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Abstract 

In managing a production process, choosing a proper card-based control 
mechanism is an important task to achieve the best performance. We present 
performance evaluation of the three well-known card-based production control 
mechanisms, KANBAN, CONWIP and Base-stock in serial production lines. We 
employ the theory of token transaction systems within a deterministic 
framework. The performance measures are system throughput and work-in- 
process (WIP). We compare the minimum WIP, when the system attains 
maximum possible throughput. Our analytical results show that CONWIP 
outperforms KANBAN, when the total number of cards in CONWIP is less than 
that in KANBAN. However, in performance evaluation of these two mechanisms 
with Base-stock, determining the superior system depends on a configuration of 
system parameters, such as processing times and number of cards employed in 
the system. 

Keywords: Production control mechanisms; KANBAN; CONWIP; Base-stock; 
Little’s law; token transaction systems 

 

1.  Introduction 

This paper deals with comparison of pull production control mechanisms, CONWIP, 

KANBAN and Base-stock in serial production lines. The most well-known pull mechanism is 

a KANBAN. In the KANBAN, production authorization cards, called kanbans, are used to 

control and limit the releases of parts into each production stage (Monden, 1998). The 

advantage of this mechanism is that the number of parts in every stage is limited by the 

number of kanbans of that stage.  

CONWIP (CONstant Work In Process) proposed by Spearman et al. (1990) uses a single 

card type to control the total amount of average work-in-process (WIP, for short) permitted in 

the entire line. It is a generalization of KANBAN and can be viewed as a single stage 
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KANBAN. The primary difference between CONWIP and KANBAN is that CONWIP pulls 

a job into the beginning of the line and the job goes with a card between production stages, 

while KANBAN pulls jobs between all stages (Hopp and Spearman, 2001). 

Base-stock control system limits the amount of inventory between each production stage 

and the demand process. The terms “base stock” is borrowed from inventory control theory. It 

tries to maintain a certain amount of finished parts in each output buffers, subtracting 

backlogged finished goods demand, if any. This amount is called the basestock level of each 

stage. In other words, the basestock level of a production stage determines the maximum 

planned inventory of the outputs of the stage (Lee and Zipkin, 1992). To operate a Base-stock, 

it is necessary to transmit demand information to all production stages as demand occurs.  

In a survey paper, Framinan et al. (2003) reviewed comparison of CONWIP with other 

production control systems. Bonvik et al. (1997), Bonvik and Gershwin (1996), Paternina- 

Arboleda and Das (2001), and Yang (2000) used simulation for analysis of performance of 

different production control mechanisms in serial production processes. Spearman and 

Zazanis (1992) and Muckstadt and Tayur (1995) showed analytical result on card-based 

control for serial production processes. When the same number of cards is used in both 

CONWIP and KANBAN, Spearman and Zazanis (1992) showed that CONWIP produces a 

higher mean throughput than KANBAN. They pointed out that it holds true because circuits 

in CONWIP are virtually divided into smaller circuits in KANBAN, and then the cards in 

KANBAN tend to be "blocked". In the same scenario, Muckstadt and Tayur (1995) 

considered, simultaneously, four sources of variability in production lines - processing time 

variability, machine breakdowns, rework and yield loss - and showed some similarities and 

differences in their effects on the performance of the line. They showed that CONWIP 

produces a less variable throughput and a lower maximal inventory than KANBAN. 

Takahashi et al. (2005) applied KANBAN, CONWIP and synchronized CONWIP to 

supply chains to determine the superior system. Their considered supply chains contain 

assembly stages with different lead times. Their simulation results show the superiority of 

both CONWIP and synchronized CONWIP over KANBAN, when all inventory levels among 

the stages are equally important. 

According to the survey done by Framinan et al. (2003), in comparison of CONWIP and 

KANBAN, many authors pointed out that CONWIP outperforms KANBAN when processing 

times on component operations in production processes are variable. However, Gstettner and 

Kuhn (1996) arrived at the opposite conclusion. According to their results, KANBAN 

achieves a given throughput with less WIP than CONWIP. They showed that by choosing 

appropriate number of cards at each station, KANBAN can outperform CONWIP. Sato and 
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Khojasteh-Ghamari (2008) resolved this complicated result of comparison between CONWIP 

and KANBAN in a four-stage serial production line. Their analytical results showed that in a 

serial production process, CONWIP outperforms KANBAN, when the total number of cards 

in CONWIP is less than that in KANBAN. Their analysis is based on the theory of 

deterministic token transaction systems. They also provided analytical results for comparing 

these two control systems in a tree-shaped production process. 

