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Abstract A cyclic renewal process is considered as an extension of an alternating renewal process, where
each of the underlying independently and identically distributed (i.i.d.) nonnegative random increments is
composed of multiple stages. Such a process may be appropriate for analyzing optimal preventive mainte-
nance policies for production management, where a pair of two stages representing an uptime until a minor
failure and the subsequent minimal repair time would be repeated until it is decided to conduct a complete
overhaul. In order to address economic problems in such applications, we also introduce a reward process
with jumps defined on the cyclic renewal process. When the system is running in stage j, the profit grows
linearly at the rate of ρ(j). Upon a minor failure, the subsequent minimal repair in stage (j + 1) incurs the
linear cost at the rate of ρ(j + 1). In addition, the fixed cost may be imposed whenever either a minimal
repair or a complete overhaul takes place, resulting in jumps of the reward process. The problem is then
to determine when to conduct a complete overhaul so as to maximize the total reward in the time interval
(0, T ]. A multivariate Markov process generated from both the cyclic renewal process and the reward process
is studied extensively, yielding various new transform results explicitly and deriving their asymptotic expan-
sions. These results are used to numerically explore optimal preventive maintenance policies for production
management.
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1. Introduction

Renewal theory is the branch of probability theory concerning a variety of problems related

to the partial sums of a sequence of i.i.d. nonnegative random variables. More specifically,

let (Yn)∞n=1 be a sequence of i.i.d. nonnegative random variables and define Sn =
∑n

j=1 Yj.

The renewal process {N(t) : t � 0} associated with (Yn)
∞
n=1 is a counting process defined by

N(t) = n if and only if Sn � t < Sn+1. Of interest are the renewal function H(t) = E[N(t)],

the renewal density h(t) = d
dt

H(t) if it exists, and other related probabilistic entities. As the

name “renewal theory” indicates, the study stemmed from a class of applications involving

successive replacements of items subject to failure. Here, Yn denotes the lifetime of the n-th

item and N(t) is the number of replacements that took place by time t.

The renewal theory has been extended in many ways. A delayed renewal process, for

example, has the distribution of Y1 different from that of Yn(n > 1), and an alternating

renewal process deals with a situation where Yn consists of two stages : the system uptime

and the system repair time, see e.g. Cox [4]. A Markov renewal process considers a case where

distributions of interfailure times are governed by a Markov chain {J(n) : n = 0, 1, 2, · · · }
in discrete time, i.e. if J(n − 1) = i and J(n) = j, then the distribution of Yn is given by
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Aij(x). The reader is referred to Keilson [12], Keilson and Rao [13, 14], and an excellent

survey paper by Çinlar [2] for the study of Markov renewal processes. Keener [11] develops

a general renewal theory where i.i.d. increments have support on full continuum. In Kijima

and Sumita [15], the renewal theory is extended in that the distribution of the Yn depends

on the partial sum Sn up to the n-th increment.

The purpose of this paper is to introduce a cyclic renewal process as an extension of

an alternating renewal process, where each of the underlying i.i.d. nonnegative random in-

crements is composed of multiple stages, i.e. Yn =
∑n

j=1 Xj , n � 1, where Yn denotes the

lifetime of the n-th cycle and Yn’s are i.i.d. with respect to n. Such a process may be appro-

priate for analyzing optimal preventive maintenance policies for production management,

where a pair of two stages representing an uptime until a minor failure and the subsequent

minimal repair time would be repeated until it is decided to conduct a complete overhaul.

In order to address economic problems in such applications, we also introduce a reward

process with jumps defined on the cyclic renewal process. When the system is running in

stage j, the profit grows linearly at the rate of ρ(j). Upon a minor failure, the subsequent

minimal repair in stage (j +1) incurs the linear cost at the rate of ρ(j +1). In addition, the

fixed cost may be imposed whenever either a minimal repair or a complete overhaul takes

place, resulting in jumps of the reward process. The problem is then to determine when to

conduct a complete overhaul so as to maximize the total reward in the time interval (0, T ].

A multivariate Markov process generated from both the cyclic renewal process and the re-

ward process is studied extensively, yielding various new transform results explicitly and

deriving their asymptotic expansions. These results are used to numerically explore optimal

preventive maintenance policies for production management.

