
Department of Social Systems and Management

Discussion Paper Series

No. 1192

Analysis of a Multivariate Counting Process Generated
from an Age-dependent Non-homogeneous Poisson
Process Defined on a Finite Semi-Markov Process

by

Ushio SUMITA and Jia-Ping HUANG

February 2008

UNIVERSITY OF TSUKUBA

Tsukuba, Ibaraki 305-8573

JAPAN



Analysis of a Multivariate Counting Process

Generated from an Age-dependent

Non-homogeneous Poisson Process

Defined on a Finite Semi-Markov Process

Ushio Sumita1 and Jia-Ping Huang2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba,
Tenoudai 1-1-1, Tsukuba science city, Ibaraki 305-0006, Japan
(e-mail: sumita@sk.tsukuba.ac.jp)

2 Master’s Program in Social Systems Engineering,
Graduate School of Systems and Information Engineering,
University of Tsukuba,
Tenoudai 1-1-1, Tsukuba science city, Ibaraki 305-0006, Japan
(e-mail: kou20@sk.tsukuba.ac.jp)

Abstract. We consider a multivariate counting process generated from an age-
dependent non-homogeneous Poisson process defined on a finite semi-Markov pro-
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underlying Laplace transform generating functions. Some asymptotic results are
also obtained.
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1 Introduction

A stochastic process {N(t) : t ≥ 0} is called a counting process when N(t) is

non-negative, right continuous and monotone non-decreasing with N(0) = 0.

The classic counting processes of importance include a Poisson process, a

non-homogeneous Poisson process (NHPP) and a renewal process. More so-

phisticated counting processes have been developed in order to accommodate

a wider range of applications. In Masuda and Sumita (1987), the number of

entries of a semi-Markov process into a subset of the state space is ana-

lyzed. An age-dependent counting process generated from a renewal process

is studied by Sumita and Shanthikumar (1988), which describes items arriv-

ing according to an NHPP which is interrupted and reset at random epochs

governed by a renewal process. The purpose of this paper is to develop a mul-

tivariate counting process which would contain these two processes as special

cases. The dynamic behavior of the proposed multivariate counting process
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is captured through analysis of the underlying Laplace transform generating

functions. Some asymptotic results are also obtained.

2 A multivariate counting process [M(t), N(t)]

We consider a system where items arrive according to an NHPP. This arrival

stream is interrupted from time to time where the interruptions are governed

by a finite semi-Markov process J(t) on J = {0, 1, 2, · · · , J}. Whenever a

state transition of the semi-Markov process occurs from i to j, the intensity

function of the NHPP is switched from λi(x) to λj(x) with an initial value

reset to λj(0). In other words, the arrivals of items are generated by the NHPP

with λi(x) when the semi-Markov process is in state i with x denoting the

time since the last entry into state i. Of particular interest in analysis of

such systems are the multivariate counting processes M(t) = [Mi(t)]i∈J and

N(t) = [Nij(t)]i,j∈J where Mi(t) counts the cumulative number of items that

have arrived in [0, t] while the semi-Markov process is in state i and Nij(t)
represents the cumulative number of the state transitions of the semi-Markov

process from i to j in [0, t]. The two counting processes M(t) and N(t) enable

one to introduce a variety of interesting performance indicators as we will see.

Formally, let {J(t) : t ≥ 0} be a semi-Markov process on J = {0, · · · , J}
governed by a matrix cumulative distribution function (c.d.f.)

A(x) = [Aij(x)] ,

which is assumed to be absolutely continuous with the matrix probability

density function (p.d.f.) a(x) = [aij(x)] = d
dx

A(x). It should be noted that,

if we define Ai(x) and Āi(x) by Ai(x) =
∑

j∈J Aij(x) and Āi(x) = 1−Ai(x)

respectively, then Ai(x) is an ordinary c.d.f. and Āi(x) is the corresponding

survival function. The hazard rate functions associated with the semi-Markov

process are defined as ηij(x) = aij(x)/Āi(x), i, j ∈ J .
For notational convenience, the transition epochs of the semi-Markov pro-

cess are denoted by τn, n ≥ 0, with τ0 = 0. The age process X(t) associated

with the semi-Markov process is then defined as

X(t) = t − max{τn : 0 ≤ τn ≤ t}.

At time t with J(t) = i and X(t) = x, the intensity function of the NHPP is

given by λi(x). For the cumulative arrival intensity function Li(x) in state i,
one has

Li(x) =

∫ x

0

λi(y)dy .

The probability of observing k arrivals in state i within the current age of x
can then be obtained as

gi(x, k) = e−Li(x) Li(x)k

k!
, k = 0, 1, 2, · · · , i ∈ J .
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Of interest are the multivariate counting processes

M(t) = [M0(t), · · · ,MJ(t)]
⊤

,

where Mi(t) represents the total number of items that have arrived by time

t while the semi-Markov process stayed in state i, and

N(t) = [Nij(t)] ,

with Nij(t) denoting the number of transitions of the semi-Markov process

from state i to state j by time t. It is obvious that Ni(t)
def
=

∑

ℓ∈J Nℓi(t)
denotes the number of entries into state i by time t. The initial state is not

included in Ni(t) for any i ∈ J . In other words, even if J(0) = i, Ni(t)
remains 0 until the first return of the semi-Markov process to state i. In the

next section, we will analyze the dynamic behavior of
[

M(t), N(t)
]

based

on analysis of the underlying Laplace transform generating functions. The

associated asymptotic behavior as t → ∞ would also be discussed in the

subsequent section.

