > n}. Then, we show by induction over the tree structure (X,<) from its
leaves that the restriction (Xn, <,ψ

0) is a proof for any n ∈ X.
When a node n is not in n0, ..., nl, the structure (Xn, <,ψ

0) is not affected by the
change of ψ to ψ0 and is a proof.

Consider nl. In P, ψ
0(nl) must be the lower sequent of (th) and the upper sequent

is given as ψ0(n0) = ψ(n0) with nl <I n0. It is already seen that (Xn0 , <,ψ
0) is a proof.

Since the thinning rule is allowed to have the same sequent in the upper and lower
sequent, the following

ψ(n0)

ψ0(nl)

is also a legitimate thinning rule. Hence, (Xnl , <,ψ
0) is a proof.

Now, consider any node nk in n0, ..., nl−1. The induction hypothesis is that the
structure (Xnk−1 , <,ψ

0) is a proof. We should consider all possible cases for inference
rules. By (3), we should consider only four cases, i.e., (¬ →), (c→), (→c) and (th) by
(3): Here we consider only (c→). The other cases are similar. It is expressed as

Γk, ξ, ..., ξ, ξ → Θk
Γk, ξ, ..., ξ → Θk

(c→) or Γ
0, A,A, ξ, ..., ξ → Θk
Γ0, A, ξ, ..., ξ → Θk

(c→).

25



where ξ =
W636
s=1AR(s), and Γk−1 = Γ

0 ∪ {A,A}, Γk = Γ0 ∪ {A} in the right case. Also,
ξ does not occur in Γk−1,Γk,Θk. In the left case, ξ is the contraction formula, and in
the right case, it is A. Hence, these are changed into the following by eliminating all

occurrences of ξ =
W636
s=1AR(s);

Γk → Θk
Γk → Θk

(th) or
Γ0, A,A→ Θk
Γ0, A→ Θk

(c→).

These are legitimate inferences. Hence, (Xnk , <,ψ
0) is a proof.

We have proved that (Xn0 , <,ψ
0) is a proof of its endsequent is Π,Σ→ . However,

this is not provable by Lemma 4.2.
Therefore, we have proved that P = (X,<,ψ) has at least one application of (∨ →)

with its principal formula
W636
s=1AR(s). Thus, P has at least 636 leaves. Since P is an

arbitrary cut-free proof of σ, we have 636 ≤ η(σ).

8. An Upper Bound of η(σ)

One upper bound of η(σ) can be found by giving and evaluating a particular proof
of Arrow’s theorem σ. Of course, the proof should be considered in the propositional
Gentzen-style sequent calculus. However, since the proof itself is gigantic, we cannot
write down a complete proof at once. We describe the proof, case by case, using “free
variables” at the meta-level. In each case, we evaluate the size of the part of the proof,
and finally we will sum up the contemplexities over those cases.

The last part of our proof of σ is as follows:⎧⎪⎪⎨⎪⎪⎩ · · ·
Π,Σs, PR(s) ∧ IIA(s) ∧ND(s)→
Π,Σ, PR(s) ∧ IIA(s) ∧ND(s)→ (th)

⎫⎪⎪⎬⎪⎪⎭
636

s=1

Π,Σ,
W636
s=1 PR(s) ∧ IIA(s) ∧ND(s)→

(∨ →)

Thus, we should evaluate an upper bound for η(Π,Σs, PR(s) ∧ IIA(s) ∧ND(s) → )
and then we will sum up these upper bounds for s = 1 to 636.

We divide the following argument into two cases: Dictator Case and Non-dictator
Case. In the dictator case, we have a proof of

Dictator(s) : Π,Σs, ND(s)→

and in the non-dictator case, we have either

Pareto(s): Π,Σs, PR(s)→ or Ind.IA(s): Π,Σs, IIA(s)→ .
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In each case, we have the third lowest sequent Π,Σs, PR(s)∧IIA(s)∧ND(s)→ from
the endsequent in P by (∧ →); for example, in the dictator case, we have

· · ·
Π,Σs, ND(s)→

Π,Σs, PR(s) ∧ IIA(s) ∧ND(s)→
(∧ →).