When the renewal aspect is suppressed, the above model is reduced to a semi-Markov

process. The study of semi-Markov processes dates back to the middle of 1950s, originated

by works of Lévy [16], Smith [25] and Takács [29]. Subsequently the scope of the study has

been expanded through a series of papers by Pyke [22, 23], Pyke and Schaufele [24], and

Moore and Pyke [21]. Since the early 1960s, the field attracted many researchers resulting

in a collection of quite extensive results. The reader is referred to two excellent survey

papers by Çinlar [1, 2] and references therein for extensive analysis of semi-Markov and

related processes. Reward processes defined on semi-Markov processes also have been studied

extensively, including the original works by Jewell [8, 9, 10] followed by Howard [5], Mclean

and Neuts [20], Çinlar [3], Hunter [6], Sumita and Masuda [27], Masuda and Sumita [19]

and Igaki, Sumita and Kowada [7] to name a few. However, to the best knowledge of the

authors, the joint distribution of the cyclic renewal process, the underlying semi-Markov

process and the reward process has never been studied in the literature.

The structure of this paper is as follows. A cyclic renewal process {N(t) : t � 0} is

formally introduced in Section 2 based on a cyclic semi-Markov process {J(t) : t � 0}
describing multiple stages to constitute system lifetimes. The associated age process {X(t) :

t � 0} and the reward process {Z(t) : t � 0} are also introduced so that the multivariate

process [N(t), J(t), X(t), Z(t)] becomes Markov. Section 3 is devoted to analysis of this

multivariate process by examining its probabilistic flow in its state space, yielding various

new transform results. In Section 4, the asymptotic expansions of E[Z(t)|J(0) = i] and

Cor[N(t), Z(t)|J(0) = i] as t → ∞ are derived. In Section 5, these results are used to
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numerically explore optimal preventive maintenance policies for production management.

Finally, brief concluding remarks are given in Section 6. Some mathematical details are

deferred to Appendix for enhancing the readability of the paper.

2. Model Description

We consider a cyclic renewal process {N(t) ; t � 0} defined on N = {0, 1, 2, · · · } where the

underlying lifetime consists of J stages and N(t) denotes the number of failures by time t.

More specifically, let J = {1, 2, · · · , J} be the set of the stages and let the dwell time in

stage j ∈ J be a nonnegative random variable denoted by Xj. Throughout the paper, we

assume that Xj (j ∈ J ) are independent of the failure count and also mutually independent.

For each j ∈ J , it is assumed that Xj is absolutely continuous characterized by

Āj(x) = P[Xj > x]; aj(x) = − d

dx
Āj(x); ηj(x) =

aj(x)

Āj(x)
; αj(v) =

∫ ∞

0

e−vxaj(x)dx(2.1)

where Āj(x), aj(x), ηj(x) and αj(v) are the survival function, the probability density func-

tion, the hazard function and the Laplace transform of aj(x) respectively. Here v takes

values from the complex plane satisfying Re(v) > 0 so that αj(v) is well defined. A lifetime

associated with the cyclic renewal process is given by

Y =
J∑

j=1

Xj .(2.2)

Let Yk be the lifetime of the k-th renewal cycle where Yk’s are i.i.d. with common structure

of (2.2). For k = 0, one then sees that

P[N(t) = 0] = P[0 � t < Y1](2.3)

and for k � 1,

P[N(t) = k] = P[
k∑

m=1

Ym � t <
k+1∑
m=1

Ym] .(2.4)

Let {J(t) ; t � 0} be a stochastic process describing the stage at time t. We note that

J(t) is a cyclic semi-Markov process on J = {1, · · · , J} governed by the matrix distribution

function A(x) where

A(x)
def
=


0 A1(x) 0 · · · 0
0 0 A2(x) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 AJ−1(x)
AJ(x) 0 · · · 0 0

 ; Aj(x)
def
= 1 − Āj(x) .(2.5)

Since the bivariate process [N(t), J(t)] is not Markov, we introduce an additional process

{X(t) ; t � 0} on R+ denoting the elapsed time since the last entry into the current stage

at time t, where R+ is the set of nonnegative real numbers. This process is called the age
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Figure 2.1: Typical Sample Path of
[N(t), J(t), X(t)]

・・・

Figure 2.2: Typical Sample Path of
[X(t), Z(t), J(t)] with Jumps

process. The trivariate process [N(t), J(t), X(t)] then becomes Markov. A typical sample

path of [N(t), J(t), X(t)] is depicted in Figure 2.1 where N(0) = 0, J(0) = i and X(0) = 0.

