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Abstract. For Markov chains in continuous time Keilson(1979) has shown that
the relationship between the ergodic exit time TE and the ergodic sojourn time
TV is identical to the relationship between the residual lifetime and the underlying
lifetime at ergodicity in renewal theory. Keilson’s result relies upon the memory-
less property of exponential distributions, and it would not hold true, in general,
for semi-Markov processes. The purpose of this paper is to introduce a new per-
formance measure called the ergodic residual exit time TW so as to prove that
the relationship between TW and TV for semi-Markov processes is identical to the
relationship between TE and TV for Markov chains in continuous time.
Keywords. Ergodic flow rate, ergodic exit time, ergodic sojourn time, ergodic
residual exit time, semi-Markov processes.

1 Introduction

For many applications of Markov chains in continuous time, it is often impor-
tant to introduce various system performance measures by decomposing the
state space N into two sets:G consisting of good states and B containing only
bad states. A simple example would be the first passage time of N(t) from a
good state m ∈ G to any bad state in B denoted by TmB . More sophisticated
performance measures of this sort have been introduced by Keilson(1979),
represented by the ergodic exit time TE and the ergodic sojourn time TV .
The former is the time until the system reaches any bad state in B given
that the system has been running since time immemorial and has been un-
observed since its inception but is known to be in the good set G. The latter
is similar except that it is known not only to be in the good set G but also
just to have had a transition from a bad state in B to a good state in G. It is
shown in Keilson(1979) that the relationship between TE and TV is identical
to the relationship between the residual lifetime and the underlying lifetime
at ergodicity in renewal theory.

Keilson’s theorem concerning the relationship between TE and TV relies
upon the memoryless property of exponential distributions. Accordingly, the
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theorem, in general, would not hold true for semi-Markov processes. The
purpose of this paper is to introduce a new performance measure called the
ergodic residual exit time TW so as to prove that the relationship between
TW and TV for semi-Markov processes is identical to the relationship between
TE and TV for Markov chains in continuous time. Naturally, this would indi-
cate that TE is equal in distribution to TW for Markov chains in continuous
time. Indeed, a direct formal proof would be provided for this statement.
The structure of this paper is as follows. In Section 2, a succinct summary
of key related results for Markov chains in continuous time is extracted from
Keilson(1979). The semi-Markov counterparts of those key results are then
established in Section 3 with the ergodic residual exit time TW newly intro-
duced.

Throughout the paper, vectors and matrices are indicated by under-
bar and doubleunderbar respectively, e.g. e, q, A

0
, A(x), etc. Subvectors and

submatrices are indexed by relevant sets, e.g. eG = [em]m∈G, A
0:GB

=
[A0:mn]m∈G,n∈B , etc. The vector with all components equal to 1 is denoted
by 1 and the zero vector by 0. The identity matrix is denoted by I. We also
define δmn = 1 if m = n, and δmn = 0 otherwise.

2 Ergodic flow rate, ergodic exit time and ergodic
sojourn time for Markov chains in continuous time

Let {N(t) : t ≥ 0} be an ergodic Markov chains in continuous time on
N = {0, 1, . . . , N} governed by a hazard rate matrix ν = [νmn]. Let G and
B be two subsets of N satisfying N = G ∪ B,G 6= ∅, B 6= ∅ and G ∩ B = ∅.
With ν

D
= [δmnνm] where νm =

∑
n∈N νmn, the infinitesimal generator Q

of N(t) and the ergodic probability vector eT then satisfy

Q = −ν
D

+ ν ; eT Q = 0T . (1)

In this section, we summarize key results of relevance to this paper concerning
N(t) from Keilson(1979).

