
Department of Social Systems and Management

Discussion Paper Series

No. 1195

The New Approach for Kernel Principal Component
Regression

by

Antoni Wibowo and Yoshitsugu Yamamoto

February 2008

UNIVERSITY OF TSUKUBA
Tsukuba, Ibaraki 305-8573

JAPAN

The New Approach for Kernel Principal Component Regression ∗

Antoni Wibowo †and Yoshitsugu Yamamoto‡

Graduate School of Systems and Information Engineering,
University of Tsukuba,1-1-1 Tennodai, Tsukuba 305-8573, Japan.

February 13, 2008

Abstract

In regression analysis, existence of multicollinearity (collinearity) on given
data, say X, can seriously deteriorate the result by the linear regression model.
To avoid the effect of multicollinearity, we can use the principal component
regression (PCR) [17]. However, the PCR has difficulties on its applications.
To overcome such a drawback, Hoegaerts et al. [4], Jade et al. [5], and Rosipal et
al. [11, 12, 13] used a technique, called the kernel principal component regression
(KPCR). However, their KPCR [4, 5, 11, 12, 13] still have some drawbacks, i.e.,
the procedure to derive their KPCR and the choice rule of the retained number
of PC’s to avoid the effect of multicollinearity.

To overcome the above drawbacks, we propose a new approach for the
KPCR. Firstly, we generalized the linear regression model in [3, 6, 8, 10, 16, 17]
by relaxing the linear independence assumption. Secondly, we show that the
PCR can also be used to reduce the effect collinearity on X. Finally, we propose
a new approach for KPCR by using the above relaxing assumption. In the new
approach for KPCR, we propose an algorithm that it can automatically obtain
the retained number of nonlinear PC’s to avoid the effect of multicollinearity
(collinearity).

In our case studies, we compared the capabilities of the linear regression,
the nonlinear regressions using the Gompertz function, the previous KPCR
and the new KPCR. For the real data, the stock of cars in the Netherlands (in
period 1965-1989) and the weight of a certain kind of female chickens [7], the
results of the new KPCR are better than the linear regression and the nonlinear
regressions using the Gompertz function.

1 Introduction

Regression analysis is a model of the relationship between a single random variable
Y , called the response variable, and independent variables x1, x2, · · · , xp. The inde-
pendent variables are called the regressor variables. The regression analysis is one of
the important techniques in multivariate data analysis. The multiple linear regres-
sion has been extensively applied in almost every field, including engineering, the
physical and chemical sciences, economics, management, life and biological sciences,
and the social sciences [10].

∗The authors thank Maiko Shigeno and Hideo Suzuki for comments and suggestions.
†Email address: wibowo@sk.tsukuba.ac.jp.
‡Email address: yamamoto@sk.tsukuba.ac.jp.

1

The multiple linear regression model with p regressors is given by

Y = β0 +
p∑

j=1

βjxj + ε. (1.1)

The parameters βj , (j = 0, 1, · · · , p) are called the regression coefficients and ε is
a random variable and called the random error. It is assumed that the values of
x1, x2, · · · , xp are chosen by an experimenter and βj are unknown. The term linear
is used since Eq. (1.1) is a linear function of the regression coefficients βj .

Assume that Yi is the ith response variable on the ith observation (i = 1, 2, · · · , N),
xij ∈ R is the ith observation of regressor xj and εi is the ith random error
on the ith observation, where R is the set of real number. We denote xT

i =(
xi1 xi2 · · · xip

)
, Y = (Y1 Y2 · · · YN)T , X̃ = (x1 x2 · · · xN)T , X =(

1N X̃
)
, β = (β0 β1 · · · βp)T , and ε = (ε1 ε2 · · · εN)T ; where sizes of xi,

Y, X̃, X, β and ε are p × 1, N × 1, N × p, N × (p + 1), (p + 1) × 1 and N × 1,
respectively, and 1N = (1 1 · · · 1)T

N×1. The vector xT
i denotes the transpose

of the vector xi. The ordinary multiple linear regression model corressponding to
Eq. (1.1) is written as

Y = Xβ + ε. (1.2)

It is assumed that the expected value of ε, denoted by E(ε), is equal 0 and the
variance of ε, denoted by E(εεT), is equal σ2IN . The matrix IN denotes the N ×N
identity matrix.

The problem of regression analysis is to find the estimator of β, say β̂ =(
β̂0 β̂1 · · · β̂p

)T
, such that ‖ε‖2 is minimized. The solution can be found by

solving the following equation

XTXβ̂ = XTY. (1.3)

The Eq. (1.3) is called the normal system of system Xβ̂ = Y. Note that, XTX is
a symmetric and positive semidefinite matrix. Hence, the eigenvalues of XTX are
real and non-negative [1]. We say that multicollinearity exists on given data, say X,
if XTX is a near singular matrix, i.e, if all eigenvalues of XTX are positive numbers
and some eigenvalues of XTX are near zero. We say that collinearity exists on X
if XTX is a singular matrix, i.e., if some eigenvalues of XTX are zero [10, 16]. If
collinearity exists on X then there are infinitely many solutions of Eq. (1.3), which
makes it difficult to choose the best linear multiple regression model in this case.
This implication is known as the effect of collinearity.

In [3, 6, 8, 10, 16, 17], they restricted the ordinary multiple linear regression
model to the case where the column vectors of X are linearly independent. In
this case, the eigenvalues of XTX are positive and real numbers [1]. It implies the
collinearity never exists on X. The variance of β̂j for j = 0, 1, · · · , p, denoted by
V ar(β̂j), is given by

V ar(β̂j) = σ2((XTX)−1)j+1,j+1, j = 0, 1, · · · , p. (1.4)

where (XTX)−1 is the inverse of the matrix XTX. If multicollinearity exists on
X then V ar(β̂j) will be a large number [17]. If multicollinearity exists on X and
under the assumption εi is normally distribution then tests for inferences βj (j =

2

0, 1, · · · , p), have low power and confidence interval will be large. It will be difficult
to decide if a variable xj makes a significant contribution to the regression [17].
These implications are known as the effect of multicollinearity.

Suppose that y = (y1 y2 · · · yN)T ∈ RN is the observation corresponding to
Y. Under the assumption the column vectors of X are linearly independent, the
estimator of β is

β̂ = (XTX)−1XTy, (1.5)

see for example [3, 6, 8, 10, 16, 17]. The prediction multiple linear regression model
corresponding to the regressors variable x1, x2, · · · , xp; say ŷ, is given by

ŷ := β̂0 +
p∑

j=1

β̂jxj . (1.6)

The vector of prediction values ŷi corresponding to the observed values yi, say ŷ, is
given by

ŷ := Xβ̂. (1.7)

The error between y and ŷ, say e, is given by

e := y − ŷ, (1.8)

the root mean square error (RSME) between y and ŷ is given by

RMSE :=
1√
N
‖e‖, where ‖e‖ = (eTe)

1
2 . (1.9)

To avoid the effect of multicollinearity, we transform the regression model (1.2) to
another fashion by using an orthogonal matrix. The technique is called the principal
component regression (PCR) [10, 17]. However, the PCR model still has a linear
fashion. Since the most real problems are nonlinear, the PCR has difficulties on its
applications.

To overcome such a drawback, Hoegaerts et al. [4], Jade et al. [5], and Rosipal
et al. [11, 12, 13] used a technique, called the kernel principal component regression
(KPCR). They transformed xi (i = 1, 2, · · · , N), by using a function ψ : Rp → F,
where F ⊆ RpF and pF ≤ ∞. The set F is called the feature space which is a
higher dimensional Euclidean space. Hence, the image of xi in F is given by ψ(xi).
Note that, the function ψ is not explicitly defined, i.e., the function ψ is not written
explicitly in terms of its independent variables. We define that a function ϕ is said to
be a symmetric function if ϕ(wi,wj) = ϕ(wj ,wi) for every wi,wj ∈ Rp and is said
to be a positive semidefinite function if for every m ∈ N, where N is set of natural
number, such that w1,w2, · · · ,wm ∈ Rp gives rise to a positive semidefinite matrix
W = (ϕ(wi,wj))i,j=1,2,··· ,m, see [15] for the detailed discussion. The function ψ
is derived from another function, say κ : Rp × Rp → R, where κ is a symmetric,
continuous and positive semidefinite function [2, 9, 14]. The function κ is called the
kernel function.

Define a matrix

Ψ := (ψ(x1) ψ(x2) · · · ψ(xN))T ,

K := ΨΨT ,

3

where size of Ψ and K are N × pF and N × N , respectively. Hoegaerts et al. [4],
Jade et al. [5], and Roman et al. [11, 12, 13] defined the standard multiple linear
regression model in the feature space as the following model

Y = Ψν + έ∗, (1.10)

where ν =
(
ν1 ν2 · · · νpF

)T is a vector of regression coefficients in the feature
space and έ∗ is a vector of random error in the feature space. They [4, 5, 11, 12, 13]
assumed that

∑N
i=1 ψ(xi) = 0, E(έ∗) = 0, E(έ∗έ∗T) = δ2IN and N ¿ pF . Suppose

that µ1 ≥ µ2 ≥ · · · ≥ µr̂ ≥ µr̂+1 ≥ · · · ≥ µpF are eigenvalues of ΨTΨ. Let
V = (v1 v2 · · · vpF) be the matrix of eigenvectors vi of ΨTΨ and V = V−1

where vi correponding to µi (i = 1, · · · , pF). They rewrite the model (1.10) as

Y = Bw + έ∗, (1.11)

where B = ΨV and w = (w1 w2 · · · wppF
)T = VT ν. They stated the estimator

of w, say ŵ := (ŵ1 ŵ2 · · · ŵppF
)T , is given by

ŵ = (BTB)−1BTy. (1.12)

Further, the estimator of ν, say ν̂, is written as

ν̂ = Vŵ =
p̂F∑

i=1

µ−1
i vivT

i ΨTy, (1.13)

and its corresponding covariance matrix as

cov(ν̂) = δ2
p̂F∑

i=1

µ−1
i vivT

i . (1.14)

It is evident that from (1.14) that the influence of small eigenvalues can significantly
increase to overall variance of the estimator of ν. To avoid the effect of multi-
collinearity, PCR deletes some eigenvectors of ΨTΨ corresponding to small values
of the eigenvalues µi.1 Let ςj := (ςj1 ςj2 · · · ςjN)T be an eigenvector of K cor-
responding to µj 6= 0 for some j ∈ {1, · · · , pF }. Using the first r̂ of v1,v2, · · · ,vpF ,
they stated that their KPCR is written as

h(x) =
N∑

i=1

ajκ(xi,x) + d, (1.15)

where ai =
∑r̂

k=1 ŵkςik for i = 1, · · · , N , and d is a bias term. The term d will
vanish when

∑N
i=1 Yi = 0 [4, 5, 11, 12, 13]. The number r̂ is called the retained

number of nonlinear PC’s in the KPCR model.
Note that, the above claims are true when column vectors of Ψ are linearly

independent. A question arises: does the matrix (BTB)−1 exist? Since they assumed
N ¿ pF , this implies the column vectors of Ψ are linear dependent. It is well known
that rank(BTB)=rank(ΨTΨ), where rank(BTB) stands for the rank of the matrix

1The relation of eigenvalues and eigenvectors of the matrices ΨT Ψ and K were introduced by
Scholkopf et al. [15] (see Appendix I)

4

BTB. Since column vectors of Ψ are linear dependent, then rank(BTB) < pF . This
implies (BTB) is not invertible. Hence, the matrix (BTB)−1 does not exist [1] and
we have a contradiction. Implication of the contradiction is the choice rule of the
retained number of PC’s to avoid the effect of multicollinearity becomes unclear.
Another question will also arise. How to choose the function κ such that the column
vectors of Ψ are linearly independent? It is a difficult task. The next question, how
to handle if the matrix (BTB)−1 does not exist? Yet, their work did not consider
it.