From an application point of view, of particular interest is a reward process {Z(t) ; t � 0}
with jumps defined on [N(t), J(t), X(t)]. We assume that the reward increases or decreases

linearly at the rate of ρ(j) when J(t) is in state j ∈ J . Furthermore, the reward process

jumps in the random amount of Dj when J(t) moves from j to j + 1 for j ∈ J \ {J}, and

DJ for a transition from J to 1. Accordingly, Z(t) takes a value from R where R is the set

of real numbers. As for Xj (j ∈ J ), it is assumed that Dj (j ∈ J ) are independent of the

failure count, mutually independent, and absolutely continuous having

B̄j(z) = P[Dj > z] ; bj(z) = − d

dz
B̄j(z) ; βj(w) =

∫ ∞

−∞
e−wzbj(z)dz ,(2.6)

where w takes values on the unit circle on the complex plane so that βj(w) is well defined.

In order to describe the reward process {Z(t) ; t � 0} more formally, let {Mj(t) ; t � 0}
be the stochastic process counting the number of transitions of J(t) from j to j + 1 by time

t for j ∈ J \{J}. The stochastic process {MJ(t) ; t � 0} is defined similarly for transitions

of J(t) from J to 1. One then has

Z(t) =

∫ t

0

ρ(J(τ))dτ +

J∑
j=1

Mj(t)∑
m=1

Dj:m ,(2.7)

where Dj:m denotes the jump amount associated with the m-th transition from j to j + 1

for j ∈ J \ {J}, and from J to 1 for j = J . Following the mathematical convention, we

define
∑b

m=a cm = 0 whenever a > b. It should be noted that, by the assumptions discussed

above, Dj:m(m = 1, · · · , Mj(t)) are i.i.d. with respect to m. When J(t) is a general semi-

Markov process, the expectation of the semi-Markov reward process with jumps is given

in Howard [5]. The transform results of [J(t), Z(t)] are derived in McLean and Neuts [20].

The trivariate Markov process [J(t), X(t), Z(t)] is also studied in detail in Sumita and Ma-

suda [27, 26] and Masuda [18]. The thrust of this paper is to analyze the multivariate process

[N(t), J(t), X(t), Z(t)] where the cyclic renewal process N(t) is incorporated together with

[J(t), X(t), Z(t)], which is new. The results are then used to numerically explore optimal

preventive maintenance policies for production management.
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3. Dynamic Analysis of Multivariate Process [N(t), J(t), X(t), Z(t)]

In this section, we analyze the multivariate process [N(t), J(t), X(t), Z(t)] by describing its

probabilistic flow in the state space N ×J ×R+ ×R. For this purpose, let Fk:ij(x, z, t) be

the joint distribution function of [N(t), J(t), X(t), Z(t)] given J(0) = i, X(0) = Z(0) = 0.

More formally, we define

Fk:ij(x, z, t)(3.1)

= P[N(t) = k, J(t) = j,X(t) � x, Z(t) � z|J(0) = i, X(0) = Z(0) = 0] .

The corresponding joint probability density function is given by

fk:ij(x, z, t) =
∂2

∂x∂z
Fk:ij(x, z, t) .(3.2)

For the process [N(t), J(t), X(t), Z(t)] to be at (0, j, x, z) at time t > 0 given J(0) = i,

either no transition of J(t) has occurred in the time interval [0, t] with j = i, or at least one

transition of J(t) from J(0) = i occurred in [0, t), the process entered the state (0, j, 0+, z−
ρ(j)x) at time t−x, and no transition of J(t) has occurred since then. Accordingly, one has

f0:ij(x, z, t) = δ{j=i}δ(z − ρ(j)t)δ(t − x)Āj(x)(3.3)

+ δ{j>i}f0:ij(0+, z − ρ(j)x, t − x)Āj(x) , x > 0 , j = i, · · · , J .

