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Abstract

Robust regression is an important tool for analyzing data that are contami-
nated with outliers. Fomengko et al. [5] proposed a nonlinear robust prediction
based on the M-estimation; their method, however, needs a specific nonlinear
regression model in advance. In this paper, we propose a method to obtain a
nonlinear robust prediction without specifying a nonlinear model in advance.
We combine M-estimation and kernel principal component regression to obtain
the nonlinear prediction. Then, we compare the proposed method with some
other methods.

Keywords: Robust, nonlinear robust regression, kernel principal component
analysis, kernel principal component regression, robust kernel principal compo-
nent regression.

1 Introduction

Regression analysis is one of the most widely used techniques for analyzing data.
The ordinary multiple linear regression model is given by

Y = Xβ + ε, (1.1)

where Y = (Y1 Y2 . . . YN )T , X̃ = (x1 x2 . . . xN )T , X =
(
1N X̃

)
, xi =(

xi1 xi2 . . . xip

)T ∈ Rp, β = (β0 β1 . . . βp)T is a vector of regression coeffi-
cients, ε = (ε1 ε2 . . . εN )T is a vector of random errors, IN denotes the N ×N
identity matrix, xij ∈ R for i = 1, 2, . . . , N ; j = 1, 2, . . . , p; and σ2 ∈ R where R is
the set of real numbers. The sizes of xi, Y, X̃, X, β and ε are p× 1, N × 1, N × p,
N × (p + 1), (p + 1)× 1 and N × 1, respectively, and 1N = (1 1 . . . 1)T

N×1. The
vector xT

i denotes the transpose of the vector xi. Matrix X is called the regression
matrix.

Let y = (y1 y2 . . . yN )T ∈ RN be the observed data corresponding to Y.
Hence, we have

y = Xβ + e, (1.2)
∗Email address: wibowo@sk.tsukuba.ac.jp.
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where e ∈ RN is a vector of residuals. The aim of regression analysis is to find
the estimator of β, say β̂ =

(
β̂0 β̂1 . . . β̂p

)T ∈ Rp+1, such that the least-squares
function,

S(β) = eT e

= (y −Xβ)T (y −Xβ), (1.3)

is minimized. The solution can be found by solving the following linear equation

XTXβ̂ = XTy. (1.4)

Eq. (1.4) is called the least squares normal equations and β̂ is called the ordinary
least-squares (OLS) estimator of β. The procedure to obtain β̂ by solving Eq. (1.3)
is called the OLS method.

The prediction value of y, say ŷ, is given by

ŷ =
(
ŷ1 ŷ2 . . . ŷN

)T := Xβ̂, (1.5)

and the residual between y and ŷ is given by

ê =
(
ê1 ê2 . . . êN

)T := y − ŷ. (1.6)

The root mean square error (RMSE ) by OLS is given by

RMSEols :=

√
êT ê
N

, (1.7)

and the prediction by ordinary linear regression is given by

f(x) := β̂0 +
p∑

j=1

β̂jxj , (1.8)

where f is a function from Rp to R and x =
(
x1 x2 . . . xp

)T ∈ Rp.
The main disadvantage of the OLS method is its sensitivity to outliers, i.e.,

residuals of the observed data are large numbers. Outlier have a large influence the
prediction value because squaring residuals magnifies the effect of the outliers. If
the outliers are contained in the observed data, the predictions of ordinary linear
regression and kernel principal component regression (KPCR) become inappropriate
to be used. Since those methods were constructed based on OLS method. The
KPCR was studied by Rosipal et al. [14, 15, 16], Hoegaerts et al. [7], Jade et al. [9],
Wibowo et al. [21] and Wibowo [20].