To overcome the above drawbacks, we propose a new approach for the KPCR.
Firstly, we generalized the linear regression model in [3, 6, 8, 10, 16, 17] by relaxing
the linear independence assumption. Stated in other words, our model can be used
whether the column vectors of X are linearly independent or linearly dependent.
Secondly, we show that the PCR can also be used to reduce the effect of collinearity.
Finally, we propose a new approach for KPCR by using the above relaxing assump-
tion. The procedure to derive the new approach for the KPCR is straightforward as
the procedure to derive the PCR is. In the new approach for KPCR, we propose an
algorithm that it can automatically obtain the retained number of PC’s to avoid the
effect of multicollinearity (collinearity). We refer the KPCR proposed by Hoegaerts
et al. [4], Jade et al. [5], and Rosipal et al. [11, 12, 13] as the previous KPCR and
we refer the new approach for the KPCR as the new KPCR.

This manuscript is organized as follows: Section 2, we review the PCR and show
that the PCR can also be used to reduce the effect of collinearity. In Section 3, the
detailed of the new KPCR model will be discussed. Afterwards, we construct an
algorithm for the new KPCR. In Section 4, we compare the capabilities of the linear
regression, the previous KPCR, the non linear regression based on Gompertz func-
tion and the new KPCR. Conclusions are given in Section 5. Finally, the proofs of
the some Theorems and claims and the MATLAB code for the new KPCR algorithm
are given in Appendix.

2 Principal Component Regression

The standard centered multiple linear regression model corresponding to Eq. (1.2) is
given by

Yo = Zβ̃ + εo, (2.1)

where Z = (IN − 1
N 1N1T

N)X̃, εo = (IN − 1
N 1N1T

N)ε, β̃ = (β1 β2 · · · βp)T ,
Yo = (IN − 1

N 1N1T
N)Y and yo = (IN − 1

N 1N1T
N)y . We define ȳ = 1

N 1T
Ny and

x̄l = 1
N 1T

Nxl for l = 1, 2, · · · , p and let p̂ be the rank of ZTZ where p̂ ≤ min(N, p).
Since ZTZ is a symmetric and positive semidefinite matrix, then the eigenvalues

of ZTZ are real and non-negative. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λr+1 ≥ · · · ≥
λp̂ > λ ˆp+1 = · · · = λp = 0 are eigenvalues of ZTZ. Let A = (a1 a2 · · · ap) be
the matrix of eigenvectors al of ZTZ and A = A−1, then

ATZTZA = D

where al corresponds to λl for l = 1, 2, · · · , p, and

D =
(
D(p̂) O
O O

)
,

5

D(p̂) =

λ1 0 · · · 0
0 λ2 · · · 0
.
0 0 · · · λp̂

,

and O is a zero matrix.
Note that, A is orthogonal matrix [1]. This implies AAT = Ip. Further, we can

rewrite the model (2.1) as
Yo = Uω + εo, (2.2)

where U = ZA and ω = AT β̃. Rewriting

U =
(
U(p̂) U(p−p̂)

)
and ω =

(
ωT

(p̂) ωT
(p−p̂)

)T
,

where sizes of U(p̂), U(p−p̂), ω(p̂), and ω(p−p̂) are N × p̂, N × (p − p̂), p̂ × 1 and
(p− p̂)× 1, respectively. Since D = ATZTZA = UTU, we obtain

UT
(p̂)U(p̂) = D(p̂),

UT
(p−p̂)U(p−p̂) = O,

and

UT
(p̂)U(p−p̂) = O.

The above model (2.2) can now be written as

Yo = U(p̂)ω(p̂) + U(p−p̂)ω(p−p̂) + εo. (2.3)

Since ‖(U(p−p̂)ω(p−p̂))T (U(p−p̂)ω(p−p̂))‖ = 0, we obtain U(p−p̂)ω(p−p̂) is equal to 0.
The model (2.3) reduces to

Yo = U(p̂)ω(p̂) + εo. (2.4)

This result shows that the effect of collinearity on Z is reduced by transforming the
orthogonal matrix A.

Further, we assume that λr+1 ≈ 0, λr+2 ≈ 0, · · · , λp̂ ≈ 0 and let

U(p̂) =
(
U(r) U(p̂−r)

)
, ω(p̂) =

(
ωT

(r) ωT
(p̂−r)

)T

and

D(p̂) =
(
D(r) O
O D(p̂−r)

)
,

where

D(r) =

λ1 0 · · · 0
0 λ2 · · · 0
.
0 0 · · · λr

,

D(p̂−r) =

λr+1 0 · · · 0
0 λr+2 · · · 0

.
0 0 · · · λp̂

,

6

and sizes of U(r), U(p̂−r), ω(r), and ω(p̂−r) are N×r, N×(p̂−r), r×1 and (p̂−r)×1,
respectively. Since D(p̂) = UT

(p̂)U(p̂), we obtain that

UT
(r)U(r) = D(r),

UT
(p̂−r)U(p̂−r) = D(p̂−r)

and

UT
(r)U(p̂−r) = O.

The model (2.4) can now be written as

Yo = U(r)ω(r) + U(p̂−r)ω(p̂−r) + εo. (2.5)

To avoid effects of multicollinearity on Z, we drop the term U(p̂−r)ω(p̂−r) in the
model (2.5) [17] and obtain

Yo = U(r)ω(r) + ε∗o, (2.6)

where ε∗o is a random vector influenced by dropping U(p̂−r)ω(p̂−r) in the model (2.5).
The model (2.6) shows that the effects of collinearity and multicollinearity on Z are
reduced by transforming the orthogonal matrix A.2

Note that, UT
(r)U(r) = D(r). This implies rank(UT

(r)U(r)) = r. The last state-
ment implies UT

(r)U(r) is invertible. Hence, the estimator of ω(r), say ω̂(r), is

ω̂(r) = (UT
(r)U(r))

−1UT
(r)yo. (2.7)

Since UT
(r)y = UT

(r)yo (see Appendix III), we obtain

ω̂(r) = (UT
(r)U(r))

−1UT
(r)y. (2.8)

The prediction value of y, say ỹ, is given by

ỹ = ȳ1N + U(r)ω̂(r). (2.9)

Since

U =
(
U(r) U(p̂−r) U(p−p̂)

)

= ZA

= Z
(
A(r) A(p̂−r) A(p−p̂)

)

=
(
ZA(r) ZA(p̂−r) ZA(p−p̂)

)
,

we obtain U(r) = ZA(r). The Eq. (2.9) can be now written as

ỹ = ȳ1N + ZA(r)ω̂(r). (2.10)

The prediction PCR model is given by

f(z) := ȳ + zTA(r)ω̂(r), (2.11)

where zT =
(
x− x̄1 x− x̄2 · · · x− x̄p

)
.

2To detect multicollinearity (collinearity) on Z, we use the comparison of λl
λ1

for l = 1, 2, · · · , p.

If λl
λ1

< 1
1000

then we consider that multicollinearity (collinearity) exists on Z [10].

7

3 Kernel Principal Component Regression

3.1 The new approach for KPCR

Assume we have a function ψ : Rp → F, where F is the feature space which is
a higher dimensional Euclidean space. By using this function, we transform xi

(i = 1, 2, · · · , N), into the feature space F. The image of xi in F is given by ψ(xi).
As in Section 1, we define Ψ =

(
ψ(x1) ψ(x2) · · · ψ(xN)

)T , K = ΨΨT and
C̃ := 1

N ΨTΨ, where size of Ψ, C̃ and K are N×pF , pF×pF and N×N , respectively.
We assume that

∑N
i=1 ψ(xi) = 0. The relation of eigenvalues and eigenvectors of

the matrices C̃ and K were firstly introduced by Scholkopf et al. [15]. We formalize
the relation of the matrices C̃ and K by the following theorem:

Theorem 3.1. Suppose λ̂ 6= 0 and â ∈ F \ {0}. The following statements are
equivalent:

1. λ̂ and â satisfy λa = C̃a.

2. λ̂ and â satisfy λNKb = K2b and a =
∑N

i=1 biψ(xi),
for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.

3. λ̂ and â satisfy λN b̃ = Kb̃ and a =
∑N

i=1 b̃iψ(xi),
for some b̃ =

(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.

Proof. See Appendix I.

The matrices ΨTΨ and C̃ are related by the following theorem:

Theorem 3.2. λ̂ is an eigenvalue of ΨTΨ and â is an eigenvector of ΨTΨ cor-
responding to λ̂ if only if 1

N λ̂ is an eigenvalue of C̃ and â is an eigenvector of C̃
corresponding to 1

N λ̂.

Proof. See Appendix II.

The standard centered multiple linear regression model in the feature space is
given by

Yo = Ψγ + ε∗, (3.1)

where γ =
(
γ1 γ2 · · · γpF

)T is a vector of regression coefficients in the feature
space, ε∗ is a vector of random error in the feature space, Yo and yo are defined as
Section 2. Let p̂F be the rank of ΨTΨ where p̂F ≤ min(N, pF).

Since the matrix ΨTΨ is a symmetric and positive semidefinite matrix, then
eigenvalues of ΨTΨ are real numbers and nonnegative. Suppose that λ̃1 ≥ λ̃2 ≥
· · · ≥ λ̃r̃ ≥ λ̃r̃+1 ≥ · · · ≥ λ̃p̂F

> λ̃p̂F +1 = · · · = λ̃pF = 0 are eigenvalues of ΨTΨ. Let
Ã = (ã1 ã2 · · · ãpF) be the matrix of eigenvectors ãl of ΨTΨ and Ã = Ã−1,
then

ÃTΨTΨÃ = D̃,

where ãl corresponds to λ̃l for l = 1, 2, · · · , pF , and

8

D̃ =
(
D̃(p̂F) O

O O

)
,

D̃(p̂F) =

λ̃1 0 · · · 0
0 λ̃2 · · · 0
.

0 0 · · · λ̃p̂F

.

Since Ã is orthogonal matrix, we have ÃÃT = IpF . Further, we can rewrite the
model (3.1) as

Yo = Ũω̃ + ε∗, (3.2)

where Ũ = ΨÃ and ω̃ = Ã
T
γ. Rewriting

Ũ =
(
Ũ(p̂F) Ũ(pF−p̂F)

)
and ω̃ =

(
ω̃T

(p̂F) ω̃T
(pF−p̂F)

)T
,

where sizes of Ũ(p̂F), Ũ(pF−p̂F), ω̃(p̂F), and ω̃(pF−p̂F) are N × p̂F , N × (pF − p̂F),
p̂F × 1 and (pF − p̂F)× 1, respectively. Since D̃ = ÃTΨTΨÃ = ŨT Ũ, we obtain

ŨT
(p̂F)Ũ(p̂F) = D̃(p̂F),

ŨT
(pF−p̂F)Ũ(pF−p̂F) = O,

and

ŨT
(p̂F)Ũ(pF−p̂F) = O.