Here, δ{P} = 1 if the statement P holds true, δ{P} = 0 otherwise, and δ(t) is the delta

function defined as the unit function associated with the convolution operation, i.e., f(x) =∫
f(y)δ(x − y)dy for any integrable function f . Similarly, for k > 0, to be at (k, j, x, z) at

time t > 0, the process should have entered the state (k, j, 0+, z − ρ(j)x) at time t− x and

no transition of J(t) has occurred since then. This then yields

fk:ij(x, z, t) = fk:ij(0+, z − ρ(j)x, t − x)Āj(x) , x > 0 , k � 1 .(3.4)

In order to determine the boundary conditions fk:ij(0+, z, t) associated with the age

process X(t), we first consider the case that k = 0, z = 0+ and t = 0+. One then sees that

f0:ij(0+, 0+, 0+) = δ{j=i}δ(z)δ(t). For t > 0 and j � i, the process [N(t), J(t), X(t), Z(t)]

just enters the state (0, j, 0+, z) at time t only if the dwell time of J(t) in state j−1 expires

at time t with the reward at z − Dj−1 followed by the instantaneous jump of size Dj−1 so

that Z(t) = z. Combining the two cases, one observes that

f0:ij(0+, z, t)(3.5)

= δ{j=i}δ(z)δ(t)

+ δ{j>i}

∫ ∞

0

∫ ∞

−∞
f0:i,j−1(x, z − z

′
, t)ηj−1(x)bj−1(z

′
)dz

′
dx , j = i, · · · , J .

For k � 1, similar arguments lead to

fk:ij(0+, z, t)(3.6)

=

{∫ ∞
0

∫ ∞
−∞ fk−1:iJ(x, z − z

′
, t)ηJ(x)bJ (z

′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ fk:i,j−1(x, z − z

′
, t)ηj−1(x)bj−1(z

′
)dz

′
dx , 2 � j � J

.
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We are now in a position to prove the key theorem of this paper. For notational convenience,

the following matrix Laplace-Fourier transforms are introduced.

ϕ̂
k
(x, z, s)

def
= [ϕ̂k:ij(x, z, s)] ; ϕ̂k:ij(x, z, s)

def
=

∫ ∞

0

e−stfk:ij(x, z, t)dt ,(3.7)

ˆ̂ϕ
k
(x,w, s)

def
= [ˆ̂ϕk:ij(x,w, s)] ; ˆ̂ϕk:ij(x,w, s)

def
=

∫ ∞

−∞
e−wzϕ̂k:ij(x, z, s)dz ,(3.8)

ˆ̂
ϕ̂

k
(v, w, s)

def
= [

ˆ̂
ϕ̂k:ij(v, w, s)] ;

ˆ̂
ϕ̂k:ij(v, w, s)

def
=

∫ ∞

0

e−vx ˆ̂ϕk:ij(x,w, s)dx ,(3.9)

ξ̂
k
(0+, z, s)

def
= [ξ̂k:ij(0+, z, s)] ; ξ̂k:ij(0+, z, s)

def
=

∫ ∞

0

e−stfk:ij(0+, z, t)dt ,(3.10)

ˆ̂
ξ

k
(0+, w, s)

def
= [

ˆ̂
ξk:ij(0+, w, s)] ;

ˆ̂
ξk:ij(0+, w, s)

def
=

∫ ∞

−∞
e−wz ξ̂k:ij(0+, z, s)dz ,(3.11)

β
D
(w, s)

def
=

[
δ{i=j}

1 − αj(s + ρ(j)w)

s + ρ(j)w

]
,(3.12)

ζij(w, s)
def
=

j∏
n=i

αn(s + ρ(n)w)βn(w) ; ζij(w, s) = 1 for i > j ,(3.13)

α∗(w, s)
def
=


0 ζ11(w, s) 0 · · · 0
0 0 ζ22(w, s) · · · 0
... · · · · · · · · · ζJ−1,J−1(w, s)
0 · · · · · · · · · 0

 ,(3.14)

α∗
D
(w, s)

def
=


ζ1J(w, s) 0

ζ2J(w, s)
. . .

0 ζJJ(w, s)

 .(3.15)

We also define the following matrices.

1
def
=

1 · · · 1
... · · · ...
1 · · · 1

 , I
def
=

1 0
. . .