Andrews, Carol and Ruppert; Hogg, Hubber, Krasker and Welsch; Rousseeuw,
and Rousseeuw and Leroy proposed robust regression methods to eliminate the in-
fluence of the outliers [12]. The M-estimation, which was first introduced by Huber
in 1964, is one of the most widely used methods for the robust regression in which
the method usually yields a linear prediction. We notice that Fomengko [5] proposed
a nonlinear robust prediction based on M-estimation with specifying a nonlinear re-
gression model in advance. In many situations, however, an appropriate nonlinear
regression model for a set of data is unknown in advance. Hence, the proposed
method has limitations in applications.
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In this paper, we propose a technique to obtain a nonlinear robust prediction
without specifying a nonlinear model in advance. In our proposed technique, we
combine M-estimation and KPCR to obtain the nonlinear robust prediction. The
procedure to derive the nonlinear prediction of the proposed method is straightfor-
ward as the procedure of the M-estimation in linear regression, except that some
mathematical techniques are done to obtain the nonlinear robust prediction. We
refer the proposed technique as the Robust KPCR (R-KPCR).

This manuscript is organized as follows: Section 2, we review the robust linear
regression based on M-estimation. In Section 3, the R-KPCR and its algorithm
will be discussed. In Section 4, we compare the capabilities of R-KPCR with other
methods. Finally, conclusions are given in Section 5.

2 Linear Robust Regression based on M-Estimation

M-estimation method can be considered as a modification of both regression based
on OLS and maximum likelihood estimation that eliminate the effects of outlying
observation on the regression estimation. Note that, Eq. (1.3) can be written as

N∑

i=1

e2
i , (2.1)

where ei = yi − x́T
i β and x́T

i =
(
1 xT

i

)
. In the M-estimation method, the term e2

i

is replaced by ρ(ei) where ρ is a function from R to R. Hence, we must find the
estimator of β such that the function

N∑

i=1

ρ(ei) =
N∑

i=1

ρ(yi − x́T
i β), (2.2)

is minimized. Consequently, RMSE of linear robust regression based on M-estimation
is calculated by using ρ(ei). The function ρ should be symmetric (ρ(ei) = ρ(−ei)),
positive (ρ(ei) ≥ 0), strictly monotonically increasing (ρ(|e(i1)|) > ρ(|e(i2)|) if
|e(i1)| > |e(i2)|), and a convex function on R. For example, for the OLS estimation,
ρ(z) = z2. The most commonly used choice of ρ is the Huber function [2]

ρ(z) =

{
1/2z2 |z| ≤ k,

k|z| − 1/2k2 |z| > k,
(2.3)

where k ∈ R. Fomenko et al. [5] used the Tukey biweighted function

ρ(z) =

{
1/6[(1− (1− z2)3] |z| ≤ 1,

1/6 |z| > 1.
(2.4)

To minimize Eq. (2.2), equate the first partial derivatives of ρ with respect to βj

(j = 0, 1, . . . , p) to zero. This gives the system of p + 1 equations

N∑

i=1

ρ′(ei)x́T
i = 0T , (2.5)
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where ρ′ is the derivative of ρ. Then, we define the weight function

w(z) =

{
ρ′(z)/z if z 6= 0,

1 if z = 0,
(2.6)

Then, Eq. (2.5) can be written as

N∑

i=1

(
ρ′(ei)

ei
)eix́T

i =
N∑

i=1

wieix́T
i = 0T , (2.7)

where wi = w(ei). Since ei = yi − x́T
i β, we obtain

N∑

i=1

wiyix́T
i =

N∑

i=1

wix́T
i βx́T

i . (2.8)

In matrix form, Eq. (2.8) becomes

XTWXβ = XTWy, (2.9)

where W = diag(w1, w2, . . . , wN ) and called the weigthed least squares equations.
Let β̂

∗
be the solution of Eq. (2.9). Hence, we have

XTWXβ̂
∗

= XTWy. (2.10)

The estimator β̂
∗

is called the robust estimator of β. The weights, however, depend
upon the residuals, the residuals depend upon the estimated regression coefficients
and the the estimated regression coefficients depends upon the weights. An iterative
solution, called iteratively reweighted least-squares (IRLS ), is therefore required.
The IRLS’s algorithm is given in the following steps:

1. Select the initial estimator of β, say β̂∗(0), by OLS.

2. At each iteration t, calculate residual e(t−1)
i = yi−x́T

i β∗(t−1), w
(t−1)
i = w(e(t−1)

i )
and W(t−1) = diag(w(t−1)

1 , w
(t−1)
2 , . . . , w

(t−1)
N ).