The model (3.2) can be written as

Yo = Ũ(p̂F)ω̃(p̂F) + Ũ(pF−p̂F)ω̃(pF−p̂F) + ε∗. (3.3)

Since ‖(Ũ(pF−p̂F)ω̃(pF−p̂F))T (Ũ(pF−p̂F)ω̃(pF−p̂F))‖ = 0, we obtain Ũ(pF−p̂F)ω̃(pF−p̂F)

is equal to 0. The model (3.3) reduces to

Yo = Ũ(p̂F)ω̃(p̂F) + ε∗. (3.4)

Further, we assume that λ̃r̃+1 ≈ 0, λ̃r̃+2 ≈ 0, · · · , λ̃p̂F
≈ 0 and let

Ũ(p̂F) =
(
Ũ(r̃) Ũ(p̂F−r̃)

)
, ω̃(p̂F) =

(
ω̃T

(r̃) ω̃T
(p̂F−r̃)

)T

and

D̃(p̂) =
(
D̃(r̃) O
O D̃(p̂F−r̃)

)
,

where

D̃(r̃) =

λ̃1 0 · · · 0
0 λ̃2 · · · 0
.

0 0 · · · λ̃r̃

,

D̃(p̂F−r̃) =

λ̃r̃+1 0 · · · 0
0 λ̃r̃+2 · · · 0

.

0 0 · · · λ̃p̂F

,

9

and sizes of Ũ(r̃), Ũ(p̂F−r̃), ω̃(r̃), and ω̃(p̂F−r̃) are N × r̃, N × (p̂F − r̃), r̃ × 1 and
(p̂F − r̃)× 1, respectively. Since D̃(p̂F) = ŨT

(p̂F)Ũ(p̂F), we obtain

ŨT
(r̃)Ũ(r̃) = D̃(r̃),

ŨT
(p̂F−r̃)Ũ(p̂F−r̃) = D̃(p̂F−r̃)

and

ŨT
(r̃)Ũ(p̂F−r̃) = O.

The above model (3.4) can now be written as

Yo = Ũ(r̃)ω̃(r̃) + Ũ(p̂F−r̃)ω̃(p̂F−r̃) + ε∗. (3.5)

To avoid effects of multicollinearity on Ψ, we drop the term Ũ(p̂F−r̃)ω̃(p̂F−r̃) in the
model (3.5) and obtain

Yo = Ũ(r̃)ω̃(r̃) + ε∗∗, (3.6)

where ε∗∗ is a random vector influenced by dropping Ũ(p̂F−r̃)ω̃(p̂F−r̃) in the model (3.5).
The model (3.6) shows that the effects of collinearity and multicollinearity on Ψ are
reduced by transforming the orthogonal matrix Ã.

Note that, ŨT
(r̃)Ũ(r̃) = D̃(r̃). This implies rank(ŨT

(r̃)Ũ(r̃)) = r̃. The last state-

ment implies ŨT
(r̃)Ũ(r̃) is invertible. Hence, the estimator of ω̃(r̃), say ˆ̃ω(r̃), is given

by
ˆ̃ω(r̃) = (Ũ

T
(r̃)Ũ(r̃))

−1Ũ
T
(r̃)yo. (3.7)

Since ŨT
(r̃)y = Ũ

T
(r̃)yo (see Appendix IV), we obtain

ˆ̃ω(r̃) = (Ũ
T
(r̃)Ũ(r̃))

−1Ũ
T
(r̃)y. (3.8)

The prediction value of y, say ÿ, is given by

ÿ = ȳ1N + Ũ(r̃)
ˆ̃ω(r̃). (3.9)

Since

Ũ =
(
Ũ ˜(r)

Ũ(p̂F−r̃) Ũ(pF−p̂F)

)

= ΨÃ

= Ψ
(
Ã ˜(r)

Ã(p̂F−r̃) Ã(pF−p̂F)

)

=
(
ΨÃ ˜(r)

ΨÃ(p̂F−r̃) ΨÃ(pF−p̂F)

)
,

we obtain Ũ(r̃) = ΨÃ(r̃). The Eq. (3.9) can be now written as

ÿ = ȳ1N + ΨÃ(r̃)
ˆ̃ω(r̃). (3.10)

The prediction of the new KPCR model is given by

g(x) := ȳ + ψ(x)T Ã(r̃)
ˆ̃ω(r̃). (3.11)

The elements of the vector ψ(x)T Ã(r̃) =
(
ψ(x)T ã1 ψ(x)T ã2 · · · ψ(x)T ãr̃

)
are

called the 1st, 2nd, · · · , r̃th nonlinear principal component (PC) corresponding ψ,
respectively [14].

Until now, yet we do not know Ũ(r̃) explicitly. To obtain Ũ(r̃) explicitly, we
consider the following theorem:

10

Theorem 3.3. (Mercer [2, 9, 14]) For any symmetric, continuous and positive
semidefinite kernel ξ : Rp × Rp → R, there exist a function φ : Rp → F such that

ξ(x,y) = φ(x)T φ(y).

By using the Mercer Theorem, if we choose a continuous, symmetric and positive
semidefinite kernel κ : Rp×Rp → R then there exist φ : Rp → F such that κ(xi,xj) =
φ(xi)T φ(xj). Suppose ψ = φ and define Kij = κ(xi,xj). The matrix K can now be
written as

K =

K11 K12 · · · K1N

K21 K22 · · · K2N

.
KN1 KN2 · · · KNN

.

We have assumed that λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃r̃ > 0 are eigenvalues of ΨTΨ and
ã1, ã2, · · · , ãr̃ are eigenvectors of ΨTΨ corresponding to λ̃1, λ̃2, · · · , λ̃r̃, where

ãT
i ãj =

{
1 if i = j,

0 otherwise.

By using theorem 3.1 and 3.2, we can obtain

λ̃lτ l = Kτ l for l = 1, 2, · · · , r̃,

ãl =
N∑

i=1

τliψ(xi),

for some τ l =
(
τl1 τl2 · · · τlN

)T ∈ RN \ {0}.
By definition, the vector τ l is an eigenvector of K. Since K is symmetric matrix,

there exists τ̂ 1, τ̂ 2, · · · , τ̂ r̃ ∈ RN \ {0} and

τ̂T
i τ̂ j =

{
1 if i = j,

0 otherwise;

such that τ̂ 1, τ̂ 2, · · · , τ̂ r̃ are eigenvectors of K corresponding to λ̃1, λ̃2, · · · , λ̃r̃. This
implies that τ̂1√

λ̃1

, τ̂2√
λ̃2

, · · · , τ̂ r̃√
λ̃r̃

are also eigenvectors of K corresponding to λ̃1, λ̃2, · · · , λ̃r̃.

We denote τ̂T
l =

(
τ̂l1 τ̂l2 · · · τ̂lN

)
for l = 1, 2, · · · , r̃. Further, we can obtain

ãl =
N∑

i=1

τ̂li√
λ̃l

ψ(xi) for l = 1, 2, · · · , r̃

= ΨT τ̂ l√
λ̃l

.

(3.12)

Denoting

αl :=
τ̂ l√
λ̃l

l = 1, 2, · · · , r̃, (3.13)

and defining
Γ(r̃) :=

(
α1 α2 · · · αr̃

)
, (3.14)

11

imply

Ã(r̃) = (ã1 ã2 · · · ãr̃)

= ΨTΓ(r̃).
(3.15)

Since Ũ(r̃) = ΨÃ(r̃) and by using Eq. (3.15), we obtain

Ũ(r̃) = ΨΨTΓ(r̃)

= KΓ(r̃).
(3.16)

Hence,
ˆ̃ω(r̃) = ((KΓ(r̃))

T (KΓ(r̃)))
−1(KΓ(r̃))

Ty, (3.17)

and the prediction value ÿ can now be written

ÿ = ȳ1N + KΓ(r̃)
ˆ̃ω(r̃), (3.18)

and the prediction of the new KPCR model can now be written as

g(x) = ȳ +
N∑

i=1

ciκ(x,xi), (3.19)

where
(
c1 c2 · · · cN

)T = Γ(r̃)
ˆ̃ω(r̃).

3.2 The new KPCR’s algorithm

In this Section, we summarize the procedures in Section 2 to obtain the prediction
by the new KPCR.

Algorithm:

1. Given: (yi, xi1, xi2, · · · , xip), i = 1, 2, · · · , N .

2. Construct:
y =

(
y1 y2 · · · y2

)T , xi =
(
xi1 xi2 · · · xip

)T and ȳ = 1
N 1T

Ny.

3. Choose a kernel κ : Rp × Rp → R.

4. Construct: Kij = κ(xi,xj) and K = (Kij).

5. Diagonalize K.
Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃r̂ ≥ λ̃r̂+1 ≥ · · · ≥ λ̃N ≥ 0 be eigenvalues of K and
τ̂ 1, τ̂ 2 · · · , τ̂ r̂, τ̂ r̂+1, · · · , τ̂N be eigenvector of K corresponding to λ̃1, λ̃2 · · · , λ̃r̂, λ̃r̂+1, · · · , λ̃N ,
respectively; where

τ̂T
i τ̂ j =

{
1 if i = j,

0 otherwise.

6. Detect collinearity and multicollinearity on K.

Let r̃ be the retained number of nonlinear PC’s such that λ̃r̃+1

λ̃1
,

λ̃r̃+2

λ̃1
, · · · ,

λ̃Ñ

λ̃1
<

1
1000 .

12

7. Construct:
αl = τ̂T

l√
λ̃l

for l = 1, 2, · · · , r̃ and Γ(r̃) =
(
α1 α2 · · · αr̃

)
.

8. Calculate:
U(r̃) = KΓ(r̃),
ˆ̃ω(r̃) = (UT

(r̃)U(r̃)−1UT
(r̃)y,

c :=
(
c1 c2 · · · cN

)T = Γ(r̃)
ˆ̃ω(r̃).

9. Given a vector x ∈ Rp, the prediction by the new KPCR is given by

g(x) = ȳ +
∑N

j=1 ciκ(x,xj).

Note that, the above algorithm works under the assumption
∑N

i=1 ψ(xi) = 0.
When

∑N
i=1 ψ(xi) 6= 0, we construct KN := K − EK −KE + EKE instead of K

in Step 4, where E is a matrix N × N and all elements of E are 1
N . Further, we

diagonalize KN in Step 5 and work based on KN in the subsequent steps.

4 Case Studies

In these case studies, we used the Gaussian kernel K(x,y) = exp(−‖x−y‖2
%), the Poly-

nomial kernel K(x,y) = (xTy)d and the Sigmoid kernel K(x,y) = tanh(r2(xTy)r1 +
θ) where %, d, r1, r2 and θ are parameters of the kernel functions.

To test the capabilities of the linear regression, the previous KPCR and the new
KPCR, we used toy data and some real data. We divided the toy data into two
data sets, i.e., training data and testing data. A training data set is defined as given
data that are going to be used to obtain the estimators of the linear regression, the
previous KPCR and the new KPCR, respectively. A testing data set is defined as
given data with noise that are going to be used to test the capabilities of the linear
regression, the previous KPCR and the new KPCR, respectively. We assume that
the noise is normally distributed.