0 1

 .(3.16)

A few preliminary lemmas are needed.

Lemma 3.1 For
ˆ̂
ξ

k
(0+, w, s) defined in (3.11), one has

ˆ̂
ξ

k
(0+, w, s) =

{
[I − α∗(s, w)]−1 , k = 0{
ζ1J(w, s)

}k
α∗

D
(w, s)1 α∗−1

D
(w, s) , k � 1

.(3.17)

Proof

Substituting (3.3) into (3.5), it can be seen that

f0:ij(0+, z, t)(3.18)

= δ{j=i}δ(z)δ(t) + δ{j>i}

∫ ∞

0

∫ ∞

−∞

{
δ{j−1=i}δ(z − z

′ − ρ(j − 1)t)δ(t − x)Āj−1(x)

+ δ{j−1>i}f0:i,j−1(0+, z − z
′ − ρ(j − 1)x, t − x)Āj−1(x)

}
ηj−1(x)bj−1(z

′
)dz

′
dx .
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Similarly, substitution of (3.4) into (3.6) yields

fk:ij(0+, z, t)(3.19)

=

{∫ ∞
0

∫ ∞
−∞ fk−1:iJ(0+, z − z

′ − ρ(J)x, t − x)aJ(x)bJ (z
′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ fk:i,j−1(0+, z − z

′ − ρ(j − 1)x, t − x)aj−1(x)bj−1(z
′
)dz

′
dx , 2 � j � J

.

By taking Laplace transforms with respect to t in (3.18) and (3.19), it then follows that

ξ̂0:ij(0+, z, s)(3.20)

= δ{j=i}δ(z) + e−sxδ{j>i}

∫ ∞

0

∫ ∞

−∞

{
δ{j−1=i}δ(z − z

′ − ρ(j − 1)x)Āj−1(x)

+ δ{j−1>i}e−sxξ̂0:i,j−1(0+, z − z
′ − ρ(j − 1)x, s)Āj−1(x)

}
ηj−1(x)bj−1(z

′
)dz

′
dx ,

and

ξ̂k:ij(0+, z, s)(3.21)

=

{∫ ∞
0

∫ ∞
−∞ e−sxξ̂k−1:iJ(0+, z − z

′ − ρ(J)x, s)aJ (x)bJ (z
′
)dz

′
dx , j = 1∫ ∞

0

∫ ∞
−∞ e−sxξ̂k:i,j−1(0+, z − z

′ − ρ(j − 1)x, s)aj−1(x)bj−1(z
′
)dz

′
dx , 2 � j � J

.

If we again take Laplace-Fourier transforms with respect to z in (3.20) and (3.21), one has

ˆ̂
ξ0:ij(0+, w, s) = δ{j=i} + δ{j−1=i}ζj−1,j−1(w, s)(3.22)

+ δ{j−1>i}
ˆ̂
ξ0:i,j−1(0+, w, s)ζj−1,j−1(w, s)

and

ˆ̂
ξk:ij(0+, w, s) =

{
ˆ̂
ξk−1:iJ(0+, w, s)ζJJ(w, s) , j = 1
ˆ̂
ξk:i,j−1(0+, w, s)ζj−1,j−1(w, s) , 2 � j � J

(3.23)

since ζjj(w, s) = αj(s + ρ(j)w)βj(w).

Equations in (3.22) and (3.23) can be rewritten in matrix form using
ˆ̂
ξ

k
(0+, w, s) defined

in (3.11) in the following manner. From (3.22), we first note that

ˆ̂
ξ
0
(0+, w, s) =


1

ˆ̂
ξ0:12(0+, w, s) · · · ˆ̂

ξ0:1J(0+, w, s)

1 · · · ˆ̂
ξ0:2J(0+, w, s)

. . .
...

0 1



=


1 ζ11(w, s)

ˆ̂
ξ0:12(0+, w, s)ζ22(w, s) · · · ˆ̂

ξ0:1,J−1(0+, w, s)ζJ−1,J−1(w, s)

1 ζ22(w, s) · · · ˆ̂
ξ0:2,J−1(0+, w, s)ζJ−1,J−1(w, s)

1
. . .

...
0 1

 .