3. Solve the new weighted least squares equations

XTW(t−1)Xβ̂
∗(t)

= XTW(t−1)y.

Step 2 and Step 3 are repeated until the estimated regression coefficients con-
vergence.

The convergence proof of IRLS’s algorithm is not possible without unsupported
distribution assumption. The convergence proof of IRLS can be found in [22]. How-
ever, IRLS works well in practice [3, 8] and is frequently used in the computational
statistic community [4, 13].
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3 Robust Kernel Principal Component Regression

3.1 Regression in Feature Space

Assume we have a function ψ : Rp → F , where F is the feature space which is an
Euclidean space with dimension pF (pF ≥ p). Then, we define Ψ =

(
ψ(x1) . . . ψ(xN )

)T ,
C := 1

N ΨTΨ = 1
N

∑N
i=1 ψ(xi)ψ(xi)T and K = ΨΨT where sizes of Ψ, C and K

are N × pF , pF × pF and N × N , respectively. We assume that
∑N

i=1 ψ(xi) = 0.
If F is infinite-dimensional, we consider the linear operator ψ(xi)ψ(xi)T instead of
the matrix C [18]. The eigenvalues and eigenvectors of the matrices C and K are
related by the following theorem.

Theorem 3.1. [21] Suppose λ̂ 6= 0 and â ∈ F \ {0}. The following statements are
equivalent:

1. λ̂ and â satisfy λa = Ca.

2. λ̂ and â satisfy λNKb̂ = K2b̂ and a =
∑N

i=1 b̂iψ(xi),
for some b̂ =

(
b̂1 b̂2 . . . b̂N

)T ∈ RN \ {0}.

3. λ̂ and â satisfy λN b̃ = Kb̃ and a =
∑N

i=1 b̃iψ(xi),
for some b̃ =

(
b̃1 b̃2 . . . b̃N

)T ∈ RN \ {0}.
The standard centered multiple linear regression model in the feature space is

given by
Yo = Ψγ + ε̃, (3.1)

where γ =
(
γ1 γ2 . . . γpF

)T is a vector of regression coefficients in the feature
space, ε̃ is a vector of random errors in the feature space and Yo = (IN− 1

N 1N1T
N )Y .

Let yo = (yo1 yo2 . . . yoN )T ∈ RN be the observed data corresponding to Yo.
Hence, we have

yo = Ψγ + ẽ, (3.2)

where ẽ ∈ RN is a vector of residuals. Here, we cannot use the generalized inverse
matrix to obtain the estimator of γ since Ψ is not known explicitly.

Let p̂F be the rank of Ψ where p̂F ≤ min(N, pF ). Since the rank(Ψ) is equal to
rank(K) and rank (ΨTΨ), then rank(K) and rank(ΨTΨ) are equal to p̂F . Since the
matrix K is symmetric and positive semidefinite, the eigenvalues of K are nonneg-
ative real numbers [1]. Let λ1 ≥ λ2 ≥ . . . ≥ λr̃ ≥ λr̃+1 ≥ . . . ≥ λp̂F

> λp̂F +1 = . . . =
λN = 0 be the eigenvalues of K and B = (b1 b2 . . . bN ) be the matrix of the
corresponding normalized eigenvectors bl of K. Then, let αl = bl√