As real data, we have used the stock of cars in the Netherlands (in period 1965-
1989) and the weight of a certain kind of female chickens observed once a week [7]
by using the Gaussian kernel (% = 0.5). We compared the capabilities of the linear
regression, the previous KPCR, a nonlinear regression based on Gompertz function
and the new KPCR. The Gompertz function is given by

f(x, a, b, c) = expa−b exp−cx
, b, c > 0, a ∈ R. (4.1)

4.1 The toy data

For this case study, we use toy data generated by the function y = | sin(x)|
|x| for x 6= 0.

We set y = 1 for x = 0. The training data are generated by x = −10 + 0.2× (i− 1)
for i = 1, 2, · · · , 101. The testing data are generated by x = −10 + 0.25 × (i − 1)
for i = 1, 2, · · · , 81, and the standard deviation of noise of the training data is 0.05.
The results of this study by using the Gaussian kernel (% = 0.5), the Polynomial
kernel (d = 4) and the Sigmoid kernel (r1 = 4, r1 = 2, θ = 0.1) are shown in Figures
1 - 6, Figures 7-8 and Figures 9-12, respectively.

13

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Comparison the lin. reg., the previous and new KPCR - train set

Figure 1: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given training data, the GREEN CURVE is the linear
regression (RMSE=0.3516), the RED CURVE is the new KPCR (RMSE=4.0033e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=0.0042 and the retained number of nonlinear PC’s is 30),
respectively.

According to this study, the RMSE of the new KPCR by using the Gaussian
kernel is better than the others. The RMSE of the new KPCR by using the Gaussian
kernel is smaller than that of the Polynomial kernel and the Sigmoid kernel.

4.2 The real data

As real data, we have used the stock of cars in the Netherlands (in period 1965-1989)
and the weight of a certain kind of female chickens observed once a week [7] by using
the Gaussian kernel (% = 0.5). The stock of cars in the Netherlands and the weight
of female chickens are given in the Table 1 and Table 2, respectively.

Jukic et al. [7] used the Gompertz function (4.1) to obtain the nonlinear regres-
sions of the data. The estimators they obtained for a, b and c are 8.69571, 1.53597
and 0.105687, respectively, for the stock of cars in the Netherlands. The RMSE of
their nonlinear regression for the stock of cars in the Netherlands is 63.2097 [7]. In
our observation, the RMSE using the linear regression is 2.0587E+02. By using the
retained number of PC’s are 10, 20, and 24, the RMSE of the previous KPCR are
218.0894, 38.4962 and 2.1932e-012, respectively. The RMSE of the new KPCR is
2.1932e-012. The results of the case studies are shown in Figures 12-14.

For the weight of female chickens, the estimators they obtained for a, b and
c are 1.55467, 4.13773 and 0.238587, respectively. The RMSE of their nonlinear
regression for the weight of female chickens is 1.405E-02 [7]. The RMSE using the
linear regression is 1.0230E-01. By using the retained number of PC’s are 5, 10,
12 and 13, the RMSE of the previous KPCR are 0.2068, 0.0472, 1.3259e-015 and

14

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - train set

Figure 2: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given training data, the GREEN CURVE is the linear
regression (RMSE=0.3516), the RED CURVE is the new KPCR (RMSE=4.0033e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=0.0013 and the retained number of nonlinear PC’s is 40),
respectively.

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - train set

Figure 3: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given training data, the GREEN CURVE is the linear
regression (RMSE=0.3516), the RED CURVE is the new KPCR (RMSE=4.0033e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=4.0033e-004 and the retained number of nonlinear PC’s is
48), respectively.

15

0 10 20 30 40 50 60 70 80 90
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Comparison the lin. reg., the previous and new KPCR - test set

Figure 4: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given testing data, the GREEN CURVE is the linear
regression (RMSE=0.3513), the RED CURVE is the new KPCR (RMSE=3.7733e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=0.0044 and the retained number of nonlinear PC’s is 30),
respectively.

0 10 20 30 40 50 60 70 80 90
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - test set

Figure 5: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given testing data, the GREEN CURVE is the linear
regression (RMSE= 0.3513), the RED CURVE is the new KPCR (RMSE=3.7733e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=0.0013 and the retained number of nonlinear PC’s is 40),
respectively.

16

0 10 20 30 40 50 60 70 80 90
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - test set

Figure 6: The linear regression, the new KPCR and the previous KPCR (Using the
Gaussian kernel, % = 0.5) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the given testing data, the GREEN CURVE is the linear
regression (RMSE=0.3513), the RED CURVE is the new KPCR (RMSE=3.7733e-
004 and the number of nonlinear PC’s retained is 48), and the BLUE CURVE is the
previous KPCR (RMSE=3.7733e-004 and the retained number of nonlinear PC’s is
48), respectively.

0 10 20 30 40 50 60 70 80 90
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - test set

Figure 7: The linear regression, the new KPCR and the previous KPCR (Using the
Polynomial kernel, d = 4) for toy data generated by the function y = | sin(x)|

|x| , x 6= 0.
The BLACK DOTS are the testing data, the GREEN CURVE is the linear regression
(RMSE=0.3516), the RED CURVE is the new KPCR (RMSE= 0.3360 and the
number of nonlinear PC’s retained is 1), and the BLUE CURVE is the previous
KPCR (RMSE=0.3365 and the retained number of nonlinear PC’s is 4), respectively.

17

0 10 20 30 40 50 60 70 80 90
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Comparison the lin. reg., the previous and new KPCR - test set

Figure 8: The linear regression, the new KPCR and the previous KPCR (Using the
Polynomial kernel, d = 4) for toy data generated by the function y = | sin(x)|

|x| , x 6=
0. The BLACK DOTS are the testing data, the GREEN CURVE is the linear
regression (RMSE=0.3516), the RED CURVE is the new KPCR (RMSE=0.3360
and the number of nonlinear PC’s retained is 1), and the BLUE CURVE is the
previous KPCR (RMSE=0.3360 and the retained number of nonlinear PC’s is 1),
respectively.

0 10 20 30 40 50 60 70 80 90
-1.5

-1

-0.5

0

0.5

1

1.5

Comparison the lin. reg., the previous and new KPCR - test set

Figure 9: The linear regression, the new KPCR and the previous KPCR (Using
the Sigmoid kernel, r1 = 4, r1 = 2, θ = 0.1) for toy data generated by the function
y = | sin(x)|

|x| , x 6= 0. The BLACK DOTS are the given testing data, the GREEN
CURVE is the linear regression (RMSE=0.3516), the RED CURVE is the new KPCR
(RMSE=0.6325 and the retained number of nonlinear PC’s is 9), and the BLUE
CURVE is the previous KPCR (RMSE=0.6324 and the number of nonlinear PC’s
retained is 5), respectively.

18

0 10 20 30 40 50 60 70 80 90
-1.5

-1

-0.5

0

0.5

1

1.5

Comparison the lin. reg., the previous and new KPCR - test set

Figure 10: The linear regression, the new KPCR and the previous KPCR (Using
the Sigmoid kernel, r1 = 4, r1 = 2, θ = 0.1) for toy data generated by the function
y = | sin(x)|

|x| , x 6= 0. The BLACK DOTS are the given testing data, the GREEN
CURVE is the linear regression (RMSE=0.3516), the RED CURVE is the new KPCR
(RMSE=0.6325 and the number of nonlinear PC’s retained is 9), and the BLUE
CURVE is the previous KPCR (RMSE=0.6325 and the retained number of nonlinear
PC’s is 9), respectively.

0 10 20 30 40 50 60 70 80 90
-30

-20

-10

0

10

20

30

Comparison the lin. reg., the previous and new KPCR - test set

Figure 11: The linear regression, the new KPCR and the previous KPCR (Using
the Sigmoid kernel, r1 = 4, r1 = 2, θ = 0.1) for toy data generated by the function
y = | sin(x)|

|x| , x 6= 0. The BLACK DOTS are the given testing data, the GREEN
CURVE is the linear regression (RMSE=0.3516), the RED CURVE is the new KPCR
(RMSE=0.6325 and the number of nonlinear PC’s retained is 9), and the BLUE
CURVE is the previous KPCR (RMSE=5.6581 and the retained number of nonlinear
PC’s is 10), respectively.

19

1.3788e-015, respectively. The RMSE of the new KPCR is 1.3259e-015. The results
of the case studies are shown in Figures 15-18.

Table 1:
The stock of cars (expressed in Thousands) in the Netherlands (in period 1965-1989).
xi(year-1965) 0 1 2 3 4 5 6 7 8

yi 1273 1502 1696 1952 2212 2465 2702 2903 3080

xi(year-1965) 9 10 11 12 13 14 15 16 17
yi 3214 3399 3629 3851 4056 4312 4515 4594 4630

xi(year-1965) 18 19 20 21 22 23 24
yi 4728 4818 4901 4950 5118 5251 5371

Table 2:
The observing once a week the weight of a certain kind of female chickens.
xi(week) 1 2 3 4 5 6 7 8 9
yi(kg) 0.147 0.357 0.641 0.980 1.358 1.758 2.159 2.549 2.915

xi(week) 10 11 12 13
yi(kg) 3.251 3.510 3.740 3.925

We conclude this Section by two conclusions. Firstly, for the stock of cars in the
Netherlands and for the weight of female chickens, the new KPCR is better than
the linear regression and the nonlinear regressions based on the Gompertz function.
Secondly, when the retained number of PC’s for the previous KPCR and the new
KPCR is the same number then they will give the same RMSE.

5 Conclusion

The regression analysis is one of the important techniques in multivariate data
analysis. However, the linear regression model has a drawback. Existence of mul-
ticollinearity (collinearity) on X can seriously deteriorate the result by the linear
regression model. In [3, 6, 8, 10, 16, 17], they restricted the linear regression model
to the case where the column vectors of X are linearly independent. In this case,
collinearity never exists on X.

To avoid the effect of multicollinearity, we can use the principal component
regression (PCR) [17]. However, the PCR model still has a linear fashion. Since
the most real problems are nonlinear, the PCR has difficulties on its applications.
To overcome such a drawback, Hoegaerts et al. [4], Jade et al. [5], and Rosipal et
al. [11, 12, 13] used a technique, called the kernel principal component regression
(KPCR). However, their KPCR [4, 5, 11, 12, 13] still have some drawbacks, i.e., the
procedure to derive their KPCR and the choice rule of the retained number of PC’s
to avoid the effect of multicollinearity.

To overcome the above drawbacks, we propose a new approach for the KPCR.
Firstly, we generalized the linear regression model in [3, 6, 8, 10, 16, 17] by relaxing
the linear independence assumption. Stated in other words, our model can be used
whether the column vectors of X are linearly independent or linearly dependent.
Secondly, we showed that the PCR can also be used to reduce the effect of collinear-
ity on X. Finally, we propose a new approach for KPCR by using the above relaxing

20

0 5 10 15 20 25
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Comparison the lin. reg., the previous and new KPCR - train set

Figure 12: The linear regression, the new KPCR and the previous KPCR of the
stock of cars (expressed in Thousands, using the Gaussian kernel (% = 0.5)) in the
Netherlands (in period 1965-1989). The BLACK DOTS are the given data, the
GREEN CURVE is the linear regression (RMSE=205.8677), the RED CURVE is
the new KPCR (RMSE=2.1932e-012 and the number of nonlinear PC’s retained is
24) and BLUE CURVE is the previous KPCR (RMSE=218.0894 and the retained
number of nonlinear PC’s is 10), respectively.