The last matrix in the above expression can be written from (3.14) as I+
ˆ̂
ξ

0
(0+, w, s)α∗(w, s),

so that

ˆ̂
ξ

0
(0+, w, s) = [I − α∗(w, s)]−1 ,(3.24)
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proving the case for k = 0.

For k � 1, we prove by induction. When k = 1, one sees that

ˆ̂
ξ
1
(0+, w, s)

=


ˆ̂
ξ1:11(0+, w, s) · · · ˆ̂

ξ1:1J(0+, w, s)
... · · · ...

ˆ̂
ξ1:J1(0+, w, s) · · · ˆ̂

ξ1:JJ(0+, w, s)



=


ˆ̂
ξ0:1J(0+, w, s)ζJJ(w, s)

ˆ̂
ξ1:11(0+, w, s)ζ11(w, s) · · · ˆ̂

ξ1:1,J−1(0+, w, s)ζJ−1,J−1(w, s)
...

... · · · ...
ˆ̂
ξ0:JJ(0+, w, s)ζJJ(w, s)

ˆ̂
ξ1:J1(0+, w, s)ζ11(w, s) · · · ˆ̂

ξ1:J,J−1(0+, w, s)ζJ−1,J−1(w, s)

 .

By employing (3.22) in the above expression, it follows that

ˆ̂
ξ
1
(0+, w, s) =


ζ1J(w, s) ζ1J(w, s)ζ11(w, s) · · · ζ1J(w, s)ζ1,J−1(w, s)
ζ2J(w, s) ζ2J(w, s)ζ11(w, s) · · · ζ2J(w, s)ζ1,J−1(w, s)

...
... · · · ...

ζJJ(w, s) ζJJ(w, s)ζ11(w, s) · · · ζJJ(w, s)ζ1,J−1(w, s)

 .

From (3.15) and (3.16), this then leads to

ˆ̂
ξ

1
(0+, w, s) = α∗

D
(w, s)1


1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 .(3.25)

It should be noted from (3.13) and (3.15) that

α∗
D
(s, w)


1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 = ζ1J(w, s)I ,

so that one has 
1 0

ζ11(w, s)
. . .

0 ζ1,J−1(w, s)

 = ζ1J(w, s)α∗−1

D
(w, s) .(3.26)

Substituting (3.26) into (3.25), one concludes that

ˆ̂
ξ

1
(0+, w, s) = ζ1J(w, s)α∗

D
(w, s)1 α∗−1

D
(w, s) ,(3.27)

proving for k = 1.
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Suppose the statement holds true for k − 1 and consider the case for k. It can be seen

from (3.23) that

ˆ̂
ξ

k
(0+, w, s)

=


ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1J(0+, w, s)
ˆ̂
ξk:21(0+, w, s) · · · ˆ̂

ξk:2J(0+, w, s)
...

...
...

ˆ̂
ξk:J1(0+, w, s) · · · ˆ̂

ξk:JJ(0+, w, s)



=


ˆ̂
ξk−1:1J(0+, w, s)ζJJ(w, s) · · · ˆ̂

ξk:1,J−1(0+, w, s)ζJ−1,J−1(w, s)
ˆ̂
ξk−1:2J(0+, w, s)ζJJ(w, s) · · · ˆ̂

ξk:2,J−1(0+, w, s)ζJ−1,J−1(w, s)
... · · · ...

ˆ̂
ξk−1:JJ(0+, w, s)ζJJ(w, s) · · · ˆ̂

ξk:J,J−1(0+, w, s)ζJ−1,J−1(w, s)

 .

The last matrix in the above expression can be written in matrix product form as

ˆ̂
ξ

k
(0+, w, s) =


ˆ̂
ξk−1:1J(0+, w, s)

ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1,J−1(0+, w, s)
ˆ̂
ξk−1:2J(0+, w, s)

ˆ̂
ξk:21(0+, w, s) · · · ˆ̂

ξk:2,J−1(0+, w, s)
... · · · ...

...
ˆ̂
ξk−1:JJ(0+, w, s)

ˆ̂
ξk:J1(0+, w, s) · · · ˆ̂

ξk:J,J−1(0+, w, s)



·


ζJJ(w, s) 0

ζ11(w, s)
. . .

0 ζJ−1,J−1(w, s)

 .