3 Dynamic analysis of [M(t), N(t)]

The purpose of this section is to examine the dynamic behavior of the multi-
variate stochastic process

[

M(t), N(t)
]

by observing its probabilistic flow in

its state space. Since
[

M(t), N(t)
]

is not Markov, we employ the method of
supplementary variables. More specifically, the multivariate stochastic pro-
cess [M(t), N(t), X(t), J(t)

]

is considered. This multivariate stochastic pro-

cess is Markov and has the state space S = Z
J+1
+ × Z

(J+1)×(J+1)
+ × R+ × J ,

where Z
J+1
+ is the set of (J + 1) dimensional non-negative integer vectors,

Z
(J+1)×(J+1)
+ is the set of (J + 1)× (J + 1) dimensional non-negative integer

matrices, R+ is the set of non-negative real numbers and J = {0, · · · , J}. Let

Fij(m,n, x, t) be the joint probability distribution of
[

M(t), N(t), X(t), J(t)
]

defined by

Fij(m, n, x, t) =

P
h

M(t) = m, N(t) = n, X(t) ≤ x, J(t) = j | M(0) = 0, N(0) = 0, J(0) = i
i

. (1)

In order to assure the differenciability of Fij(m,n, x, t) with respect to

x, we assume that X(0) has an absolutely continuous initial distribution

function D(x) with p.d.f. d(x) = d
dx

D(x). ( If X(0) = 0 with probability 1,

we consider a sequence of initial distribution functions {Dk(x)}∞k=1 satisfying

Dk(x) → U(x) as k → ∞ where U(x) = 1 for x ≥ 0 and U(x) = 0 otherwise.

The desired results can be obtained through this limiting process. ) One can

then define

fij(m,n, x, t) =
∂

∂x
Fij(m,n, x, t) . (2)
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By interpreting the probabilistic flow of the multivariate process [M(t),
N(t), X(t), J(t)

]

in its state space, one can establish the following equations:

fij(m,n, x, t) =

δ{i=j}δ{m=mi1i}
δ{n=0}d(x − t)

Āi(x)

Āi(x − t)
gi(t,mi)

+
(

1 − δ{n=0}

)

mj
∑

k=0

fij(m − k1j , n, 0+, t − x)Āj(x)gj(x, k) ; (3)

fij(m,n, 0+, t) =
(

1 − δ{n=0}

)

∑

ℓ∈J

∫ ∞

0

fiℓ(m,n − 1
ℓj

, x, t)ηℓj(x)dx ; (4)

fij(m,n, x, 0) = δ{i=j}δ{m=0}δ{n=0}d(x) , (5)

where 1i is the column vector whose i-th element is equal to 1 with all

other elements being 0 , 1
ij

= 1i1
⊤
j and fij(m,n, 0+, t) = 0 for N ≤ 0.

In what follows, the dynamic behavior of the multivariate process [M(t),
N(t), X(t), J(t)

]

would be captured by establishing the associated Laplace

transform generating functions based on (3), (4) and (5). For notational con-

venience, the following matrix functions are employed.

β(u, s) = [βij(ui, s)] ; βij(ui, s) =

∞
∑

k=0

(
∫ ∞

0

e−staij(t)gi(t, k)dt

)

uk
i ,

β∗

D
(u, s) =

[

δ{i=j}β
∗
i (ui, s)

]

; β∗
i (ui, s) =

∞
∑

k=0

(
∫ ∞

0

e−stĀi(t)gi(t, k)dt

)

uk
i ,

ξ̂(u, v, 0+, s) =
[

ξ̂ij(u, v, 0+, s)
]

;

ξ̂ij(u, v, 0+, s) =
∑

m∈Z
J+1
+

∑

n∈Z
(J+1)×(J+1)
+ \{0}

ξij(m,n, 0+, s)umvn ,

ϕ̂(u, v, w, s) =
[

ϕ̂ij(u, v, w, s)
]

;

ϕ̂ij(u, v, w, s) =
∑

m∈Z
J+1
+

∑

n∈Z
(J+1)×(J+1)
+

ϕij(m,n,w, s)umvn ,

where umvn =
∏

i∈J

umi

i

∏

(i,j)∈J×J\{(0,0)}

v
nij

ij . Then the next theorem can be

proven by taking Laplace transforms of (3), (4) and (5).