There are also some studies in the literature for comparing Base-stock with the other 

production control systems. Using simulation analysis, Bonvik et al. (1997) compared the 

performance of different production control policies with respect to WIP and service level in 

a serial production line with four workstations. They showed that CONWIP demonstrates 

superior performance in achieving a high service level target with minimal WIP, followed by 

Base-stock and KANBAN. However, as Framinan et al. (2003) mentioned, this result seems 

to be contradictory to the findings of Duenyas and Patana-anake (1998) and Paternina- 

Arboleda and Das (2001), which indicated that Base-stock outperforms CONWIP in a serial 

production process. Framinan et al. (2003) recommended further research to clarify these 

apparently contradictory results. 

In this paper, we focus only on serial production processes. By means of the theory of 

token transaction systems, we first generalize the model considered by Sato and 

Khojasteh-Ghamari (2008) for an n-stage serial production line. We analyze CONWIP and 

KANBAN, and provide comparative results between the two control systems. Next, we 

analyze Base-stock, and present comparative results of Base-stock with both CONWIP and 

KANBAN in an n-stage serial production line. We present a performance comparison of 

these three production control systems in serial production lines. 

The remainder of this paper is organized as follows. In Section 2, the concept of token 

transaction system and related definitions are briefly introduced. Some properties of token 

transaction systems that are used in analysis are also provided in this section. Section 3 

presents comparative results between CONWIP and KANBAN. In Section 4, Base-stock is 

analyzed and its comparative results with both CONWIP and KANBAN are presented 

followed by numerical experiments. Section 5 concludes the paper and highlights some future 

research directions. 

2.  Modeling production process 

Sato and Khojasteh-Ghamari (2008) proposed an integrated framework for card-based 

production control systems. They employed the theory of token transaction systems to model 

production processes, and used the activity interaction diagrams (AID, for short) to represent 
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the considered models. Since this paper is an extension of their model, we will use the same 

framework for modeling and analysis of our work. 

Definition 1. Activity Interaction Diagram (Sato and Praehofer, 1997) 

An activity interaction diagram is a diagram that has three kinds of components. They are 

activities, queues, and connecting arrows. Activities should be connected with queues, and 

vice versa. That is, in the graph theoretic sense, an AID is a directed bipartite graph. 

Figures 1, 2 and 3 are AIDs. Queues in a token transaction system are simplified as FIFO 

(first-in, first-out) discipline to store objects called tokens. Every queue can have at most one 

input and output arrow. Queues are also referred as connecting queues. In a token transaction 

system, tokens represent parts, products, actors, or data. The AID of a token transaction 

system for a simple production process is depicted in Figure 1, where activities and queues 

are represented by squares and ovals, respectively. It shows a serial production process with 

four workstations governed by CONWIP. The purchased material m , is processed by 

operations 1p  through 4p  to be a product which is stored in the place b . Output parts of 

operations 1p , 2p  and 3p  are stored in 1b , 2b  and 3b , respectively. The workers for 

operations are represented by tokens in iw (i = 1, 2, 3, 4). The queue C  represents the 

storage place of cards. Figures 2 and 3 show the same production process controlled by 

KANBAN and Base-stock, respectively. 
 

 

 

 

 

 

 

Figure 1. A serial production line with CONWIP 

 

 

 

 

 

 

 

Figure 2. A serial production line with KANBAN 
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Figure 3. A serial production line with Base-stock 

 

Let A  be the set of internal activities, and Q the set of queues. There are two types of 

output queues for an activity. An output queue of a type gets one token from the activity when 

it starts, while the other type queue gets a token when the activity finishes. The former queues 

are called ones of SQ  type, and the others are FQ  type. An activity can have both types 

output. 

In an activity interaction diagram of a token transaction system, a path is a series of 

activities and queues that follows the direction of connecting arrows among them. A path 

with a coincident start and end node is called a cycle, or circuit. If a circuit contains different 

activities and queues (except the start and end), then it is called an elementary circuit. When a 

circuit contains SQ  type queues, then the activities whose outputs are the queues can be 

eliminated to form the (shorter) circuit. For example, 1 1 2 2 3 3 4 1p b p b p b p Cp  in Figure 1 is a 

circuit and 1 1 2 2 3 3 1p b p b p b Cp  is also a circuit, because C is a SQ  type output queue of 4p . 