Let TmB be the first passage time of N(t) from m ∈ G to any state in
B. Let σmB(s) = E[e−sTmB ] and define the vector σG→B(s) = [σmB(s)]m∈G.
One then has

σG→B(s) =
[
sI

GG
−Q

GG

]−1

ν
GB

1B . (2)

The ergodic flow rate imn of N(t) from state m to state n is the asymptotic
renewal density for transitions from m to n, which is given by

imn = emνmn . (3)

Concerning the ergodic flow rate, the following set balance equation holds
true.

i(G → B) def=
∑

m∈G

∑

n∈B

imn =
∑

m∈G

∑

n∈B

inm
def= i(G ← B) . (4)
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From (3), the set balance equation can be rewritten in matrix form as

eT
Gν

GB
1B = eT

Bν
BG

1G . (5)

The ergodic exit time TE of N(t) from G is defined as the time until the
system reaches any bad state in B given that the system has been running
since time immemorial and has been unobserved since its inception but is
known to be in the good set G. More formally, if we define σE(s) = E[e−sTE ],
one has

σE(s) def=
∑

m∈G emσmB(s)
P (G)

=
eT
GσG→B(s)

P (G)
; P (G) =

∑

m∈G

em . (6)

The ergodic sojourn time TV is similar to TE except that it is known not
only to be in the good set G but also just to have had a transition from some
bad state in B to some good state in G. By defining im←B =

∑
n∈B inm

and iTG←B = [im←B ]m∈G, the Laplace transform σV (s) = E[e−sTV ] is given
formally as

σV (s) def=
∑

m∈G im←BσmB(s)
i(G ← B)

=
iTG←BσG→B(s)

i(G ← B)
. (7)

It is shown in Keilson(1979) that the relationship between TE and TV is
identical to the relationship between the residual lifetime and the underlying
lifetime at ergodicity in renewal theory. More specifically, with µV = E[TV ],
one has

σE(t) =
1− σV (t)

s · µV
. (8)

Keilson’s proof of (8) hinges on the memoryless property of exponential vari-
ates. Accordingly, one cannot expect (8) to hold true for semi-Markov pro-
cesses. In the next section, we newly introduce the ergodic residual exit time
TW for semi-Markov processes and prove that the relationship between TW

and TV is identical to that between TE and TV for Markov chains in contin-
uous time.

3 Ergodic flow rate, ergodic residual exit time and
ergodic sojourn time for semi-Markov processes

The study of semi-Markov processes dates back to the middle of 50’s, repre-
sented by the original papers by Levy(1954), Smith(1955) and Takacs(1954).
Since then, various aspects of semi-Markov processes have been studied by
many researchers. The reader is referred to two excellent survey papers by
Çinlar(1969,1975). One of the important areas for the study of semi-Markov
processes would be to see how certain properties of Markov chains in contin-
uous time could be carried over to those of semi-Markov processes. In this
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section, we recapture the results for Markov chains in continuous time dis-
cussed in Section 2 within the context of semi-Markov processes. The first
step for this purpose would be to derive ergodic flow rates for semi-Markov
processes.

Let {J(t) : t ≥ 0} be an ergodic semi-Markov process on N character-
ized by a matrix p.d.f. a(x) = [amn(x)] with its Laplace transform α(s) =∫∞
0

e−sxa(x)dx. For notational convenience, we define A
0

= α(0) and A
1

=
− d

dsα(s)|s=0. Let qT be the ergodic probability vector of the discrete time
Markov chain governed by A

0
, i.e.

qT = qT A
0
; qT > 0 ; qT 1 = 1 . (9)

For µm =
∑

n∈N A1:mn, we define A
D:1

= [δmnµm]. Then the ergodic prob-
ability vector eT of J(t) can be expressed in terms of qT as

eT =
1
M

qT A
D:1

; M = qT A
1
1 . (10)

Let Nmn(t) be the number of transitions of J(t) from m to n in [0, t]. The
ergodic flow rate imn of J(t) is defined as

imn = lim
t→∞

E[Nmn(t)]
t

. (11)

One then has the following theorem.

Theorem 1.
imn =

1
M

qmA0:mn .