λl
and al = ΨT αl

for l = 1, 2, . . . , p̂F . By Theorem 3.1 we obtain
λl
N al = Cal for l = 1, 2, . . . , p̂F

aT
i aj =

{
1 if i = j, for i, j = 1, 2, . . . , p̂F ,

0 otherwise,

or equivalent to

λlal = ΨTΨal for l = 1, 2, . . . , p̂F

aT
i aj =

{
1 if i = j, for i, j = 1, 2, . . . , p̂F ,

0 otherwise.
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Since the rank of ΨTΨ is equal to p̂F , then the remaining (pF − p̂F ) eigenvalues
of ΨTΨ are zero eigenvalues. Let λk, (k = p̂F + 1, p̂F + 2, . . . , pF ), be the zero
eigenvalues of ΨTΨ and ak be the normalized eigenvectors of ΨTΨ corresponding
to λk. Hence, we have

λlal = ΨTΨal for l = 1, 2, . . . , pF

aT
i aj =

{
1 if i = j, for i, j = 1, 2, . . . , pF ,

0 otherwise.

Furthermore, we define A = (a1 a2 . . . apF ). It is evident that A is an orthog-
onal matrix, that is, AT = A−1. It is not difficult to verify that

ATΨTΨA = D,

where

D =
(
D(p̂F ) O

O O

)
,

D(p̂F ) =




λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . λp̂F


.

By using AAT = IpF , we can rewrite the model (3.1) as

yo = Uϑ + ẽ, (3.3)

where U = ΨA and ϑ = AT γ. Let

U =
(
U(p̂F ) U(pF−p̂F )

)
and ϑ =

(
ϑT

(p̂F ) ϑT
(pF−p̂F )

)T
,

where sizes of U(p̂F ), U(pF−p̂F ), ϑ(p̂F ), and ϑ(pF−p̂F ) are N × p̂F , N × (pF − p̂F ),
p̂F × 1 and (pF − p̂F )× 1, respectively. The model (3.3) can be written as

yo = U(p̂F )ϑ(p̂F ) + U(pF−p̂F )ϑ(pF−p̂F ) + ẽ. (3.4)

As we see that D = ATΨTΨA = UTU, and we obtain

UT
(p̂F )U(p̂F ) = D(p̂F ),

UT
(pF−p̂F )U(pF−p̂F ) = O,

and

UT
(p̂F )U(pF−p̂F ) = O.

Since (U(pF−p̂F )ϑ(pF−p̂F ))TU(pF−p̂F )ϑ(pF−p̂F ) = 0, we see that U(pF−p̂F )ϑ(pF−p̂F ) is
equal to 0. Consequently, the model (3.4) reduces to

yo = U(p̂F )ϑ(p̂F ) + ẽ. (3.5)

Since

U =
(
U(p̂F ) U(pF−p̂F )

)
=

(
ΨA(p̂F ) ΨA(pF−p̂F )

)
,
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we obtain U(p̂F ) = ΨA(p̂F ). As we see that A(p̂F ) = ΨT
(
α1 α2 . . . αp̂F

)
.

Hence,

U(p̂F ) = ΨΨTΓ(p̂F ) = KΓ(p̂F ), (3.6)

where Γ(p̂F ) =
(
α1 α2 . . . αp̂F

)
. However, we do not know U(p̂F ) explicitly yet.

Let us consider the following theorem:

Theorem 3.2. (Mercer [11, 17]) For any symmetric, continuous and positive semi-
definite kernel ξ : Rp × Rp → R, there exists a function φ : Rp → F such that

ξ(x,y) = φ(x)T φ(y).

By using Theorem 3.2, if we choose a continuous, symmetric and positive semidefinite
kernel κ : Rp × Rp → R then there exists φ : Rp → F such that κ(xi,xj) =
φ(xi)T φ(xj). Instead of choosing ψ explicitly, we choose a kernel κ and employ the
corresponding function φ as ψ . Let Kij = κ(xi,xj). Hence, we have

K =




K11 K12 . . . K1N

K21 K22 . . . K2N

. . . . . . . . . . . . . . . . .
KN1 KN2 . . . KNN


,

and it is explicitly known now. This implies that U(p̂F ) is also explicitly known and
model (3.5) is well defined now.