0 5 10 15 20 25
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Comparison the lin. reg., the previous and new KPCR - train set

Figure 13: The linear regression, the new KPCR and the previous KPCR of the
stock of cars (expressed in Thousands, using the Gaussian kernel (% = 0.5)) in the
Netherlands (in period 1965-1989). The BLACK DOTS are the given data, the
GREEN CURVE is the linear regression (RMSE=205.8677), the RED CURVE is
the new KPCR (RMSE=2.1932e-012 and the number of nonlinear PC’s retained is
24) and BLUE CURVE is the previous KPCR (RMSE=38.4962 and the retained
number of nonlinear PC’s is 20), respectively.

21

0 5 10 15 20 25
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Comparison the lin. reg., the previous and new KPCR - train set

Figure 14: The linear regression, the new KPCR and the previous KPCR of the
stock of cars (expressed in Thousands, using the Gaussian kernel (% = 0.5)) in the
Netherlands (in period 1965-1989). The BLACK DOTS are the given data, the
GREEN CURVE is the linear regression (RMSE=205.8677), the RED CURVE is
the new KPCR (RMSE=2.1932e-012 and the number of nonlinear PC’s retained is
24) and BLUE CURVE is the previous KPCR (RMSE=2.1932e-012 and the retained
number of nonlinear PC’s is 24), respectively.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Comparison the lin. reg., the previous and new KPCR - train set

Figure 15: The linear regression, the new KPCR and the previous KPCR of the
weight of female chickens (Using the Gaussian kernel, % = 0.5). The BLACK DOTS
are the given data, the GREEN CURVE is the linear regression (RMSE=0.1023), the
RED CURVE is the new KPCR (RMSE=1.3259e-015 and the number of nonlinear
PC’s retained is 12) and BLUE CURVE is the previous KPCR (RMSE=0.2068 and
the retained number of nonlinear PC’s is 5), respectively.

22

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Comparison the lin. reg., the previous and new KPCR - train set

Figure 16: The linear regression, the new KPCR and the previous KPCR of the
weight of female chickens (Using the Gaussian kernel, % = 0.5). The BLACK DOTS
are the given data, the GREEN CURVE is the linear regression (RMSE=0.1023), the
RED CURVE is the new KPCR (RMSE=1.3259e-015 and the number of nonlinear
PC’s retained is 12) and BLUE CURVE is the previous KPCR (RMSE=0.0472 and
the retained number of nonlinear PC’s is 10), respectively.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Comparison the lin. reg., the previous and new KPCR - train set

Figure 17: The linear regression, the new KPCR and the previous KPCR of the
weight of female chickens (Using the Gaussian kernel, % = 0.5). The BLACK DOTS
are the given data, the GREEN CURVE is the linear regression (RMSE=0.1023), the
RED CURVE is the new KPCR (RMSE=1.3259e-015 and the number of nonlinear
PC’s retained is 12) and BLUE CURVE is the previous KPCR (RMSE=1.3788e-015
and the retained number of nonlinear PC’s is 13), respectively.

23

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Comparison the lin. reg., the previous and new KPCR - train set

Figure 18: The linear regression, the new KPCR and the previous KPCR of the
weight of female chickens (Using the Gaussian kernel, % = 0.5). The BLACK DOTS
are the given data, the GREEN CURVE is the linear regression (RMSE=0.1023),
the RED CURVE is the new KPCR (The number of nonlinear PC’s retained is 12,
RMSE=1.3259e-015) and BLUE CURVE is the previous KPCR (RMSE=1.3259e-
015 the retained number of nonlinear PC’s is 12), respectively.

assumption. The procedure to derive the new approach for the KPCR is straight-
forward as the procedure to derive the PCR is. In the new approach for KPCR,
we propose an algorithm that it can automatically obtain the retained number of
nonlinear PC’s to avoid the effect of multicollinearity (collinearity).

Further, we have done several case studies by using several kernel functions.
Our case studies showed that the new KPCR by using the Gaussian kernel is better
than the others in the RMSE sense. The RMSE of the new KPCR by using the
Gaussian kernel is smallest. In our case studies, we compared the capabilities of the
linear regression, the previous KPCR and the new KPCR. We note that the retained
numbers of PC’s for the previous KPCR are chosen by an experimenter. When the
retained number of PC’s for the previous KPCR and the new KPCR is the same
number then they will give the same RMSE. For the real data, the stock of cars in
the Netherlands (in period 1965-1989) and the weight of a certain kind of female
chickens [7], the results of the new KPCR are better than the linear regression and
the nonlinear regressions using the Gompertz function.

References

[1] Howard Anton. Elementary Linear Algebra. John Wiley and Sons, Inc., 2000.

[2] K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks: The-
ory and Applications. John Wiley and Sons, Inc., 1996.

24

[3] Norman R. Draper and Harry Smith. Applied Regression Analysis. John Wiley
and Sons, 1998.

[4] L. Hoegaerts, J.A.K. Suykens, J. Vandewalle, and B. De Moor. Subset based
least squares subspace in reproducing kernel hilbert space. Neurocomputing,
pages 293–323, 2005.

[5] A.M. Jade, B. Srikanth, B.D Kulkari, J.P Jog, and L. Priya. Feature extraction
and denoising using kernel pca. Chemical Engineering Sciences, 58:4441–4448,
2003.

[6] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

[7] Dragan Jukic, Gordana Kralik, and Rudolf Scitovski. Least-squares fitting
gompertz curve. Journal of Computation and Applied Mathematics, 169:359–
375, 2004.

[8] William Mendenhall, Dennis D. Wackerly, and Richard L. Sheaffer. Mathemat-
ical Statistics with Applications. PWS-Kent Publishing Company, 1990.

[9] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s theorem, feature
maps, and smoothing. Lecture Notes in Computer Science, Springer Berling,
4005/2006, 20009.

[10] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. Introduc-
tion to Linear Regression. Wiley-Interscience, 2006.

[11] Roman Rosipal, Mark Girolami, Leonard J. Trejo, and Andrzej Cichoki. Ker-
nel pca for feature extraction and de-noising in nonlinear regression. Neural
Computing and Applications, pages 231–243, 2001.

[12] Roman Rosipal and Leonard J. Trejo. Kernel partial least squares regression
in reproducing kernel hilbert space. Journal of Machine Learning Research 2,
pages 97–123, 2002.

[13] Roman Rosipal, Leonard J. Trejo, and Andrzej Cichoki. Kernel principal com-
ponent regression with em approach to nonlinear principal component extrac-
tion. Technical Report, University of Paisley, UK, 2001.

[14] B. Scholkopf, A. Smola, and K.R. Muller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[15] Bernhard Scholkopf and Alexander J. Smola. Learning with kernels. The MIT
Press., 2002.

[16] George A.F. Seber and Alan J. Lee. Linear Regression Analysis. John Wiley
and Sons, Inc., 2003.

[17] M.S. Srivastava. Methods of Multivariate Statistics. John Wiley and Sons, Inc.,
2002.

25

6 Appendix

6.1 Appendix I

Lemma 6.1. Let xk ∈ Rp, (k = 1, 2 · · · , N), be a set of a data. X̃ :=
(
xT

1 xT
2 · · · xT

N

)T

and C := 1
N

∑N
i=1 xixT

i . Suppose λ̂ 6= 0 and v̂ ∈ Rp \ {0}. The following statements
are equivalent:
(1) λ̂ and v̂ satisfy λv = Cv.
(2) λ̂ and v̂ satisfy λxT

k v = xT
k Cv, for k = 1, · · ·, N , and

v ∈ span {x1,x2, · · · ,xN}.
(3) λ̂ and v̂ satisfy λCv = C2v and

v ∈ span {x1,x2, · · · ,xN}.

Proof. We prove (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1).
(1) ⇒ (2):
Suppose λ̂ and v̂ satisfy λv = Cv,
⇒ λ̂v̂ = Cv̂
⇒ (a) λ̂xT

k v̂ = xT
k Cv̂, k = 1, · · ·, N .

(b) v̂ = 1
λCv̂, since λ̂ 6= 0.

⇒ v̂ = 1
λ

1
N

∑N
i=1 xixT

i v̂ =
∑N

i=1
1

Nλ < xi, v̂ > xi.
Letting αi = 1

Nλ < xi, v̂ >,
⇒ v̂ =

∑N
i=1 αixi.

⇒ v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ λ̂ and v̂ satisfy λxT

k v = xT
k Cv, for k = 1, · · ·, N , and

v ∈ span {x1,x2, · · · ,xN}.

(2) ⇒ (3):
Suppose λ̂ and v̂ satisfy λxT

k v = xT
k Cv, for k = 1, · · ·, N ,

and v ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λ̂xT

k v̂ = xT
k Cv̂, k = 1, · · ·, N .

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λ̂xkxT

k v̂ = xkxT
k Cv̂, k = 1, · · ·, N .

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λ̂

∑N
k=1 xkxT

k v̂ =
∑N

k=1 xkxT
k Cv̂.

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λ̂(

∑N
k=1 xkxT

k)v̂ = (
∑N

k=1 xkxT
k)Cv̂.

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λNCv̂ = NCCv̂

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ (a) λ̂Cv̂ = C2v̂.

(b) v̂ ∈ span {x1,x2, · · ·,xN}.
⇒ λ̂ and v̂ satisfy λCv = C2v and

v ∈ span {x1,x2, · · · ,xN}.

(3) ⇒ (1):
Suppose λ̂ and v̂ satisfy λCv = C2v and v ∈ span {x1,x2, · · ·,xN}.

⇒ λ̂Cv̂ = C2v̂ and v̂ ∈ span {x1,x2, · · ·,xN}.
Since C is symmetric,

26

⇒ ∃p1,p2,···,pp∈{p|p is an eigenvector of C} {p1,p2, · · ·,pp} is an orthonormal
basis for Rp.
Let λi be eigenvalue of C belonging to pi, (i = 1, · · ·, p).

⇔ λipi = Cpi, (i = 1, · · ·, p)
Since v̂ ∈ Rp \ {0},

⇒ ∃α1,α2,···,αp∈R v̂ =
∑p

i=1 αipi.

Case 1: λi > 0 for i = 1, · · ·, p.
⇒ λ̂C

∑p
i=1 αipi = C2

∑p
i=1 αipi.

⇒ λ̂
∑p

i=1 αiCpi =
∑p

i=1 αiC2pi.
⇒ λ̂

∑p
i=1 αiλipi =

∑p
i=1 αiλ

2
i pi.

⇒ ∑p
i=1(λ̂αiλi − αiλ

2
i)pi = 0.

Since {p1, · · ·,pp} is linearly independent,
⇒ (λ̂αiλi − αiλ

2
i) = 0, for i = 1, · · ·, p.

⇒ λi(λ̂αi − αiλi) = 0, for i = 1, · · ·, p.
Since λi > 0 for i = 1, · · ·, p,

⇒ (λ̂αi − αiλi) = 0, for i = 1, · · ·, p.
⇒ λ̂αi = αiλi, for i = 1, · · ·, p.
⇒ λ̂αipi = αiλipi, for i = 1, · · ·, p.
⇒ λ̂

∑p
i=1 αipi =

∑p
i=1 αiλipi =

∑p
i=1 αiCpi.