Theorem 1. Let X(0) = 0. Then:

ξ̂(u, v, 0+, s) = β̃(u, v, s)
{

I − β̃(u, v, s)
}−1

; (6)

ϕ̂(u, v, w, s) =
{

I − β̃(u, v, s)
}−1

β∗

D
(u,w + s) , (7)

where β̃(u, v, s) = [vij · βij(ui, s)] .
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4 Asymptotic behavior

Let A,M and N be arbitrary subsets of the state space J of the underlying

semi-Markov process, and define

MA(t) =
∑

i∈A

Mi(t) ; NMN (t) =
∑

i∈M

∑

j∈N

Nij(t) ,

where MA(t) describes the total number of items that have arrived in [0, t]
according to the non-homogeneous Poisson processes within A and NMN (t)
denotes the number of transitions from any state in M to any state in N in

[0, t]. An appropriate choice of A,M and N would then enable one to analyze

processes of interest in a variety of applications. It may be also of interest to

define

S(t) = cMA(t) + dNMN (t) ,

often representing the total cost. The moment asymptotic behaviors of MA(t),
NMN (t) and S(t) are now derived based on Theorem 1.

For notational simplicity, we introduce the following vectors and matrices.

Let A,M and N ⊂ J with their compliments defined respectively by AC =

J \A, MC = J \M and NC = J \N . The cardinality of a set A is denoted

by |A|. Submatrices of A ∈ R
(J+1)×(J+1) are denoted by

A
A•

=
[

Aij

]

i∈A,j∈J
∈ R

|A|×(J+1) ; A
•A

=
[

Aij

]

i∈J ,j∈A
∈ R

(J+1)×|A| ;

A
MN

=
[

Aij

]

i∈M,j∈N
∈ R

|M|×|N| ,

so that one has

A =

[

A
MN

A
MNC

A
MCN

A
MCNC

]

,

with understanding that the states are arranged appropriately.

Let A
k

=
∫ ∞

0
xka(x)dx, k = 0, 1, 2, · · · . Throughout the paper, we assume

that ||A
k
|| < ∞ for 0 ≤ k ≤ 2. In particular, one has A

0
= A(∞) which is

stochastic. Let e⊤ be the normalized left eigenvector of A
0

associated with

eigenvalue 1 so that e⊤A
0

= e⊤ and e⊤1 = 1 where 1 = [1, · · · , 1]⊤ ∈ R
J+1.

Similarly, we define Φ
r:k

=
∫ ∞

0
tkLr

D
(t)a(t)dt and Φ∗

r:D:k
=

∫ ∞

0
tkLr

D
(t)Ā

D
(t)

dt, r = 1, 2. By using Keilson’s Theorem (see, Keilson (1969)), one has the

following theorem. The proof is omitted here.
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Theorem 2. Let p⊤(0) be an initial probability vector of the underlying semi-

Markov process. As t → ∞, one has

E
[

MA(t)
]

= p⊤(0)
{

t P
1

+ P
0

}

1 + o(1) , (8)

Var
[

MA(t)
]

= t p⊤(0) U
0

1 + o(t) , (9)

E
[

NMN (t)
]

= p⊤(0)
{

t Q
1

+ Q
0

}

1 + o(1) , (10)

Var
[

NMN (t)
]

= t p⊤(0) V
0

1 + o(t) , (11)

E
[

S(t)
]

= p⊤(0)

{

t
(

c P
1

+ d Q
1

)

+ c P
0

+ d Q
0

}

1 + o(1) , (12)

Var
[

S(t)
]

= t p⊤(0) W
0

1 + o(t) , (13)

where

H
1

=
1

m
1 e

⊤
, m = e

⊤
A

1
1 , Z

0
=

“

I − A
0

+ 1 · e⊤
”−1

,

H
0

= H
1

„

−A
1

+
1

2
A

2
H

1

«

+
“

Z
0
− H

1
A

1
Z

0

” “

A
0
− A

1
H

1

”

+ I ,

P
1

= H
1:•A

Φ
1:0:A•

, P
0

= H
0:•A

Φ
1:0:A•

− H
1:•A

Φ
1:1:A•

+ H
1:•A

Φ
∗

1:D:0:A•
,

P
2

= H
1:•A

Φ
2:0:A•

, P̂
0

= H
0:•A

Φ
1:0:A•

− H
1:•A

Φ
1:1:A•

,

Q
1

= H
1:•M

h

A
0:MN

, 0
MNC

i

,

Q
0

= H
0:•M

h

A
0:MN

, 0
MNC

i

− H
1:•M

h

A
1:MN

, 0
MNC

i

,

U
0

= 2 P
1
P

0
+ P

1
− P

1
1 · p⊤(0)P

0
+ 2 P̂

0
P

1
− P

0
P

1
+ P

2
;

V
0

= 2 Q
1
Q

0
+ Q

1
− Q

1
1 · p⊤(0)Q

0
+ Q

0
Q

1
,

T
0

= P̂
0
Q

1
+ P

1
Q

0
+ H

1:•,(A∩M)

h

Φ
1:0:(A∩M),N

, 0
(A∩M),NC

i

+ Q
0
P

1
+ Q

1
P

0
,

W
0

= c
2

U
0

+ d
2

V
0

+ 2cd T
0
− 2cd

“

P
1
1 · p⊤(0)Q

0
+ P

0
1 · p⊤(0)Q

1

”

.
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