Let

U =
(
U(r̃) U(p̂F−r̃)

)
and ϑ =

(
ϑT

(r̃) ϑT
(p̂F−r̃)

)T
.

Hence model (3.5) can be written as

yo = U(r̃)ϑ(r̃) + U(p̂F−r̃)ϑ(p̂F−r̃) + ẽ. (3.7)

Note that, U(p̂F ) = KΓ(p̂F ) and Γ(p̂F ) =
(
α1 α2 . . . αp̂F

)
. If we only use the

first r̃ vectors of α1, α2, . . . ,αp̂F
, model (3.7) becomes

yo = U(r̃)ϑ(r̃) + ẽ1, (3.8)

where ẽ1 =
(
ẽ11 ẽ12 . . . ẽ1N

)T is a vector of residuals influenced by dropping
the term U(p̂F−r̃)ϑ(p̂F−r̃) in model (3.7). Let U(r̃) = (u1 u2 . . . uN )T . Now, we
apply M-estimation method for model (3.8) which minimize

N∑

i=1

ρ(ẽ1i) =
N∑

i=1

ρ(yoi − uT
i ϑ(r̃)), (3.9)

with respect to ϑ(r̃). To minimize Eq. (3.9), equate the first partial derivatives of ρ
with respect to βj (j = 0, 1, . . . , p) to zero. This gives the system of p̂F equations

N∑

i=1

ρ′(ẽ1i)uT
i = 0T , (3.10)
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Then, we define the weight function

w̃(z) =

{
ρ′(z)/z if z 6= 0,

1 if z = 0.
(3.11)

Then, Eq. (3.19) can be written as

N∑

i=1

(
ρ′(ẽ1i)

ẽ1i
)ẽ1iuT

i =
N∑

i=1

w̃iẽ1iuT
i = 0T , (3.12)

where w̃i = w̃(ẽ1i). Since ẽ1i = yoi − uT
i ϑ(r̃), we obtain

N∑

i=1

w̃iyoiuT
i =

N∑

i=1

w̃iuT
i ϑ(r̃)u

T
i . (3.13)

In matrix form, Eq. (3.13) becomes

UT
(r̃)W̃U(r̃)ϑ(r̃) = UT

(r̃)W̃yo, (3.14)

where W̃ = diag(w̃1, w̃2, . . . , w̃N ). Let ϑ̂
∗
(r̃) = (ϑ̂∗1 ϑ̂∗2 . . . ϑ̂∗r̃)

T be the solution of
Eq. (3.15). Hence, we have

UT
(r̃)W̃U(r̃)ϑ̂

∗
(r̃) = UT

(r̃)W̃yo. (3.15)

As mentioned in Section 2, the weights, however, depend upon the residuals, the
residuals depend upon the estimated regression coefficients and the the estimated
regression coefficients depends upon the weights. Therefore, ϑ̂

∗
(r̃) is obtained by

IRLS’s algorithm.
The prediction of y with the first r̃ vectors of α1, α2, . . . , αp̂F

, say ỹ, is given by

ỹ := ȳ1N + KΓ(˜̃r)ϑ̂
∗
(˜̃r). (3.16)

The residual between y and ỹ is given by

ˆ̃e1 := y − ỹ, (3.17)

Then, the prediction by the R-KPCR with the first r̃ vectors of α1,α2, . . . , αp̂F
is

given by

g(r̃)(x) := ȳ +
N∑

i=1

c̃iκ(x,xi), (3.18)

where g(r̃) is a function from Rp to R,
(
c̃1 c̃2 . . . c̃N

)T = Γ(r̃)ϑ̂
∗
(r̃). The number

r̃ is called the retained number of nonlinear PCs for the R-KPCR.

3.2 The R-KPCR’s Algorithm

We summarize the procedure in Subsection 3.1 to obtain the prediction by R-KPCR.

Algorithm:

1. Given (yi, xi1, xi2, . . . , xip), i = 1, 2, . . . , N .

9



2. Calculate ȳ = 1
N 1T

Ny and yo = (IN − 1
N 1N1T

N )y.