Since v̂ =
∑p

i=1 αipi,
⇒ λ̂v̂ = Cv̂.

Case 2: λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λp = 0.
⇒ λ̂C

∑p
i=1 αipi = C2

∑p
i=1 αipi.

⇒ λ̂C(
∑r

i=1 αipi +
∑p

i=r+1 αipi) = C2(
∑r

i=1 αipi +
∑p

i=r+1 αipi).
Let v1 =

∑r
i=1 αipi and v2 =

∑p
i=r+1 αipi ⇒ v̂ = v1 + v2.

⇒ λ̂C(v1 + v2) = C2(v1 + v2).
Since Cv2 = 0 ⇒ C2v2 = 0.

⇒ λ̂Cv1 = C2v1.
⇒ λ̂C

∑r
i=1 αipi = C2

∑r
i=1 αipi.

⇒ λ̂
∑r

i=1 αiCpi =
∑r

i=1 αiC2pi.
⇒ λ̂

∑r
i=1 αiλipi =

∑r
i=1 αiλ

2
i pi.

⇒ ∑r
i=1(λ̂αiλi − αiλ

2
i)pi = 0.

Since {p1, · · ·,pr} is linearly independent,
⇒ (λ̂αiλi − αiλ

2
i) = 0, for i = 1, · · ·, r.

⇒ λi(λ̂αi − αiλi) = 0, for i = 1, · · ·, r.
Since λi > 0 for i = 1, · · ·, r,

⇒ (λ̂αi − αiλi) = 0, for i = 1, · · ·, r.
⇒ λ̂αi = αiλi, for i = 1, · · ·, r.
⇒ λ̂αipi = αiλipi, for i = 1, · · ·, r.
⇒ λ̂

∑r
i=1 αipi =

∑r
i=1 αiλipi =

∑r
i=1 αiCpi.

Since v1 =
∑r

i=1 αipi,
⇒ λ̂v1 = Cv1.

By assumption λ̂ 6= 0,
⇒ v1 = 1

λ̂
Cv1.

⇒ v1 = 1
λ̂

1
N

∑N
i=1 xixT

i v1.

27

⇒ v1 = 1
Nλ̂

∑N
i=1 < xi,v1 > xi.

⇒ v1 =
∑N

i=1
1

Nλ̂
< xi,v1 > xi.

⇒ v1 ∈ Column space of X̃T .
By assumption, v̂ ∈ span {x1,x2, · · ·,xN},

⇒ v̂ ∈ Column space of X̃T .
⇒ v2 = v̂ − v1 ∈ Column space of X̃T .

Since Cv2 = 0
⇒ 1

N X̃T X̃v2 = 0. (Note: C = 1
N

∑N
i=1 xixT

i = 1
N X̃T X̃)

⇒ X̃T X̃v2 = 0.
⇒ v2 ∈ Nullspace of X̃T X̃.

Since Nullspace of X̃T X̃ = Nullspace of X̃,
⇒ v2 ∈ Nullspace of X̃.

Since Nullspace of X̃ ⊥ Column space of X̃T ,
⇒ < v2,v2 >= 0.
⇒ v2 = 0.

Since v̂ = v1 + v2,
⇒ v̂ = v1.

Since λ̂v1 = Cv1.
⇒ λ̂v̂ = Cv̂.

Case 3: λi = 0 for i = 1, 2, · · · , p.
⇒ C

∑p
i=1 αipi =

∑p
i=1 αiCpi =

∑p
i=1 αiλipi = 0.

⇒ v̂ ∈ Nullspace of X̃T X̃.
Since Nullspace of X̃T X̃= Nullspace of X̃.

⇒ v̂ ∈ Nullspace of X̃.
By assumption, v̂ ∈ span {x1,x2, · · ·,xN}.

⇒ v̂ ∈ Column space of X̃T .
Since Nullspace of X̃ ⊥ Column space of X̃T .

⇒ < v̂, v̂ >= 0.
⇒ v̂ = 0.
(Contradiction to our assumption, i.e, v̂ 6= 0).

Lemma 6.2. Let xk ∈ Rp, (k = 1, 2 · · · , N), be a set of a data, ψ : Rp →
F be a function from Rp into F, and ψ(xk) be the image of xk. Define Ψ :=(
ψT (x1) ψT (x2) · · · ψT (xN)

)T , C̃ := 1
N ΨTΨ and K := ΨΨT . Suppose λ̂ 6= 0

and â ∈ F \ {0}. The following statements are equivalent:

1. λ̂ and â satisfy λa = C̃a.

2. λ̂ and â satisfy λNKb = K2b and a =
∑N

i=1 biψ(xi),
for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.

Proof. Suppose λ̂ and â satisfy λa = C̃a.
⇔ λ̂ and â satisfy λψT (xk)a = ψT (xk)C̃a, for k = 1, · · ·, N ,

and a ∈ span {ψ(x1), ψ(x2), · · · , ψ(xN)} (By Lemma (6.1)).
⇔ λ̂ and â satisfy λψT (xk)a = ψT (xk)C̃a, for k = 1, · · ·, N ,

and a =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇔ λ̂ and â satisfy λψT (xk)

∑N
i=1 biψ(xi) = ψT (xk)C̃

∑N
i=1 biψ(xi), for k = 1, · · ·, N ,

28

and a =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇔ λ̂ and â satisfy λ

∑N
i=1 biψ

T (xk)ψ(xi) =
∑N

i=1 biψ
T (xk)C̃ψ(xi), for k = 1, · · ·, N ,

and a =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇔ λ̂ and â satisfy λN

∑N
i=1 biψ

T (xk)ψ(xi) =
∑N

i=1 biψ
T (xk)

∑N
j=1 ψ(xj)ψT (xj)ψ(xi),

for k = 1, · · ·, N ,
and a =

∑N
i=1 biψ(xi), for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.
Since

∑N
i=1 biψ

T (xk)ψ(xi) = (Kb)k and∑N
i=1 biψ

T (xk)
∑N

j=1 ψ(xj)ψT (xj)ψ(xi) = (K2b)k for k = 1, · · ·, N ,
where (Kb)k is the kth element of Kb and
(K2b)k is the kth element of K2b, respectively.

⇔ λ̂ and â satisfy λN(Kb)k = (K2b)k for k = 1, · · ·, N ,
and a =

∑N
i=1 biψ(xi), for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇔ λ̂ and â satisfy λNKb = K2b

and a =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.

Theorem 6.3. Let xk ∈ Rp, (k = 1, 2 · · · , N), be a set of a data, ψ : Rp →
F be a function from Rp into F, and ψ(xk) be the image of xk. Define Ψ :=(
ψT (x1) ψT (x2) · · · ψT (xN)

)T , C̃ := 1
N ΨTΨ and K := ΨΨT . Suppose λ̂ 6= 0

and â ∈ F \ {0}. The following statements are equivalent:

1. λ̂ and â satisfy λa = C̃a.

2. λ̂ and â satisfy λNKb = K2b and a =
∑N

i=1 biψ(xi),
for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.

3. λ̂ and â satisfy λN b̃ = Kb̃ and a =
∑N

i=1 b̃iψ(xi),
for some b̃ =

(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.

Proof. We prove (3) ⇔ (2), since (1)⇔ (2) is proven by lemma (6.2).
(3) ⇒ (2):
Suppose λ̂ and â satisfy λN b̃ = Kb̃ and a =

∑N
i=1 b̃iψ(xi),

for some b̃ =
(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.
⇒ λ̂N b̃ = Kb̃ and â =

∑N
i=1 b̃iψ(xi),

for some b̃ =
(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.
⇒ λ̂NKb̃ = K2b̃ and â =

∑N
i=1 b̃iψ(xi),

for some b̃ =
(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.
⇒ ∃

b=(b1 b2 · · · bN)T∈RN\{0} λ̂NKb = K2b and â =
∑N

i=1 biψ(xi).

⇒ λ̂ and â satisfy λNKb = K2b and a =
∑N

i=1 biψ(xi),
for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.

(2) ⇒ (3):
Suppose λ̂ and â satisfy λNKb = K2b and a =

∑N
i=1 biψ(xi),

for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂NKb = K2b and â =

∑N
i=1 biψ(xi),

29

for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ ∃

b=(b1 b2 · · · bN)T∈RN\{0}λ̂NKb = K2b and â =
∑N

i=1 biψ(xi).

Since K is symmetric,
⇒ ∃p1,p2,···,pN∈{p|p is an eigenvector of K} {p1,p2, · · ·,pN} is an orthonormal

basis for RN .
Let λi be eigenvalue of K belonging to pi, (i = 1, · · ·, N).

⇔ λipi = Cpi, (i = 1, · · ·, N)
Since b ∈ RN \ {0},

⇒ ∃α1,α2,···,αN∈R b =
∑N

i=1 αipi.

Case 1: λi > 0 for i = 1, · · · , N .
⇒ λ̂NK

∑N
i=1 αipi = K2

∑N
i=1 αipi,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αiKpi =

∑N
i=1 αiK2pi,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αiλipi =

∑N
i=1 αiλ

2
i pi,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ ∑N

i=1(λ̂Nαiλi − αiλ
2
i)pi = 0,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
Since {p1, · · ·,pN} is linearly independent,

⇒ (λ̂Nαiλi − αiλ
2
i) = 0, for i = 1, · · ·, N ,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λi(λ̂Nαi − αiλi) = 0, for i = 1, · · ·, N ,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
Since λi > 0 for i = 1, · · ·, N ,

⇒ (λ̂Nαi − αiλi) = 0, for i = 1, · · ·, N ,
â =

∑N
i=1 biψ(xi), for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂Nαi = αiλi, for i = 1, · · ·, N ,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂Nαipi = αiλipi, for i = 1, · · ·, N ,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂N

∑N
i=1 αipi =

∑N
i=1 αiλipi =

∑N
i=1 αiKpi,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
Since b =

∑N
i=1 αipi,

⇒ λ̂Nb = Kb
â =

∑N
i=1 biψ(xi), for some b =

(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN b̃ = Kb̃ and a =

∑N
i=1 b̃iψ(xi),

for some b̃ =
(
b̃1 b̃2 · · · b̃N

)T ∈ RN \ {0}.

Case 2: λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λN = 0.
⇒ λ̂NK

∑N
i=1 αipi = K2

∑N
i=1 αipi,

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
⇒ λ̂NK(

∑r
i=1 αipi +

∑N
i=r+1 αipi) = K2(

∑r
i=1 αipi +

∑N
i=r+1 αipi),

30

â =
∑N

i=1 biψ(xi), for some b =
(
b1 b2 · · · bN

)T ∈ RN \ {0}.
Let v1 =

(
v11 v12 · · · v1N

)T =
∑r

i=1 αipi

and v2 =
(
v21 v22 · · · v2N

)T =
∑N

i=r+1 αipi.

⇒ b = v1 + v2 =
(
v11 + v21 v12 + v22 · · · v1N + v2N

)T

and Kv2 =
∑N

i=r+1 αiKpi = 0.
⇒ ∑N

i=1 v2i(K)ki = 0 for k = 1, 2, · · · , N .
⇒∑N

i=1 v2iψ
T (xk)ψ(xi) = 0 for k = 1, 2, · · · , N .