For a circuit C , the set of activities in C  is denoted byA(C). The cycle mean of a circuit is 

defined as the sum of the holding time of the activities of the circuit, divided by the number 

of tokens in the circuit. The maximum cycle mean, λ , of an AID is the maximum value of all 

cycle means (Baccelli et al., 1992) and is given by 

| |
max

| |
h

t
ζ

ζλ
ζ

= , 

where, ζ  ranges over the set of elementary circuits of the AID, | |hζ denotes the sum of the 

holding times of the activities in the circuit, and | |tζ denotes the number of tokens in the 

circuit. It is clear that any non-elementary circuit has the cycle mean which is less than or 

equal to the maximum cycle mean. All the circuits that have maximum value of cycle mean 

are called critical circuits. A circuit consists of an activity and its actors is called an activity 

circuit (for example, 1 1 1p w p ). 

1p 2p 3p 4p
1b 2b

3b bm

1w 2w 3w
4w

1C

2C

3C
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Definition 2. Strong connectivity of AID (Sato and Kawai, 2007) 

Consider an AID of a token transaction system. Let A  and FS QQQ ∪=  be the sets of 

activities and queues, respectively. Let a ∈ A and Qq ∈  be arbitrary. If there exist a path 

from a  to q  and one from q  to a , then the AID and the token transaction system are 

said to be strongly connected.  

For example, in each of Figures 1 to 3, after removing both queues m and b, the 

remaining diagrams are strongly connected. The time evolution of a token transaction system 

can be represented by the state transition table. In a state transition table, an activity is said to 

be "imminent" if its holding time had elapsed from its starting time. There might be several 

activities which are imminent at a time. When imminent activities finish, the output queues of 

FQ  type of each imminent activity get respective tokens. When an activity can start, it must 

start. Once it starts, one token is removed from each input of the activity, one token is held in 

the activity during the processing time, and one token is added to the outputs of the SQ  type. 

If no activity can start, then the placement of tokens in the whole process remains the same 

until the next event comes. The time instant of the next event is defined as the minimum of 

the due times of activities in operation. So, the next event will become the next "current time" 

in the state transition table, and then it continues.  

Table 1 shows a part of the state transition table of the CONWIP system depicted in 

Figure 1, where four cards are initially assigned into the system, and the process 2p  has two 

actors, while each of the others has only one actor. Also, initial inventory in each of 1b , 2b , 

3b  and b  is set to 0. We assume that enough raw material m is always available. In this 

table, "----" represents that there is no token being processed. That is, the corresponding 

worker is idle. "1(3)", for example, shows that one token is being processed and it will finish 

(be imminent) after 3 minutes. As like the 2p  column, two tokens can be processed each of 

which will be imminent independently. 

 

Table 1. State transition of the CONWIP for a period 

time C 1p  1w  1b  2p  2w  2b  3p  3w  3b  4p  4w  b  

812 0 1(5) 0 1 1(2),1(9) 0 0 ---- 1 0 1(2) 0 1 

814 0 1(3) 0 0 1(12),1(7) 0 0 1(3) 0 0 ---- 1 2 

817 0 1(5) 0 1 1(9),1(4) 0 0 ---- 1 0 1(2) 0 2 

819 0 1(3) 0 1 1(7),1(2) 0 0 ---- 1 0 ---- 1 3 

821 0 1(1) 0 0 1(5),1(12) 0 0 1(3) 0 0 ---- 1 3 

822 0 ---- 1 1 1(4),1(11) 0 0 1(2) 0 0 ---- 1 3 

824 0 1(5) 0 1 1(2),1(9) 0 0 ---- 1 0 1(2) 0 3 
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The number of commencement of an activity in a period is called the activation frequency 

of the system. A token transaction system that is strongly connected and live has periodic 

behavior, and every activity in such a token transaction system has the same number of 

commencement in the period (Sato and Kawai, 2007). Notice that the numbers of 

commencement and finish of an activity in a period are the same so that the definition is well 

defined. In Table 1, for example, the activation frequency is 2, that is every activity starts and 

ends twice during a period. The throughput of a token transaction system is defined as the 

average value of the number of output tokens from an activity of the system. Since the 

activation frequency is the same for all of the activities in the system, this definition of 

throughput is well defined. The cycle time of a circuit is defined as the elapsed time for a 

token to go round on the circuit in the periodic behavior. 

2.1.  Little’s law (Little, 1961) 

The Little's law can be applied to the processes that show periodic behavior. The law says 

rigorous relation among cycle time, WIP, and throughput. Let us denote the period by L , and 

the inventory level at time t  by w(t) . Then, the average WIP is calculated as follows. 

0 0

1 1
lim ( ) ( )

T L

T
WIP w t dt w t dt

T L→∞
= =∫ ∫ . 