Proof. Let J∗(t) be a semi-Markov process on N × N governed by b(x) =
[b(m,`)(r,n)(x)] where b(m,`)(r,n)(x) = δ`rarn(x). We note that J∗(t) is con-
structed from J(t) by coupling its two consecutive transitions. As in (9) and
(10), for J∗(t), one has q∗T = q∗T B

0
and e∗T = 1

M∗ q
∗T B

D:1
. It then follows

that M∗ = q∗T B
1
1 = qT A

1
1 = M and hence

e∗(m,n) =
1
M

qmA0:mnµn . (12)

We now consider an alternating renewal process Ĵ(t) where Ĵ(t) = 0 if
J∗(t) 6= (m,n) and Ĵ(t) = 1 if J∗(t) = (m, n). Let D(m,n):i be the dwell time
of Ĵ(t) in state i for i ∈ {0, 1}. It should be noted that E[D(m,n):1] = µn.
From the classical theory of the alternating renewal process, one then sees
from (11) that

imn =
E[D(m,n):1]

E[D(m,n):0] + E[D(m,n):1]
· 1
E[D(m,n):1]

= e∗(m,n)

1
µn

. (13)

The theorem now follows by substituting (12) into the last term in (13).
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From Theorem 1, it can be readily seen that

iTG←B = [im←B ]Tm∈G =
1
M

qT
B

A
0:BG

, (14)

which in turn leads to the set balance equation for the semi-Markov ergodic
flow rates as we show next.

Theorem 2. 　 For imn in Theorem 1, let i(G → B) and i(G ← B) be
defined as in (4). Then

i(G → B) = i(G ← B) .

Proof. 　 From (9), one sees that qT
G

A
0:GB

1B = qT
B

A
0:BG

1G. It then follows
from (14) and Theorem 1 that

i(G ← B) =
1
M

qT
B

A
0:BG

1G =
1
M

qT
G

A
0:GB

1B = i(G → B) ,

completing the proof.

The ergodic exit time and the ergodic sojourn time for semi-Markov pro-
cesses can be defined as in (6) and (7), where eT

G from (10) and iTG←B from (14)
should be employed, and σmB(s) corresponds to the first passage time of the
semi-Markov process from m ∈ G to B. For the vector σG→B(s) = [σmB ]m∈G,
one has, see e.g. Sumita and Masuda(1987),

σG→B(s) =
[
I

GG
− α

GG
(s)

]−1

α
GB

(s)1B . (15)

In order to observe the (residual lifetime)-vs-(lifetime) relationship for semi-
Markov processes as in (8), we now introduce the ergodic residual exit time
TW of J(t) from G defined as the time until the system reaches any bad state
in B given that the system has been running since time immemorial and has
been unobserved since its inception but is known to be in the good set G
provided that the semi-Markov process has entered B at least once by now.
More formally, if we define σW (s) = E[e−sTW ], one has

σW (s) def=

∑
m∈G Wm(1−σmB(s)

sµmB
)∑

m∈G Wm
; Wm =

im←B · µmB

i(G ← B)
. (16)

We are now in a position to prove the following theorem.

Theorem 3.

σW (s) =
1− σV (s)

s · µV
.

Proof. 　 From (7) and (16), one sees that

µV =
∑

m∈G im←BµmB

i(G ← B)
=

∑

m∈G

Wm .
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It then follows from (16) that

σW (s) =

∑
m∈G

im←B

i(G←B) (
1−σmB(s)

s )

µV
=

∑
m∈G

im←B

i(G←B) (1− σmB(s))

s · µV

=

∑
m∈G

im←B

i(G←B) −
∑

m∈G
im←BσmB(s)

i(G←B)

s · µV
=

1− σV (s)
s · µV

,

proving the theorem.

Since a Markov chain in continuous time is a special case of a semi-Markov
process, both (8) and Theorem 3 should hold true for such Markov chains.
One then expects that TE

d= TW , which we prove directly below.

Theorem 4. 　 For Markov chains in continuous time, one has

TE
d= TW .

Proof. 　By differentiating Equation (15) with respect to s and then setting
s = 0, one finds after a little algebra that

µ
G→B

= − d

ds
σG→B(s)|s=0 =

[
I

GG
−A

0:GG

]−1

A
D:1:GG

1G .

From (10), this result together with qT
B

A
0:BG

= qT
G

[
I

GG
−A

0:GG

]
then leads

to ∑

m∈G

iBm · µmB =
1
M

qT
G

A
D:1:GG

1G =
∑

r∈G

er = P (G) .

From (2) and (5), one finds that

1
s
iTG←B [1G − σG→B(s)] = eT

GσG→B(s) .

The theorem now follows from (6) and (16).
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