⇒ψT (xk)
∑N

i=1 v2iψ(xi) = 0 for k = 1, 2, · · · , N .
We claim that

∑N
i=1 v2iψ(xi) = 0 (Why?).

Suppose
∑N

i=1 v2iψ(xi) 6= 0.
⇒ (

∑N
i=1 v2iψ(xi))T (

∑N
j=1 v2jψ(xj)) 6= 0.

⇒ v21ψ
T (x1)

∑N
j=1 v2jψ(xj) + v22ψ

T (x2)
∑N

j=1 v2jψ(xj) + · · ·
v2NψT (xN)

∑N
j=1 v2jψ(xj) 6= 0

⇒ 0 6= 0 (Contradiction).

⇒ λ̂NK(v1 + v2) = K2(v1 + v2),
â =

∑N
i=1(v1i + v2i)ψ(xi) for some b = v1 + v2 ∈ RN \ {0}.

Since Kv2 = 0 ⇒ K2v2 = 0; and
∑N

i=1 v2iψ(xi) = 0.
⇒ λ̂NKv1 = K2v1,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂NK

∑r
i=1 αipi = K2

∑r
i=1 αipi,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αiKpi =

∑r
i=1 αiK2pi,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αiλipi =

∑r
i=1 αiλ

2
i pi,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ ∑r

i=1(λ̂Nαiλi − αiλ
2
i)pi = 0,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
Since {p1, · · ·,pr} is linearly independent.

⇒ (λ̂Nαiλi − αiλ
2
i) = 0, for i = 1, · · ·, r,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λi(λ̂Nαi − αiλi) = 0, for i = 1, · · ·, r,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
Since λi > 0 for i = 1, · · ·, r,

⇒ (λ̂Nαi − αiλi) = 0, for i = 1, · · ·, r,
â =

∑N
i=1 v1iψ(xi) for some v1 =

(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂Nαi = αiλi, for i = 1, · · ·, r,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂Nαipi = αiλipi, for i = 1, · · ·, r,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂N

∑r
i=1 αipi =

∑r
i=1 αiλipi =

∑r
i=1 αiKpi,

â =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
Since v1 =

∑r
i=1 αipi.

31

⇒ λ̂Nv1 = Kv1,
â =

∑N
i=1 v1iψ(xi) for some v1 =

(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂ and â satisfy λNv1 = Kv1,

a =
∑N

i=1 v1iψ(xi) for some v1 =
(
v11 v12 · · · v1N

)T ∈ RN \ {0}.
⇒ λ̂ and â satisfy λN b̃ = Kb̃,

a =
∑N

i=1 b̃iψ(xi) for some b̃ =
(
b̃1 b̃12 · · · b̃N

)T ∈ RN \ {0}.

Case 3: λ1 = λ2 = · · · = λr = λr+1 = · · · = λN = 0.
⇒ Kb =

∑N
i=1 αiKpi = 0.

⇒ ∑N
i=1 bi(K)ki = 0 for k = 1, 2, · · · , N .

⇒∑N
i=1 biψ

T (xk)ψ(xi) = 0 for k = 1, 2, · · · , N .
⇒ψT (xk)

∑N
i=1 biψ(xi) = 0 for k = 1, 2, · · · , N .

We claim that
∑N

i=1 biψ(xi) = 0 (Why?).
Suppose

∑N
i=1 biψ(xi) 6= 0.

⇒ (
∑N

i=1 biψ(xi))T (
∑N

j=1 bjψ(xj)) 6= 0.
⇒ b1ψ

T (x1)
∑N

j=1 bjψ(xj) + b2ψ
T (x2)

∑N
j=1 bjψ(xj) + · · ·

bNψT (xN)
∑N

j=1 bjψ(xj) 6= 0
⇒ 0 6= 0.
(Contradiction)

6.2 Appendix II

Theorem 6.4. λ̂ is an eigenvalue of ΨTΨ and â is an eigenvector of ΨTΨ corre-
sponding to λ̂ if only if 1

N λ̂ is an eigenvalue of C̃ = 1
N ΨTΨ and â is an eigenvector

of C̃ corresponding to 1
N λ̂.

Proof. λ̂ is an eigenvalue of ΨTΨ and â is an eigenvector of ΨTΨ corresponding to
λ̂.
⇔ ΨTΨâ = λ̂â.
⇔ 1

N ΨTΨâ = 1
N λ̂â.

⇔ C̃â = 1
N λ̂â.

⇔ 1
N λ̂ is an eigenvalue of C̃ and â is an eigenvector of C̃ corresponding to 1

N λ̂

6.3 Appendix III

We prove that UT
(r)y = UT

(r)yo.

Proof. In Section 2, we have defined Z = (IN− 1
N 1N1T

N)X̃ and yo = (IN− 1
N 1N1T

N)y.
Let B = (IN− 1

N 1N1T
N). The matrix B is a symmetric and idempotent matrix, since

32

B = BT and BB = B. Hence, we have Z = BX̃ and yo = By. This implies

ZTyo = ZTBy

= X̃TBTBy

= X̃TBBy (symmetric).

= X̃TBy (idempotent).

= X̃TBTy (symmetric).

= (BX̃)Ty

= ZTy

Since

U =
(
U(r) U(p̂−r) U(p−p̂)

)

= ZA

= Z
(
A(r) A(p̂−r) A(p−p̂)

)

=
(
ZA(r) ZA(p̂−r) ZA(p−p̂)

)
,

we obtain U(r) = ZA(r). This implies,

UT
(r)yo = (ZA(r))

Tyo.

= AT
(r)Z

Tyo.

= AT
(r)Z

Ty.

= (ZA(r))
Ty.

= UT
(r)y.

6.4 Appendix IV

We prove that ŨT
(r̃)y = Ũ

T
(r̃)yo.

Proof. From Section 3, since 1
N 1N1T

NΨ = O we have Ψ = (IN − 1
N 1N1T

N)Ψ and
yo = (IN − 1

N 1N1T
N)y. Let B = (IN − 1

N 1N1T
N). The matrix B is a symmetric

and idempotent matrix, since B = BT and BB = B. Hence, we have Ψ = BΨ and
yo = By. This implies

ΨTyo = ΨTBy

= ΨTBTBy

= ΨTBBy (symmetric).

= ΨTBy (idempotent).

= ΨTBTy (symmetric).

= (BΨ)Ty

= ΨTy

33

Since

Ũ =
(
Ũ ˜(r)

Ũ(p̂F−r̃) Ũ(pF−p̂F)

)

= ΨÃ

= Ψ
(
Ã ˜(r)

Ã(p̂F−r̃) Ã(pF−p̂F)

)

=
(
ΨÃ ˜(r)

ΨÃ(p̂F−r̃) ΨÃ(pF−p̂F)

)
,

we obtain Ũ(r̃) = ΨÃ(r̃). This implies

ŨT
(r̃)yo = (ΨÃ(r̃))

Tyo.

= ÃT
(r̃)Ψ

Tyo.

= ÃT
(r̃)Ψ

Ty.

= (ΨÃ(r̃))
Ty.

= ŨT
(r̃)y.

34

6.5 Appendix V

function new_kpcr_main
% Antoni Wibowo, last modified 08/01/2008.
% Graduate School of System and Information Engineering,
% University of Tsukuba, Japan.
%
% INPUTS:
% X: the training data for the regressor variable.
% Y: the training data for the response variable.
% Xt:the testing for the regressor variable.
% Yt:the testing for the response variable.
%
% OUTPUTS:
% n: the number of observation/data.
% num_of_PC: the nonlinear PCs retained in the previous KPCR (given).
% n_pc_new: the nonlinear PCs retained in the new KPCR.
% Yp_hat: the prediction of the previous KPCR for training data.
% Ypt_hat: the prediction of the previous KPCR for testing data.
% Y_hat: the prediction of the new KPCR for training data.
% Yt_hat: the prediction of the new KPCR for testing data.
% Y_hat_lin: the prediction of the lin. reg. for training data.
% Yt_hat_lin: the prediction of the lin. reg. for testing data.
% RMSEp: RMSE by the previous KPCR for training data.
% RMSEpt: RMSE by the previous KPCR for testing data.
% RMSE: RMSE by the new KPCR for training data.
% RMSEt: RMSE by the new KPCR for testing data.
% RMSE_lin: RMSE by the lin. reg. for training data.
% RMSEt_lin: RMSE by the lin. reg. for testing data.
%%

%clear command window
clc;
%clear all figures
close all;
%removing all variables from memory.
clear all;

%%
% Setting parameters
%%

%Set need_previousKPCR=1 if need to do using the previous KPCR.
need_previousKPCR=1;

%select kernel function
% type: ’G’ Gaussian Kernel exp((|x-y|^2)/par1)

35

% ’P’ Polynomial Kernel (<x,y>)^par2:
% ’S’ Sigmoid Kernel tanh(par3*<x,y>^par4+par5)
% ’L’ linear kernel <x,y>
type=’G’;

%gaussian parameter.
par1 =0.5;

%polynomial parameter.
par2=4;

%sigmoid parameter.
par3=2;
par4=2;
par5=0.1;

%display kernel’s parameters
if type==’G’

disp(’parameter gaussian’);disp(par1);
elseif type==’P’

disp(’parameter polynomial’);disp(par2);
elseif type==’S’

disp(’parameter sigmoid (par3):’);disp(par3)
disp(’parameter sigmoid (par4):’);disp(par4);
disp(’parameter sigmoid (par5):’);disp(par5);

end

%%
% end of setting parameters
%%

%%
% choose data
%%
n_choose=4;
[X,Y,Xt,Yt,cY,cYt]=choosedata(n_choose);
%%
% end choose data
%%

% number of PCs retained in previous KPCR
num_of_PC=12;

[n,dimX]=size(X);
[nt,dimX]=size(Xt);
disp(’number of observation/data :’);disp(n)

if num_of_PC>n

36

disp(’***’);
disp(’retained PCs must less than’);disp(n);
disp(’***’);
return

end

Y_temp=Y;
Yt_temp=Yt;

if need_previousKPCR==1
%%% KPCA for the previous KPCR;
%%% carry out to KPCA;
[P_X,P_Xt,W,D]=newKPCA(X,Xt,num_of_PC,type,par1,par2,par3,par4,par5);
size(P_X);

%%% 2) The previous KPCR - centralized model %%%%
Y=Y_temp;
Yt=Yt_temp;
mn=mean(Y);
Y=Y-mn;
Yt=Yt-mn;
[Yp_hat,Ypt_hat,B]=KPCR_cent(P_X,P_Xt,D,Y,Yt);
Yp_hat=Yp_hat+mn;
Ypt_hat=Ypt_hat+mn;