3. Choose a kernel κ : Rp × Rp → R and ρ : R→ R

4. Construct Kij = κ(xi,xj) and K = (Kij).

5. Diagonalize K.
Let λ1 ≥ λ2 ≥ . . . ≥ λr̃ ≥ λr̃+1 ≥ . . . ≥ λp̂F

> λp̂F +1 = . . . = λN = 0
be the eigenvalues of K and b1,b2, . . . ,bN be the corresponding normalized
eigenvectors of K.

6. Construct αl = bl√
λl

for l = 1, 2, . . . , r̃ and Γ(r̃) =
(
α1 α2 . . . αr̃

)
where

r̃ ∈ {1, 2, . . . , p̂F }.
7. Calculate U(r̃) = KΓ(r̃).

8. Find estimator of ϑ(r̃) by IRLS

(a) Select the initial estimator of ϑ(p̂F ), say ϑ̂
∗(0)
(p̂F ), by OLS.

(b) At each iteration t, calculate residual ẽ
(t−1)
1i = yoi − uT

i ϑ̂
∗(t−1)
(p̂F ) ,

w̃
(t−1)
i =





ρ′(ẽ(t−1)
1i )

ẽ
(t−1)
1i

if ẽ
(t−1)
1i 6= 0,

1 if ẽ
(t−1)
1i = 0,

and W̃(t−1) = diag(w̃(t−1)
1 , w̃

(t−1)
2 , . . . , w̃

(t−1)
N ).

(c) Solve the new weighted least squares equations

UT
(r̃)W̃

(t−1)U(r̃)ϑ̂
∗(t)
(r̃) = UT

(r̃)W̃
(t−1)yo.

Step (b) and (c) are repeated until the estimated regression coefficients
convergence. Let the estimated regression coefficients convergence at

ϑ̂
∗(t̂)
(r̃) =

(
ϑ̂
∗(t̂)
1 ϑ̂

∗(t̂)
2 . . . ϑ̂

∗(t̂)
r̃

)T

9. Calculate c̃ =
(
c̃1 c̃2 . . . c̃N

)T = Γ(r̃)ϑ̂
∗(t̂)
(r̃) .

10. Given a vector x ∈ Rp, the prediction by R-KPCR with the first r̃ vectors of
α1, α2, . . . ,αp̂F

is given by

gr̃(x) = ȳ +
∑N

j=1 c̃iκ(x,xj),

Note that the above algorithms work under the assumption
∑N

i=1 ψ(xi) = 0.
When

∑N
i=1 ψ(xi) 6= 0, we have only to replace K by KN := K−EK−KE+EKE

in Step 4, where E is the N ×N matrix with all elements equal to 1
N . Further, we

diagonalize KN in Step 5 and work based on KN in the subsequent steps.
The cross validation (CV) technique can be used to determine the appropriate

r̃ in model (3.18). The CV has a large literature, see for example [6, 10, 12, 19].
In the CV, the original data are partitioned into L disjoint subsets where L is a
positive integer. A subset data, say Gk (k = 1, 2, . . . , L), is chosen as the validation
for testing the prediction model and the remaining L − 1 subsets data are used to
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estimate the regression coefficients ϑ(r̃). The CV technique uses the prediction error
sum of squares (PRESS) to obtain the appropriate r̃, say r̃∗. The PRESS of Gk is
given by

PRESS(Gk)(r̃) =
mk∑

s=1

ρ(yk
s − g(r̃)(x

k
s)), (3.19)

where xk
s and yk

s are contained in Gk and mk is the cardinality of Gk. Then,
PRESS (Gk) is summed over all the subsets data, say,

PRESS(r̃) =
L∑

k=1

PRESS(Gk)(r̃). (3.20)

The number r̃∗ is chosen such that PRESS(r̃∗) ≤ PRESS(r̃) for r̃ = 1, 2, . . . , p̂F .