The dictator case is clear-cut, but the non-dictator case is entangled with subcases
for Pareto(s) and IndIA(s). The contemplexities of the subproofs are 216, 3 and 6,
respectively, for Dictator(s), Pareto(s) and IndIA(s).

8.1. Dictator Case

In the dictator case, a social ordering always coincides with the individual preference
ordering of the dictator. Since we have only two individuals, there are also two dictator
cases: We let s1 and s2 be the indices of the dictator social welfare functions, where 1
is the dictator for s1 and 2 is the dictator for s2. In the following, we consider only s1.
The other case is symmetric.

Now consider s1. Then we have the following proof. Let u, v ∈ A be any distinct
alternatives, and let t ∈ 62 be a profile. Then, there are two cases, (a): P ts1(u, v) is in
Σs1 and (b): ¬P ts1(u, v) is in Σs1 . First, in case (a), we have

P ts1(u, v)→ P ts1(u, v)

Π,Σs1 , R
t
1(u, v)→ P ts1(u, v)

(th)

Π,Σs1 → Rt1(u, v) ⊃ P ts1(u, v)
(→⊃)

In case (b), it holds also that ¬Rt1(u, v) is in Π. Then,

Rt1(u, v)→ Rt1(u, v)

¬Rt1(u, v), Rt1(u, v)→
(¬→)

Π,Σs1 , R
t
1(u, v)→ P ts1(u, v)

(th)

Π,Σs1 → Rt1(u, v) ⊃ P ts1(u, v)
(→⊃)

In either case, we have the same endsequent, for which the proof given above and
denoted by π(u,v),t has only one uppermost sequent. We combine these proofs and have
the following proof.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
½

π(u,v),t

Π,Σs1 → Rt1(u, v) ⊃ P ts1(u, v)

¾
(u,v)∈A2−

Π,Σs1 →
V
(u,v)∈A2(R

t
1(u, v) ⊃ P ts1(u, v))

(→ ∧)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
t∈62

Π,Σs1 →
V
t∈62

V
(u,v)∈A2−(R

t
1(u, v) ⊃ P ts1(u, v))

(→ ∧)

Π,Σs1 →
W
i=1,2

V
t∈62

V
(u,v)∈A2−(R

t
i(u, v) ⊃ P ts1(u, v)

(→ ∨)

Π,Σs1 ,¬
W
i=1,2

V
t∈62

V
(u,v)∈A2−(R

t
i(u, v) ⊃ P ts1(u, v))→

(¬→)

This proof tree has 62 branches at the middle (→ ∧) and each branch has 6 further
branches at the top (→ ∧). Hence, the contemplexity of the proof of Π,Σs, ND(s)→ is
6× 62 = 216.

In the case of s2 (2-dictator), we have also contemplexity 216. Hence, for s1 and s2,
we have 432 leaves.

8.2. Non-Dictator Case

Let s be an arbitrary number from 1 to 636 with s 6= s1, s2. Consider the profile Rt =
(Rt1, R

t
2) defined by: ½

Rt1 : α β γ
Rt2 : γ β α.

(8.1)

This means that Rt1(α,β) and R
t
1(β, γ) are in Π and R

t
2(γ,β) and R

t
2(β,α) are in Π.

We will use the notation of (8.1) in the following. We will also fix t = (t1, t2) in the
following.

Then, there are 6 possibilities for social preferences in Σts:

Case 1A: P ts(α,β) and P
t
s(β, γ); Case 2A: P ts(γ,β) and P

t
s(β,α);

Case 1B: P ts(α, γ) and P
t
s(γ,β); Case 2B: P ts(γ,α) and P

t
s(α,β);

Case 1C: P ts(β,α) and P
t
s(α, γ); Case 2C: P ts(β, γ) and P

t
s(γ,α).

By Transitivity for Σts, each case has the third preference, e.g., P
t
s(α, γ) ∈ Σts in Case

1A. Every social ordering named as s from 1 to 636 belongs to one of these six cases.
Thus, the social orderings indexed by 1 to 636 are classified into these six classes.