%%% Plotting
% training
figure(1)
hold on
plot(Yp_hat,’b’);
RMSEp=sqrt(mean((cY-Yp_hat).^2));
% testing
if size(Xt,1)~=1

figure(2)
hold on
plot(Ypt_hat,’b’);
RMSEpt=sqrt(mean((cYt-Ypt_hat).^2));

end

disp(’***’);
disp(’retained PCs in the previous KPCR (given) :’);disp(num_of_PC);
disp(’RMSE train the previous KPCR :’);disp(RMSEp);
if size(Xt,1)~=1

disp(’RMSE test the previous KPCR :’);disp(RMSEpt);
end
disp(’***’);

end

37

%%% KPCA for the new KPCR
Y=Y_temp;
Yt=Yt_temp;
[U_X,U_Xt,W_new,D,n_pc_new]=newKPCA2(X,Xt,type,par1,par2,par3,par4,par5);
%%% The new KPCR
mn=mean(Y);
Y=Y-mn;
Yt=Yt-mn;
[Y_hat_new,Yt_hat_new,B]=KPCR_cent_new(U_X,U_Xt,D,Y,Yt);
Y_hat_new=Y_hat_new+mn;
Yt_hat_new=Yt_hat_new+mn;

%%% Plotting
% training
figure(1)
plot(cY,’ko’);
hold on
plot(Y_hat_new,’r’);
title(’Comparison the lin. reg., the previous and new KPCR - train set ’)
RMSE=sqrt(mean((cY-Y_hat_new).^2));
% testing
if size(Xt,1)~=1

figure(2)
plot(cYt,’ko’);
hold on
plot(Yt_hat_new,’r’);
title(’Comparison the lin. reg., the previous and new KPCR - test set ’)
RMSEt=sqrt(mean((cYt-Yt_hat_new).^2));

end

%%% linear regression
Y=Y_temp;
Yt=Yt_temp;
[Y_hat_lin, Yt_hat_lin]=linregression(X,Xt,Y);
%%% Plotting
% training
figure(1)
hold on
plot(Y_hat_lin,’g’);
RMSE_lin=sqrt(mean((cY-Y_hat_lin).^2));
% testing
if size(Xt,1)~=1

figure(2)
hold on
plot(Yt_hat_lin,’g’);
RMSEt_lin=sqrt(mean((cYt-Yt_hat_lin).^2));

end

38

disp(’***’);
disp(’retained PCs in the new KPCR :’);disp(n_pc_new);
disp(’RMSE train the new KPCR :’);disp(RMSE);
disp(’RMSE train the lin. reg. :’);disp(RMSE_lin);
if size(Xt,1)~=1

disp(’RMSE test the new KPCR :’);disp(RMSEt);
disp(’RMSE test the lin. reg. :’);disp(RMSEt_lin);

end
disp(’***’);

function [P_X,P_Xt,W_new,D,n_pc_new]=newKPCA2(X,Xt,type,par1,par2,par3,par4,par5)

%%% Kernel Principal Component Analysis
%%%
%%% Inputs
% X : training data points (number of samples x dimension)
% Xt : testing data points (number of samples x dimension)
%
% type: ’G’ Gaussian Kernel exp((|x-y|^2)/par1)
% ’P’ Polynomial Kernel (<x,y>)^par2:
% ’S’ Sigmoid Kernel tanh(par3*<x,y>^par4+par5)
% ’L’ linear kernel <x,y>
%
%% Output
% P_X : projection of training data onto the first n_pc_new PC’s
% P_Xt : projection of testing data onto the first n_pc_new PC’s
%
% n_pc_new : the retained PCs for the new KPCR.
% W_new,D : eigenvectors and eigenvalues of the centralized (cen_K)
% training data kernel matrix
%

[n,dim]=size(X);
[nt,dim]=size(Xt);

%%% training data kernel matrix construction
K=newKernel(X,type,par1,par2,par3,par4,par5);

%%% centering of K
M=eye(n)-ones(n,n)/n;
cen_K=M*K*M;

%%% KPCA
[u,D,W] = svd(cen_K);
D = diag(D);
clear u

% Detect collinearity and multicollinearity.

39

for i=1:size(D,1),
test_multi=D(i)/D(1);
if test_multi >= 1/1000

W_new(:,i) = W(:,i);
end

% if D(i)~=0
% W_p(:,i)=W(:,i);
% end

end
size(W_new);
n_pc_new=size(W_new,2);
%%% training data projection
for k=1:n_pc_new

P_X(:,k)=W_new(:,k)*sqrt(D(k));
end

%%% TESTING PART

% testing data kernel matrix construction
Kt=newKernel_Test(X,Xt,type,par1,par2,par3,par4,par5);

%size(Kt);
%%% centering of Kt
Mt=ones(nt,n)/n;
cen_Kt = (Kt - Mt*K)*M;

for k=1:n_pc_new
Q(:,k)=W_new(:,k)/(sqrt(D(k)));

end
%size(Q);

%%% testing data projection
P_Xt=cen_Kt*Q;
%size(P_Xt);

function [Y_hat_new,Yt_hat_new,B]=KPCR_cent_new(U_X,U_Xt,D,Y,Yt)

%%% Kernel Principal Component Regression - centralized regression model
%%%
%%% Inputs
% U_X : projected training data points onto the first n_p_new PC’s
% U_Xt : projected testing data points onto the first n_p_new PC’s
% D : (at least) first n_p_new ordered (maximal first) eigenvalues
% of the centralized training data kernel matrix
% Y : zero mean training outputs (number of samples x dim)
% Yt : zero mean testing outputs (number of samples x dim)
%
% Outputs:

40

%
% Y_hat_new : predicted training outputs (number of samples x dim)
% Yt_hat_new : predicted testing outputs (number of samples x dim)
% B : matrix (or vector) of regression coefficients (n_p_new x dim)

[n,p]=size(U_X);
D=D(1:p)’; %%% only the first n_p_new-eigenvalues are used

B=diag(1./D)*U_X’*Y;
Y_hat_new=U_X*B;
Yt_hat_new=U_Xt*B;

function [P_X,P_Xt,W,D]=newKPCA(X,Xt,n_pc,type,par1,par2,par3,par4,par5)

%%% Kernel Principal Component Analysis
%%%
%%% Inputs
% X : training data points (number of samples x dimension)
% Xt : testing data points (number of samples x dimension)
%
% n_pc : number of principal componets onto which data are projected
%
% type: ’G’ Gaussian Kernel exp((|x-y|^2)/par1)
% ’P’ Polynomial Kernel (<x,y>)^par2:
% ’S’ Sigmoid Kernel tanh(par3*<x,y>^par4+par5)
% ’L’ linear kernel <x,y>
%
%% Output
% P_X : projection of training data onto the first n_pc PC’s
% P_Xt : projection of testing data onto the first n_pc PC’s
%
% W,D : eigenvectors and eigenvalues of the centralized (cen_K)
% training data kernel matrix
%

[n,dim]=size(X);
[nt,dim]=size(Xt);

%%% training data kernel matrix construction
K=newKernel(X,type,par1,par2,par3,par4,par5);

%%% centering of K
M=eye(n)-ones(n,n)/n;
cen_K=M*K*M;

%%% KPCA
[u,D,W] = svd(cen_K);

41

D = diag(D);
clear u

%%% training data projection
for k=1:n_pc

P_X(:,k)=W(:,k)*sqrt(D(k));
end

%%% TESTING PART

% testing data kernel matrix construction
Kt=newKernel_Test(X,Xt,type,par1,par2,par3,par4,par5);

%%% centering of Kt
Mt=ones(nt,n)/n;
cen_Kt = (Kt - Mt*K)*M;

for k=1:n_pc
Q(:,k)=W(:,k)/(sqrt(D(k)));

end

%%% testing data projection
P_Xt=cen_Kt*Q;
size(P_Xt);

function [Y_hat,Yt_hat,B]=KPCR_cent(P_X,P_Xt,D,Y,Yt)
%%% Kernel Principal Component Regression - centralized regression model
%%%
%%% Inputs
% P_X : projected training data points onto the first p PC’s
% P_Xt : projected testing data points onto the first p PC’s
% D : (at least) first p ordered (maximal first) eigenvalues of
% the centralized training data kernel matrix
% Y : zero mean training outputs (number of samples x dim)
% Yt : zero mean testing outputs (number of samples x dim)
%
% Outputs:
%
% Y_hat : predicted training outputs (number of samples x dim)
% Yt_hat : predicted testing outputs (number of samples x dim)
% B : matrix (or vector) of regression coefficients (p x dim)

[n,p]=size(P_X);
D=D(1:p)’; %%% only the first p-eigenvalues are used

B=diag(1./D)*P_X’*Y;
Y_hat=P_X*B;
Yt_hat=P_Xt*B;

42

function Hs=newKernel(X,type,par1,par2,par3,par4,par5)

%%% kernel (Gram) matrix computation - training data
%%%
%%% Inputs
% X - N x dim matrix of input data (number of samples x dimension)
% par1 par2
% type: ’G’ Gaussian Kernel exp((|x-y|^2)/par1)
% ’P’ Polynomial Kernel (<x,y>)^par2:
% ’S’ Sigmoid Kernel tanh(par3*<x,y>^par4+par5)
% ’L’ linear kernel <x,y>
%% Output
% Hs - N x N kernel matrix
[N,dim]=size(X);
Hs=zeros(N,N);
if type==’G’

for i=1:N
Hs(i,i)=0;
for j=i+1:N
Hs(i,j)=norm(X(i,:)-X(j,:))^2;
Hs(j,i)=Hs(i,j);

end
end
Hs=exp(-Hs/par1);

end
if type==’P’

for i=1:N
for j=i:N
dp=(dot(X(i,:),X(j,:)))^par2;
Hs(i,j)=dp;
Hs(j,i)=Hs(i,j);
end

end
end

if type==’S’
for i=1:N
for j=i:N
dp=tanh(par3*(dot(X(i,:),X(j,:)))^par4+par5);
Hs(i,j)=dp;
Hs(j,i)=Hs(i,j);
end

end
end

if type==’L’
Hs=X*X’;

end

43

function [K_tst]=Kernel_Test(X,Xt,type,par1,par2,par3,par4,par5)
%%% kernel (Gram) matrix computation - testing data
%%%
%%% Inputs
% X - N x dim matrix of training input data (number of samples x dimension)
% Xt - Nt x dim matrix of testing input data (number of samples x dimension)
% par1 par2
% type: ’G’ Gaussian Kernel exp((|x-y|^2)/par1)
% ’P’ Polynomial Kernel (<x,y>)^par2:
% ’S’ Sigmoid Kernel tanh(par3*<x,y>^par4+par5)
% ’L’ linear kernel <x,y>
%% Output
% Hs - N x N kernel matrix
[N,dim]=size(X);
[Nt,dim]=size(Xt);

K_tst = zeros(Nt,N);

if type==’G’
for i=1:Nt

for j=1:N
K_tst(i,j) = norm(Xt(i,:)-X(j,:))^2 ;

end
end
K_tst=exp(-K_tst/par1);
end

if type==’P’
for i=1:Nt

for j=1:N
K_tst(i,j)=(dot(Xt(i,:),X(j,:)))^par2;

end
end
end

if type==’S’
for i=1:Nt

for j=1:N
K_tst(i,j)=tanh(par3*dot(Xt(i,:),X(j,:))^par4+par5);

end
end
end

if type==’L’
K_tst=Xt*X’;

end

44

function [Y_hat_lin, Yt_hat_lin]=linregression(X,Xt,Y)
V_ones=ones(size(X,1),1);
X=[V_ones,X];
V_ones=ones(size(Xt,1),1);
Xt=[V_ones Xt];
beta=inv(X’*X)*X’*Y;
Y_hat_lin=X*beta;
Yt_hat_lin =Xt*beta;

45