4 Case Study

In the case study, we fix the number of regressors to one and use the Gaussian kernel
κ(x,y) = exp(−‖x−y‖2

% ) where % is the parameter of the kernel. The toy data were
constructed by the function

f(x) = 2.5 sin(x), (4.1)

with xi1 = −2π + 0.2× i for i = 0, 1, . . . , 62; and

yi =





f(xi1) + éi if i ∈ {0, 1, . . . , 62} \ {5, 40, 55},
15 + é5 if i = 5,

−15 + é40 if i = 40,
−15 + é55 if i = 55.

(4.2)

where éi, é5, é40 and é55 are real numbers generated by a normally distributed ran-
dom with zero mean and standard deviation σ1 ∈ [0, 1]. The set of the data (yi, xi1)
is called the training data set. We also generated another set of data for the predic-
tions by ordinary linear regression, robust linear regression, KPCR and R-KPCR. It
was also constructed by the Eq. (4.1) with x̂j1 = −2π + 0.25× j for j = 0, 1, . . . , 50;
and

ŷj =





f(x̂j1) + êj if j ∈ {0, 1, . . . , 50} \ {5, 20},
9 + ê5 if j = 5,

−10 + ê20 if j = 20,

(4.3)

where êj , ê5 and ê20 are also real numbers generated by a normally distributed
random noise with zero mean and standard deviation σ2 ∈ [0, 1]. The set of the
data (ŷj , x̂j1) is called the testing data set. For shake of comparisons, we set σ1 and
σ2 are equal to 0.2 and 0.25, respectively.

To test the performance of the four methods, we generated 10000 sets of the
training data and the testing data. For shake of comparisons, the value of r̃ is
chosen to be equal the retained number of nonlinear PCs for the KPCR, say r̂. A
plot of the predictions of the four methods corresponding to the toy data are given
in Figure 1. The average of RMSEs of the four methods are shown in Table 1. In
comparing to ordinary linear regression, robust linear regression and KPCR, the
R-KPCR yields the better results as shown in Table 1.
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Figure 1: A plot of predictions for the linear regression (Green), robust linear re-
gression (Magenta-dash line), KPCR (Blue) and R-KPCR (Red) with % and r̃ equal
to 5 and 10, respectively. The robust regression methods used the Huber function
with k is equal to 2. The black stars are the toy data by adding the random noise:
(a) training data, (b) testing data.

Table 1: The comparison of ordinary linear regression, robust linear regression,
KPCR and R-KPCR.

Model RMSE
Training Testing

Tukey biweighted ordinary linear regression 3.36965128586967 2.48160865268650
function robust linear regression 0.16562014395649 0.33437227269687

KPCR (ρ = 2.5, r̂ = 14) 2.81004003365153 1.90467636266656
KPCR (ρ = 5, r̂ = 10) 2.84127583904498 1.75054139256838

R-KPCR (ρ = 2.5, r̃ = 14) 0.16532672128538 0.17193946920348
R-KPCR (ρ = 5, r̃ = 10) 0.16412845968267 0.16705693873425

Huber ordinary linear regression 3.40241441626446 2.48915962165389
function robust linear regression 1.66326272704349 1.56821960764758

KPCR (ρ = 2.5, r̂ = 14) 2.787507237923666 1.899546619671557
KPCR (ρ = 5, r̂ = 10) 2.79447892213644 1.88776460800414

R-KPCR (ρ = 2.5, r̃ = 14) 1.152228759181353 0.725512925314396
R-KPCR (ρ = 5, r̃ = 10) 1.14679840289139 0.72096269525088
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5 Conclusion

Robust regression is a technique in regression analysis to eliminate the effects of
outliers. If the outliers are contained in the observed data, both prediction of or-
dinary linear regression and KPCR can be inappropriate to be used. We noticed
that Fomengko et al. [5] proposed a nonlinear robust prediction based on the M-
estimation where their method needs a specific nonlinear regression model in ad-
vance. In many situations, however, an appropriate nonlinear regression model for
a set of data is unknown in advance. Hence, the proposed method has limitations
in applications.