We consider Cases 1A, 1B, and 1C in the following. The other three cases can be
treated by switching between individuals 1 and 2 in the following proofs, and then we
have proofs for Cases 2A, 2B and 2C. Also, Cases 1B and 1C are similar, but Case 1A
differs from Cases 1B and 1C.
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Each case will be again divided into various subcases. In each subcase, we will
construct a proof having the following form: either

• • •
Π,Σs, PR(s)→

or
• • •

Π,Σs, IIA(s)→
.

Then, we calculate the contemplexity of it. We may write Π,Σs as Ξs to simplify the
notation.

8.2.1. Cases 1A: P ts(α,β), P
t
s(β, γ) and P

t
s(α, γ) in Σs

Consider the other profile:

t0-th profile

½
1 : γ β α
2 : α β γ

.

Then, there are three cases to be considered:

A0: P t
0
s (γ,β) and P

t0
s (β,α) are in Σs;

A1: P t
0
s (α,β) is in Σs;

A2: P t
0
s (β, γ) is in Σs.

Now, we consider the above three cases.

A0: P t
0
s (γ,β), P

t0
s (β,α) ∈ Σs. In this case, individual 1’ preferences and the social

preferences coincide for profiles Rt and Rt
0
. But since s 6= s1, s2, for some profile Rl =

(Rl1, R
l
2) and some pair of distinct alternatives (x, y) ∈ A2−, it holds that

Rl1(x, y) ∈ Π but P ls(y, x) ∈ Σs. (8.2)

or

Rl1(y, x) ∈ Π but P ls(x, y) ∈ Σs. (8.3)

Here, we have various cases for the choice of x, y. In the following, let (x, y) be (α,β), (β, γ)
or (α, γ). In these three cases, we have the parallel proofs. Thus, we consider the case
of (x, y) = (α,β). Also, assume (8.2).

Now, we have to think about two subcases: (a) Rl2(α,β) ∈ Π; and (b) Rl2(β,α) ∈ Π.
A0a: Rl2(α,β) ∈ Π. Then,

Rl1(α,β)→Rl1(α,β)
Π,Σs→Rl1(α,β)

(th)
Rl2(α,β)→Rl2(α,β)
Π,Σs→Rl2(α,β)

(th)

Π,Σs→Rl1(α,β)∧Rl2(α,β)
(→∧)

P ls(α,β)→P ls(α,β)
¬P ls(α,β),P ls(α,β)→

(¬→)
Π,Σs,P ls(α,β)→

(th)

Π,Σs,Rl1(α,β)∧Rl2(α,β)⊃P ls(α,β)→
Π,Σs,PR(s)→ (∧→)

(⊃→)
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This proof has the contemplexity 3.

A0b: Rl2(β,α) ∈ Π. First, we have the following two proofs:

Rt1(α,β)→Rt1(α,β)
Π,Σs→Rt1(α,β)

(th)
Rl2(β,α)→Rl2(β,α)
Π,Σs→Rt2(β,α)

(th)
P t2(β,α)→P t2(β,α)
Π,Σs→P t2(β,α)

(th)

Π,Σs→Rt1(α,β)∧Rt2(β,α)∧P ts (α,β)
(→ ∧) (8.4)

and

Rl1(β,α)→Rl1(β,α)
Π,Σs→Rl1(β,α)

Rl1(α,β)→Rl1(α,β)
Π,Σs→Rl2(α,β)

Π,Σs→Rl1(β,α)∧Rl2(β,α)
(→∧)

P ls(α,β)→P ls(α,β)
¬P ls(α,β),P ls(α,β)→

(¬→))
Π,Σs,P ls(α,β)→

(th)

Π,Σs,Rl1(β,α)∧Rl2(β,α)⊃P ls(α,β)→
(⊃→)

(8.5)

Combining these two proofs, we have the following:

• • •
Π,Σs→Rt1(α,β)∧Rt2(β,α)∧P ts(α,β)

(→∧) • • •
Π,Σs,Rl1(β,α)∧Rl2(β,α)⊃P ls(α,β)→

(⊃→)

Π,Σs,Rt1(α,β)∧Rt2(β,α)∧P ts (α,β)⊃(Rl1(β,α)∧Rl2(β,α)⊃P ls(α,β))→
Π,Σs,IIA(s)→

(⊃→)
(8.6)

The long formula in the second last sequent of (8.6) is a part of IIA(s), and we obtain
the last sequent. This case has contemplexity 6.