Thus, it suffices for calculation of average value to consider a period, instead of infinite 

interval. Similarly, average throughput (TH) and cycle time (CT) can be calculated for a 

period. WIP is usually represented as sum of safety and cycle stocks, where the former is 

considered as buffer for randomness. Since this paper focuses on deterministic model, WIP 

contains only cycle stock.  

Hereafter, we simply write WIP to mean "average WIP", TU to mean "time unit", and PC 

to mean "pieces". TU can be interpreted as week, hour, minute, and so on. 

Theorem 1 (Sato and Khojasteh-Ghamari, 2008).  Consider a strongly connected and live 

token transaction system. Let TH  be the throughput of the system in the periodic behavior, 

C  a circuit of the system, Cw  the average WIP of tokens on C , and CCT  the cycle time 

of C . Then, the Little's law holds on C . That is, 
TH

w
CT C

C =  holds true. 

This theorem shows that the Little's law holds only for circuits. In other words, the 

average number of total inventories of a production system does not work as the WIP term in 

the law.  
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Proposition 1 (Sato and Khojasteh-Ghamari, 2008).  Consider a strongly connected and live 

token transaction system. Let λ  be its maximum cycle mean, and TH the throughput. Then, 

λ
1=TH . 

In order to increase the throughput of the system, the maximum cycle mean should be 

decreased. It means that the structure or WIP placement should be changed. If either factor 

changes, then another circuit can become critical. This makes situation complicated so that 

every circuit should be considered and that focusing on the current critical circuit is not 

enough to improve the performance of a production system. 

The sum of WIPs in a KANBAN or CONWIP system is focused on sometimes. It has 

practical significance. The sum of WIPs is called the system WIP in this paper. As Sato and 

Khojasteh-Ghamari (2008) showed, in a live and strongly connected token transaction system, 

there exists the least system WIP that attains the throughput of the system. 

3.  Analysis of comparison between CONWIP and KANBAN  

Using analytical queuing network models, Gstettner and Kuhn (1996) provided a 

quantitative comparison between CONWIP and KANBAN with respect to WIP and 

throughput in a serial production line including six workstations with exponentially 

distributed processing times. Contrary to the comparative conclusions in the literature, they 

showed that KANBAN can achieve a given production rate with a less average WIP level 

than CONWIP, if the card distribution in the KANBAN is chosen appropriately. They defined 

the average number of finished parts in the output buffers as the average WIP. Concerning the 

comparison of the two control systems, Sato and Khojasteh-Ghamari (2008) resolved the 

complicated result in a serial production line with four workstations. Their analytical result 

showed that CONWIP outperforms KANBAN, when the total number of cards in CONWIP 

is less than that in KANBAN. In the following, we generalize their model for a serial 

production line with n workstations.  

Proposition 2.  Consider a serial production process with n workstations controlled by 

CONWIP and KANBAN. Assume that both systems have the same actors for respective 

processes, the same activation frequency, and the same throughput. Let N and K be the total 

number of cards in CONWIP and KANBAN, respectively. Then, we have the followings.  

(i)  N K<  if and only if C KW W< , 

(ii) N K=  if and only if C KW W= , 

where CW  and KW  are the average system WIP for CONWIP and KANBAN, respectively. 
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Proof.  Consider the serial production lines controlled by CONWIP and KANBAN as 

depicted in Figures 4 and 5, respectively. Let the outmost circuit in the CONWIP be C  with 

N tokens, i.e., C  is 1 1 2 2 1 1... n nCp b p b p b C− − . Also, let K  be the set of all non-activity circuits 

in KANBAN. That is, K  is 1 2 1{ , ,..., }nA A A − , where ( 1,2,..., 1)iA i n= −  is the circuit 

i i i iK p b K  with ik  tokens. Now, apply the Little’s law on each of C  and K , and compare 

the system WIPs. This completes the proof. 

 

 

 

 

 

 

Figure 4. A serial production line with n workstations controlled by CONWIP 

 

 
 

 

 

 

Figure 5. A serial production line with n workstations controlled by KANBAN 

4. Comparison of Base-stock with CONWIP and KANBAN  

Using simulation analysis, Bonvik et al. (1997) compared the performance of different 

production control policies with respect to WIP and service level in a serial production line 

with four workstations. They showed that CONWIP demonstrates superior performance in 

achieving a high service level target with minimal WIP, followed by Base-stock and 

KANBAN. But, as we mentioned in Section 1, their result seems to be contradictory to the 

other results. In this section, we analyze the Base-stock, and provide an analytical comparison 

of that with both KANBAN and CONWIP in serial production lines, followed by numerical 

experiments. 