In this paper, we proposed the R-KPCR to obtain a nonlinear robust prediction
where our proposed method does not need to specify a nonlinear model in advance.
Our case study showed that R-KPCR yields the better result that of ordinary linear
regression, robust linear regression and KPCR.

Acknowlegdement
The author thank Professor Yoshitsugu Yamamoto, University of Tsukuba, for com-
ments and suggestions. The author also thank the Ministry of Education, Culture,
Sports, Science and Technology Japan.

References

[1] Howard Anton. Elementary Linear Algebra. John Wiley and Sons, Inc., 2000.

[2] David E. Booth and Kidong Lee. Robust regression-based analysis of drug
nucleic acid binding. Analytical Biochemistry, 319, 2003.

[3] R.J. Caroll and D. Ruppert. Transformation and Weighting in Regression.
Chapman and Hall, 1988.

[4] W. DuMouchel and F. O’Brien. Integrating a robust option into a multiple
regression computing environment. Computing Science and Statistics: Proceed-
ings of the 21st Symposium on the Interface, American Statistical Association,
Alexandria, VA, 1989, pp. 297.301, 1990.

[5] I. Famenko, M. Durst, and D. Balaban. Robust regression for high throughput
drug screening. Computer Methods and Program in Biomedicine, 82, 2006.

[6] Julian J. Faraway. Linear Models with R. Chapman and Hall/CRC, 2005.

[7] L. Hoegaerts, J.A.K. Suykens, J. Vandewalle, and B. De Moor. Subset based
least squares subspace in reproducing kernel hilbert space. Neurocomputing,
pages 293–323, 2005.

[8] P. Huber. Robust Statistics. John Wiley and Son Inc, 1981.

[9] A.M. Jade, B. Srikanth, B.D Kulkari, J.P Jog, and L. Priya. Feature extraction
and denoising using kernel pca. Chemical Engineering Sciences, 58:4441–4448,
2003.

[10] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

13



[11] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s theorem, feature
maps, and smoothing. Lecture Notes in Computer Science, Springer Berling,
4005/2006, 20009.

[12] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. Introduc-
tion to Linear Regression. Wiley-Interscience, 2006.

[13] D. Rocke. Constructive statistics: estimators, algorithms, and asymptotics.
Comput. Sci. Stat., 30, 1998.

[14] Roman Rosipal, Mark Girolami, Leonard J. Trejo, and Andrzej Cichoki. Ker-
nel pca for feature extraction and de-noising in nonlinear regression. Neural
Computing and Applications, pages 231–243, 2001.

[15] Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression
in reproducing kernel hilbert space. Journal of Machine Learning Research,
2:97–123, 2002.

[16] Roman Rosipal, Leonard J. Trejo, and Andrzej Cichoki. Kernel principal com-
ponent regression with em approach to nonlinear principal component extrac-
tion. Technical Report, University of Paisley, UK, 2001.

[17] B. Scholkopf, A. Smola, and K.R. Muller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[18] Bernhard Scholkopf and Alexander J. Smola. Learning with kernels. The MIT
Press., 2002.

[19] George A.F. Seber and Alan J. Lee. Linear Regression Analysis. John Wiley
and Sons, Inc., 2003.

[20] Antoni Wibowo. An algorithm for nonlinear weighted least squares regression.
Discussion Paper Series No. 1217,Department of Social Systems and Manage-
ment, Univ. of Tsukuba, 2008.

[21] Antoni Wibowo and Yoshitsugu Yamamoto. The new approach for kernel princi-
pal component regression. Discussion Paper Series No. 1195,Department of So-
cial Systems and Management, Univ. of Tsukuba, 2008.

[22] R. Wolke and H. Schwetlick. Iteratively reweighted least squares: Algorithms,
convergence analysis and numerical comparisons. SIAM Journal of Sci. Stat.
Comput., 9, 1988.

14