A1: Suppose P t
0
s (α,β) ∈ Σs. Now, we consider following profile:

l-th profile

½
1 : β γ α
2 : γ α β

(8.7)

There are three cases to consider with respect to with P ls : A1a: ¬P ls(α,β) ∈ Σs; A1b:
¬P ls(β, γ) ∈ Σs; and A1c:P ls(α,β), P ls(β, γ) ∈ Σs.
A1a: Let ¬P ls(α,β) ∈ Σs. Then, recalling Ξs = Π,Σs, we have the following proof
without the names of inferences:

πt
0
1 (β,α) πt

0
2 (α,β) πt

0
s (α,β)

Ξs→Rt01 (β,α)∧Rt
0
2 (α,β)∧P t

0
s (α,β)

Rl1(β,α)→Rl1(β,α)
Ξs→Rl1(β,α)

Rl2(α,β)→Rl2(α,β)
Ξs→Rl2(α,β)

Ξs→Rl1(β,α)∧Rl2(α,β)

P ls(α,β)→P ls(α,β)
¬P ls(α,β),P ls(α,β)→

Ξs,P ls(α,β)→
Ξs,[Rl1(β,α)∧Rl2(α,β)⊃P ls(α,β)]→

Ξs,Rt
0
1 (β,α)∧Rt

0
2 (α,β)∧P t

0
s (α,β) ⊃ [Rl1(β,α)∧Rl2(α,β)⊃P ls(α,β)]→
Ξs,IIA(s)→

where πt
0
1 (β,α),π

t0
2 (α,β),π

t0
s (α,β) are similar to case A0b, and each has only one upper

sequent. Hence the contemplexity here is 6.
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A1b: Let ¬P ls(β, γ) ∈ Σs. Then, in this case, we compare the profile Rt with the profile
Rl,

πt1(β,γ) πt2(γ,β) πts(β,γ)

Ξs→Rt1(β,γ)∧Rt2(γ,β)∧P ts (β,γ)

Rl1(β,γ)→Rl1(β,γ)
Ξs→Rl1(β,γ)

Rl2(γ,β)→Rl2(γ,β)
Ξs→Rl2(γ,β)

Ξs→Rl1(β,γ)∧Rl2(γ,β)

P ls(β,γ)→P ls(β,γ)
¬P ls(β,γ),P ls(β,γ)→

Ξs,P ls(β,γ)→
Ξs,[Rl1(β,γ)∧Rl2(γ,β) ⊃ P ls(β,γ)]→

Ξs,Rt1(β,γ)∧Rt2(γ,β)∧P ts(β,γ) ⊃ [Rl1(β,γ)∧Rl2(γ,β) ⊃ P ls(β,γ)]→
Ξs,IIA(s)→

Here, the contemplexity is also 6.

A1c: P ls(α,β), P
l
s(β, γ) ∈ Σs. In this case, we have P ls(α, γ) ∈ Σs and ¬P ls(γ,α) ∈ Σs

by Transitivity and Asymmetry for Σs. Now, we have

Rl1(γ,α)→Rl1(γ,α)
Ξs→Rl1(γ,α)

(th)
Rl2(γ,α)→Rl2(γ,α)

Ξs→Rl2(γ,α)
(th)

Ξs→Rl1(γ,α)∧Rl2(γ,α)
(→∧)

P ls(γ,α)→P ls(γ,α)
¬P ls(γ,α),P ls(γ,α)→

(¬→)
Ξs,P ls(γ,α)→

(th)

Ξs,Rl1(γ,α)∧Rl2(γ,α)⊃P ls(γ,α)→
Ξs,PR(s)→ (∧→)

(⊃→)

Hence, the contemplexity is 3.