Proposition 3.  Consider a serial production process with n workstations controlled by 

KANBAN and Base-stock. Assume that both systems have the same actors for respective 

1p 2p
1np − np

1b 2b
1nb − bm

1w 2w 1nw − nw

C

. . .

1p 2p 3p 1np −

1w 2w 3w 1nw −

1K 2K

1b 2b np b

nw

. . .

1nK −

1nb −

. . .

m
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processes, the same activation frequency, and the same throughput. Let K and B be the total 

number of cards in KANBAN and Base-stock, respectively. Then, we have the followings.  

(i)  if 
2

1
1

1
( )

n

i
i

B K ih
λ

−

+
=

− ≤ ∑ , then B KW W≤ , 

(ii)  if B K= , then B KW W< ,  

where λ  is the maximum cycle mean, ih  the processing time of workstation i, and KW and 

BW are the average system WIP for KANBAN and Base-stock, respectively. 

Proof.  Consider the serial production lines controlled by KANBAN and Base-stock as 

depicted in Figures 5 and 6, respectively. Let K  be the set of all non-activity circuits in 

KANBAN . That is, K  is 1 2 1{ , ,..., }nA A A − , where iA (i=1, 2, …, 1n − )  is the circuit 

i i i iK p b K  with ik  tokens. In the Base-stock, let B  be the set of all non-activity circuits, i.e., 

B  is 1 2 1{ , ,..., }nH H H − , where ( 1,2,..., 1)iH i n= −  is the circuit 1 1 1 1...i i i i i n n iC p b p b p b C+ + − −  

with im  tokens. Now, apply the Little’s law on each of K  and B , and compare the system 

WIPs. This completes the proof. 

 

 

 

 

 

 

Figure 6. A serial production line with n workstations controlled by Base-stock 

Proposition 3 is one of the best possible forms in the sense that the respective converses 

do not hold true. It suffices to show that there exists at least an example for the converse. The 

following example shows that each converse implications of (i) and (ii) in Proposition 3 does 

not hold. 

Example 1.  Consider a serial production line including four workstations with KANBAN 

and Base-stock as depicted in Figures 2 and 3, respectively. Processing times at 1p , 2p , 3p  

and 4p  are set as 5, 12, 10 and 7 [TU], respectively. That is, 1 5h = , 2 12h = , 3 10h =  and 

4 7h = . The process 2p  has two actors, while each of the others has only one actor. Also, 

initial inventory for every part is set to 0. We assume that enough raw material m is always 

available. Cases 1-BAS and 1-KAN below show the periodic behavior of Base-stock and 

1p 2p 1np − np
1b 2b

1nb − bm

1w 2w 1nw − nw

1C

2C

1nC −

. . .
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KANBAN, respectively. 

Case 1-BAS.  Table 2 shows the state transition table for the production process with 

Base-stock. Initial cards are set as 1 4C = , 2 3C =  and 3 2C = , which are the 

minimum number of cards to attain the maximum possible throughput. The system 

shows a periodic behavior every 10 [TU]. Activity circuit 3 3 3p w p  is critical with 

maximum cycle mean 10λ = . Each activity starts once in a period. The throughput is 

1/10, and the system WIP is equal to 5.90. That is, 5.90BW = . It can be verified that 

the amount of system WIP is minimum to attain the throughput 1/10. 

Case 1-KAN.  Table 3 gives the state transition table for the same production process 

with KANBAN. Initial cards are set as 1 3 1k k= =  and 2 2k = , that is 4K = . The 

system shows a periodic behavior every 10 [TU]. Circuit 3 3 3p w p  is critical with 

10λ = . Each activity starts once in a period. The throughput is 1/10, and the system 

WIP is equal to 6.30 ( 6.30KW = ), which is the minimum value to attain the throughput. 