A2: Suppose P t
0
s (β, γ). In this case, we consider the following profile, rather than that

of (8.7):

l-th profile

½
1 : γ α β
2 : β γ α

(8.8)

The remaining is similar to the cases of A1.

8.2.2. Case 1B: P ts(α, γ), P
t
s(γ,β) and P

t
s(α,β) in Σs

Consider another profile:

l-th profile

½
1 : β α γ
2 : γ β α

Then, there are two cases to be considered: (1) P ls(α,β) ∈ Σs; and (2) ¬P ls(α,β) ∈ Σs.
B1: Suppose P ls(α,β) ∈ Σs. Then,

Rl1(β,α)→Rl1(β,α)
Ξs→Rl1(β,α)

(th)
Rl2(β,α)→Rl2(β,α)

Ξs→Rl2(β,α)
(th)

Ξs→Rl1(β,α)∧Rl2(β,α)
(→∧)

P ls(β,α)→P ls(β,α)
¬P ls(β,α),P ls(β,α)→

(¬→)
Ξs,P ls(β,α)→

(th)

Ξs,Rl1(β,α)∧Rl2(β,α)⊃P ls(β,α)→
Ξs,PR(s)→ (∧→)

(⊃→)

We have contemplexity 3.
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B2: Suppose ¬P ls(α,β) ∈ Σs. Then, P ls(β,α) ∈ Πs by Asymmetry for Πs. We consider
the two cases: (a) P ls(α, γ) ∈ Πs and (b) P ls(γ,α) ∈ Πs.
B2a: P ls(α, γ) ∈ Πs : We have P ls(β, γ) ∈ Πs by Transitivity for Πs and ¬P ls(γ,β) ∈ Πs
by Asymmetry.

πt1(β,γ) πt2(γ,β) πts(γ,β)

Ξs→Rt1(β,γ)∧Rt2(γ,β)∧P ts(γ,β)

Rl1(β,γ)→Rl1(β,γ)
Ξs→Rl1(β,γ)

Rl2(γ,β)→Rl2(γ,β)
Ξs→Rl2(γ,β)

Ξs→Rl1(β,γ)∧Rl2(γ,β)

P ls(γ,β)→P ls(γ,β)
¬P ls(γ,β),P ls(γ,β)→

Ξs,P ls(γ,β)→
Ξs,[Rl1(β,γ)∧Rl2(γ,β) ⊃ P ls(γ,β)]→

Ξs,Rt1(β,γ)∧Rt2(γ,β)∧P ts (γ,β) ⊃ [Rl1(β,γ)∧Rl2(γ,β) ⊃ P ls(γ,β)]→
Ξs,IIA(s)→

There are 6 leaves.

B2b: P ls(γ,α) ∈ Πs : Then, we have ¬P ls(α, γ) ∈ Πs by Asymmetry. Then,

πt1(α,γ) πt2(γ,α) πts(α,γ)

Ξs→Rt1(α,γ)∧Rt2(γ,α)∧P ts (α,γ)

Rl1(α,γ)→Rl1(α,γ)
Ξs→Rl1(α,γ)

Rl2(γ,α)→Rl2(γ,α)
Ξs→Rl2(γ,α)

Ξs→Rl1(α,γ)∧Rl2(γ,α)

P ls(α,γ)→P ls(α,γ)
¬P ls(α,γ),P ls(α,γ)→

Ξs,P ls(α,γ)→
Ξs,[Rl1(α,γ)∧Rl2(γ,α)⊃P ls(α,γ)]→

Ξs,Rt1(α,γ)∧Rt2(γ,α)∧P ts (α,γ) ⊃ [Rl1(α,γ)∧Rl2(γ,α)⊃P ls(α,γ)]→
Ξs,IIA(s)→

We have contemplexity 6.