 

Table 2. State transition of 1-BAS for a period 

time 1C  1p  1w  1b  2C  2p  2w  2b  3C  3p  3w  3b  4p  4w  b  

986 0 1(3) 0 0 0 ---- ,1(10) 1 1 1 1(1) 0 0 ---- 1 1 

987 0 1(2) 0 0 0 ---- ,1(9) 1 0 0 1(10) 0 0 1(7) 0 1 

989 0 ---- 1 1 0 ---- ,1(7) 1 0 0 1(8) 0 0 1(5) 0 1 

994 0 1(5) 0 0 0 1(12),1(2) 0 0 1 1(3) 0 0 ---- 1 2 

996 0 1(3) 0 0 0 1(10), ---- 1 1 1 1(1) 0 0 ---- 1 2 

 

Table 3. State transition of 1-KAN for a period 

time 1K  1p  1w  1b  2K  2p  2w  2b  3K  3p  3w  3b  4p  4w  b  

927 0 1(5) 0 0 0 1(2),1(12) 0 0 0 1(10) 0 0 1(7) 0 1 

929 0 1(3) 0 0 0 ---- ,1(10) 1 1 0 1(8) 0 0 1(5) 0 1 

932 0 ---- 1 1 0 ---- ,1(7) 1 1 0 1(5) 0 0 1(2) 0 1 

934 0 ---- 1 1 0 ---- ,1(5) 1 1 0 1(3) 0 0 ---- 1 2 

937 0 1(5) 0 0 0 1(12),1(2) 0 0 0 1(10) 0 0 1(7) 0 2 

 

By using Case 1-KAN as an example, we show how to calculate the system WIP based on 

the state transition table. Consider Table 3. By observing the state transition table for a period, 

at time 927, five tokens (all of them are being processed at 1p  through 4p ) remain in the 

system for 2 time unit (929-927=2). At the next event time (i.e. 929), six tokens remain in the 

system, but for 3 time unit (932-929=3). Similarly, 7 tokens remain in the system for the next 
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2 and 3 [TU]. This yields (2*5)+(3*6)+(2*7)+(3*7)=63 [PC*TU] as the total holding and 

waiting times for a period. Since the period is 10 [TU], the system WIP is 63/10 [PC]. That is, 

6.3KW = . 

Case 1-BAS and 1-KAN show that each converse implications of (i) and (ii) in 

Proposition 3 does not hold. Because it can be simply verified that B KW W< , however, 

,B K≠  and also 2 32 12 2(10)
9 4

10

h h
B K

λ
+ +− = − > = , in the same notation of Proposition 3. 

Proposition 4.  Consider a serial production process with n workstations controlled by 

CONWIP and Base-stock. Assume that both systems have the same actors for respective 

processes, the same activation frequency, and the same throughput. Let N and B be the total 

number of cards in CONWIP and Base-stock, respectively. Then, we have the followings.  

(i)  if 
2

1
1

1
( )

n

i
i

B N ih
λ

−

+
=

− ≤ ∑ , then B CW W≤ , 

(ii)  if B N= , then B CW W< ,  

where λ  is the maximum cycle mean, ih  the processing time of workstation i, and CW  

and BW  are the average system WIP for CONWIP and Base-stock, respectively. 

Proof.  The proof is similar to the proof of Proposition 3. 

The following example shows that the converse implication of (i) in the above 

proposition does not hold.  

Example 2.  This example shows that the converse implication of (i) in Proposition 4 does 

not hold. Consider a serial production line including four workstations with CONWIP and 

Base-stock as depicted in Figures 1 and 3, respectively. Processing times at 1p , 2p , 3p  and 

4p  are set as 5, 12, 3 and 2 [TU], respectively. That is, 1 5h = , 2 12h = , 3 3h =  and 4 2h = . 

Same as the previous example, the process 2p  has two actors, while each of the others has 

only one actor. Also, initial inventory for every part is set to 0, and it is assumed that enough 

raw material m is always available. Cases 2-BAS and 2-CON below show the results for 

Base-stock and CONWIP, respectively. 

Case 2-BAS.  Table 4 shows the state transition table for the production process with 

Base-stock. Initial cards are set as 1 4C = , 2 3C =  and 3 1C = , which are the minimum 

number of cards to attain the maximum possible throughput (8B = ). The system shows 

a periodic behavior every 12 [TU]. Activity circuit 222 pwp  is critical with 6λ = . 

Each activity starts twice in a period. The throughput is 2/12, and the system WIP is 

equal to 5.67. That is 5.67BW = .  
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Case 2-CON.  The state transition table for the same production process with 

CONWIP has been given in Table 1. Four cards are initially assigned in the system 

( 4N = ), which is the minimum number of cards to attain the maximum possible 

throughput. The system shows a periodic behavior every 12 [TU]. Circuit 222 pwp  is 

critical with 6λ = . Each activity starts twice in a period. The throughput is 2/12, and 

the system WIP is equal to 5.67 ( 5.67CW = ).  

 

Table 4. State transition of 2-BAS for a period 

time 1C  1p  1w  1b  2C  2p  2w  2b  3C  3p  3w  3b  4p  4w  b  

934 0 1(5) 0 0 0 1(7),1(12) 0 0 0 1(3) 0 0 ---- 1 1 

937 0 1(2) 0 0 0 1(4),1(9) 0 0 0 ---- 1 0 1(2) 0 1 

939 0 1(5) 0 1 1 1(2),1(7) 0 0 1 ---- 1 0 ---- 1 2 

941 0 1(3) 0 0 0 1(12),1(5) 0 0 0 1(3) 0 0 ---- 1 2 

944 0 ---- 1 1 0 1(9),1(2) 0 0 0 ---- 1 0 1(2) 0 2 

946 0 1(5) 0 0 0 1(7),1(12) 0 0 0 1(3) 0 0 ---- 1 3 

 

Case 2-BAS and 2-CON show that the converse implication of (i) does not hold. Because 

B CW W≤ , but 2 32 12 2(3)
8 4

6

h h
B N

λ
+ +− = − > = , in the same notation of Proposition 4. 

However, we do not have examples for the converse of (ii) yet. It seems that in 

Proposition 4 with 2n > , when the both systems perform optimally, the if-condition of part 

(ii) cannot be satisfied under any circumstance. Optimality here refers the fact that the system 

attains maximum possible throughput by employing the least number of cards, and hence has 

a minimum amount of system WIP. As it can be seen in Figures 4 and 6, the outmost circuits 

in the both systems (i.e., circuit 1 1 2 2 1 1... n nCp b p b p b C− −  in the CONWIP, and 

1 1 1 2 2 1 1 1... n nC p b p b p b C− −  in the Base-stock) have the same components. Therefore, in order for 

both systems to attain the maximum rate of throughput with minimum amount of WIP, the 

same number of cards is required to assign initially into each of C  and 1C . In fact, the 

number of cards assigned into C  is the total number of cards in the CONWIP, denoted byN . 

However, the Base-stock needs more cards in the other non-activity circuits (i.e., circuits 

1 1 1 1...i i i i i n n iC p b p b p b C+ + − − , 1 i n< < ) to operate. Thus, B N> . This would be a reason that we 

failed to find an example to show whether the converse implication of (ii) holds true.  

For a serial production process in the Proposition 3, many KANBAN and Base-stock 

cases, which have the same level of throughput satisfy the if-condition of (i), and then 

B KW W≤ certainly holds. However, in the following, we give an example that dissatisfy the 

if-condition, and then B KW W> . In a similar way, in Proposition 4 (for case CONWIP and 
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Base-stock), this example satisfies 
2

1
1

1
( )

n

i
i

B N ih
λ

−

+
=

− > ∑ , and then B CW W> . This implies that 

Base-stock is not always superior to both KANBAN and CONWIP.  

Example 3.  Concerning Propositions 3 and 4, this example shows that Base-stock does not 

necessarily outperform KANBAN and CONWIP. Consider the production process shown in 

Figures 1, 2 and 3 with CONWIP, KANBAN and Base-stock, respectively. We set the 

processing times at 1p , 2p , 3p  and 4p  as 5, 12, 10 and 1 [TU], respectively. That is, 

1 5h = , 2 12h = , 3 10h =  and 4 1h = . Same as the previous examples, the process 2p  has 

two actors, while each of the others has only one actor. Also, initial inventory for every part is 

set to 0. Cases 3-BAS, 3-CON and 3-KAN below show the results for Base-stock, CONWIP 

and KANBAN, respectively.  

Case 3-BAS.  The state transition table for Base-stock is given in Table 5. Initial cards 

are set as 1 3C = , 2 3C =  and 3 2C = , which are the minimum number of cards to 

attain the maximum possible throughput. The system shows a periodic behavior every 

10 [TU], and each activity starts once in a period. Activity circuit 3 3 3p w p  is critical 

with maximum cycle mean 10λ = . The throughput is 1/10, and the system WIP is 

equal to 6.60. That is, 6.60BW = . 

Case 3-CON.  Table 6 shows the state transition table for the production process with 

CONWIP. Three cards are initially assigned into the system (3N = ), which is the 

minimum number of cards to attain the maximum possible throughput. Circuit 3 3 3p w p  

is critical with 10λ = . The throughput is 1/10, and 5.30CW = .  

Case 3-KAN.  The state transition table is given in Table 7. Initial cards are set as 

1 3 1k k= =  and 2 2k = , namely, 4K = . Circuit 3 3 3p w p  is critical with 10λ = . Each 

activity starts once in a period, the period is 10 [TU], the throughput is 1/10, and 

6.30KW = .  