8.2.3. Case 1.C: P ts(β,α), P
t
s(α, γ) and P

t
s(β, γ) in Σs

Consider another profile:

l-th profile

½
1 : α γ β
2 : γ β α

Then, we should consider two cases: (1) P ls(β, γ) ∈ Σs; and (2) P ls(γ,β) ∈ Σs.
C1: P ls(β, γ) ∈ Σs. In this case, ¬P ls(γ,β) ∈ Σs by Asymmetry for Σs. Then

Rl1(γ,β)→Rl1(γ,β)
Ξs→Rl1(γ,β)

(th)
Rl2(γ,β)→Rl2(γ,β)

Ξs→Rl2(γ,β)
(th)

Ξs→Rl1(γ,β)∧Rl2(γ,β)
(→∧)

P ls(γ,β)→P ls(γ,β)
¬P ls(γ,β),P ls(γ,β)→

(¬→)
Ξs,P ls(γ,β)→

(th)

Ξs,Rl1(γ,β)∧Rl2(γ,β)⊃P ls(γ,β)→
Ξs,PR(s)→ (∧→)

(⊃→)

We have contemplexity 3.

C2: P ls(γ,β) ∈ Σs. In this case, we have two cases: (a): P ls(β,α) ∈ Σs and (b) P ls(β,α) /∈
Σs.
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C2a: P ls(β,α) ∈ Σs. In this case, P ls(γ,α) ∈ Σs by Transitivity for Σs. Then

πt1(α,γ) πt2(γ,α) πts(α,γ)

Ξs→Rt1(α,γ)∧Rt2(γ,α)∧P ts (α,γ)

Rl1(α,γ)→Rl1(α,γ)
Ξs→Rl1(α,γ)

Rl2(γ,α)→Rl2(γ,α)
Ξs→Rl2(γ,α)

Ξs→Rl1(α,γ)∧Rl2(γ,α)

P ls(α,γ)→P ls(α,γ)
¬P ls(α,γ),P ls(α,γ)→

Ξs,P ls(α,γ)→
Ξs,[Rl1(α,γ)∧Rl2(γ,α)⊃P ls(α,γ)]→

Ξs,R
t1
1 (α,γ)∧R

t2
2 (γ,α)∧P ts (α,γ) ⊃ [R

l1
1 (α,γ)∧R

l2
2 (γ,α) ⊃ P ls(α,γ)]→

Ξs,IIA(s)→

We have contemplexity 6.

C2b: P ls(β,α) /∈ Σs. In this case, P ls(α,β) ∈ Σs by Asymmetry. Then,

πt1(α,β) πt2(β,α) πts(β,α)

Ξs→Rt1(α,β)∧Rt2(β,α)∧P ts (β,α)

P ls(β,α)→P ls(β,α)
¬P ls(β,α),P ls(β,α)→

Ξs,P ls(β,α)→

Rl1(α,β)→Rl1(α,β)
Ξs→Rl1(α,β)

Rl2(β,α)→Rl2(β,α)
Ξs→Rl2(β,α)

Ξs→Rl1(α,β)∧Rl2(β,α)
Ξs,[Rl1(α,β)∧Rl2(β,α)⊃P ls(β,α)]→

Ξs,Rt1(α,β)∧Rt2(β,α)∧P ts(β,α) ⊃ [Rl1(α,β)∧Rl2(β,α)⊃P ls(β,α)]→
Ξs,IIA(s)→

We have contemplexity 6.

8.2.4. Calculation of An Upper Bound for ρ(σ)

The total number of social welfare functions is 636 as already pointed out. Among them,
there are two dictator cases s1 and s2, in which case a proof tree was given in Section
8.1.2. In the other cases, proofs are given in Section 8.1.3, where we have contemplexity
3 for PR(s) and 6 for IIA(s). Hence, we have

η(σ(s)) ≤ 216 for s = s1, s2;

η(σ(s)) ≤ 6 for s 6= s1, s2.

Since we have 636 cases, we combining the above:

η(σ) ≤ (636 − 2)× 6 + 2× 63 = 637 + 420.
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