 

Table 5. State transition of 3-BAS for a period 

time 1C  1p  1w  1b  2C  2p  2w  2b  3C  3p  3w  3b  4p  4w  b  

808 0 1(5) 0 0 1 ---- ,1(7) 1 0 1 1(9) 0 0 ---- 1 1 

813 0 ---- 1 0 0 1(12),1(2) 0 0 1 1(4) 0 0 ---- 1 1 

815 0 ---- 1 0 0 1(10), ---- 1 1 1 1(2) 0 0 ---- 1 1 

817 0 ---- 1 0 0 1(8), ---- 1 0 0 1(10) 0 0 1(1) 0 1 

818 0 1(5) 0 0 1 1(7), ---- 1 0 1 1(9) 0 0 ---- 1 2 
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Table 6. State transition of 3-CON for a period 

time C 1p  1w  1b  2p  2w  2b  3p  3w  3b  4p  4w  b  

797 0 1(5) 0 0 ---- ,1(7) 1 0 1(10) 0 0 1(1) 0 1 

798 0 1(4) 0 0 ---- ,1(6) 1 0 1(9) 0 0 ---- 1 2 

802 0 ---- 1 0 1(12),1(2) 0 0 1(5) 0 0 ---- 1 2 

804 0 ---- 1 0 1(10), ---- 1 1 1(3) 0 0 ---- 1 2 

807 0 1(5) 0 0 1(7), ---- 1 0 1(10) 0 0 1(1) 0 2 

 

Table 7. State transition of 3-KAN for a period 

time 1K  1p  1w  1b  2K  2p  2w  2b  3K  3p  3w  3b  4p  4w  b  

788 0 1(4) 0 0 0 1(1),1(11) 0 0 0 1(9) 0 0 ---- 1 1 

789 0 1(3) 0 0 0 ---- ,1(10) 1 1 0 1(8) 0 0 ---- 1 1 

792 0 ---- 1 1 0 ---- ,1(7) 1 1 0 1(5) 0 0 ---- 1 1 

797 0 1(5) 0 0 0 1(12),1(2) 0 0 0 1(10) 0 0 1(1) 0 1 

798 0 1(4) 0 0 0 1(11),1(1) 0 0 0 1(9) 0 0 ---- 1 2 

 

Comparison of the system WIPs in cases 3-BAS and 3-CON reveals the fact that 

Base-stock does not necessarily outperform CONWIP. Because it can be easily verified 

that 2 32 12 2(10)
8 3

10

h h
B N

λ
+ +− = − > = , and B CW W> . This example also shows that 

Base-stock does not necessarily outperform KANBAN, either. Because in cases 3-BAS and 

3-KAN, one can see that 2 32 12 2(10)
8 4

10

h h
B K

λ
+ +− = − > = , and B KW W> . Therefore, the 

if-conditions of Propositions 3 and 4 are meaningful, and as a consequence, Base-stock is not 

always superior to either CONWIP or KANBAN. In fact, a configuration of parameters, such 

as processing time of activities, number of workers, and number of cards employed in the line 

decides the superior system in certain situation.  

5.  Conclusions 

In this paper, by employing the framework proposed by Sato and Khojasteh-Ghamari 

(2008), we have compared the performance of three production control mechanisms, 

CONWIP, KANBAN and Base-stock in serial production lines. Using the theory of token 

transaction system and within the same framework, we extended their model to a serial 

production line with n workstations.  

In comparison of CONWIP and KANBAN in serial production lines, Proposition 2 has 

given a complete characterization. That is, CONWIP is superior to KANBAN, if and only if, 

the total number of cards in CONWIP is less than that in KANBAN. Superiority here refers 
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the fact that the minimum system WIP is smaller than the other to attain the same rate of 

throughput.  

In comparison of Base-stock with KANBAN and CONWIP, the situation is complicated, 

so that we cannot completely characterize it. Base-stock outperforms KANBAN in some 

cases, while it does not in other cases. This happens in the comparison with CONWIP, too. 

We have clarified that the superiority of one over another is determined by a configuration of 

parameters, such as processing time of activities, number of workers for activities, and 

number of cards employed in the line (Propositions 3 and 4). In a certain production line with 

a configuration, for example, Base-stock is superior to KANBAN. Therefore, if a research 

focused on a line with such a certain configuration, then it could result in the superiority of 

Base-stock to KANBAN.  

There are some related topics remained. Effect of randomness needs to be considered. 

Original idea of CONWIP does not restrict to FIFO policy. Sophisticated policy may lead the 

process to different performance. Such policies should be sought in future research. 
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