By applying (3.23) to the first matrix in the above expression, one sees that

ˆ̂
ξ
k
(0+, w, s)

=

�
������

ˆ̂
ξk−1:1J (0+, w, s)

ˆ̂
ξk:11(0+, w, s) · · · ˆ̂

ξk:1,J−1(0+, w, s)
ˆ̂
ξk−1:2J (0+, w, s)

ˆ̂
ξk:21(0+, w, s) · · · ˆ̂

ξk:2,J−1(0+, w, s)

... · · ·
...

...
ˆ̂
ξk−1:JJ (0+, w, s)

ˆ̂
ξk:J1(0+, w, s) · · · ˆ̂

ξk:J,J−1(0+, w, s)

�
������
·

�
����

ζJJ (w, s) 0

ζ11(w, s)

. . .

0 ζJ−1,J−1(w, s)

�
����

=

�
������

ˆ̂
ξk−1:1,J−1(0+, w, s)

ˆ̂
ξk−1:1J (0+, w, s) · · · ˆ̂

ξk:1,J−2(0+, w, s)
ˆ̂
ξk−1:2,J−1(0+, w, s)

ˆ̂
ξk−1:2J (0+, w, s) · · · ˆ̂

ξk:2,J−2(0+, w, s)

..

. · · ·
..
.

..

.
ˆ̂
ξk−1:J,J−1(0+, w, s)

ˆ̂
ξk−1:JJ(0+, w, s) · · · ˆ̂

ξk:J,J−2(0+, w, s)

�
������

·

�
����

ζJ−1,J−1(w, s) 0

ζJJ (w, s)

. . .

0 ζJ−2,J−2(w, s)

�
���� ·

�
����

ζJJ (w, s) 0

ζ11(w, s)

. . .

0 ζJ−1,J−1(w, s)

�
���� .

By repeating this procedure, it follows that

ˆ̂
ξ

k
(0+, w, s) = ζ1J(w, s)

ˆ̂
ξ

k−1
(0+, w, s) ,(3.28)
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where ζ1J(w, s) =
∏J

j=1 ζjj(w, s) is employed from (3.13). From the induction hypothesis,

the lemma now follows. �

Lemma 3.2 For the multivariate process [N(t), J(t), X(t), Z(t)] with N(0) = X(0) =

Z(0) = 0 and J(0) = i, let
ˆ̂
ϕ̂

k
(v, w, s) be defined as in (3.9). Then

ˆ̂
ϕ̂

k
(v, w, s) =

[I − α∗(w, s)]−1β
D
(w, v + s) , k = 0{

ζ1J(w, s)
}k

α∗
D
(w, s)1 α∗−1

D
(w, s)β

D
(w, v + s) , k � 1

.(3.29)

Proof

By taking Laplace transforms of (3.3) and (3.4) with respect to t , one sees that

ϕ̂k:ij(x, z, s) =


δ{j=i}δ(z − ρ(j)x)e−sxĀj(x)

+δ{j>i}e−sxξ̂0:ij(0+, z − ρ(j)x, s)Āj(x) , k = 0

e−sxξ̂k:ij(0+, z − ρ(j)x, s)Āj(x) , k � 1

.(3.30)

If Laplace-Fourier transforms are taken again with respect to z in (3.30), one has

ˆ̂ϕk:ij(x,w, s) =


[
δ{j=i} + δ{j>i}

ˆ̂
ξ0:ij(0+, w, s)

]
e−(s+ρ(j)w)xĀj(x) , k = 0

ˆ̂
ξk:ij(0+, w, s)e−(s+ρ(j)w)xĀj(x) , k � 1

.(3.31)

By taking Laplace transforms one more time with respect to x in (3.31), it follows that

ˆ̂
ϕ̂k:ij(v, w, s) =


[
δ{j=i} + δ{j>i}

ˆ̂
ξ0:ij(0+, w, s)

]
1−αj(v+ρ(j)w+s)

v+ρ(j)w+s
, k = 0

ˆ̂
ξk:ij(0+, w, s) · 1−αj(v+ρ(j)w+s)

v+ρ(j)w+s
, k � 1

,(3.32)

which can be rewritten in matrix form as

ˆ̂
ϕ̂

k
(v, w, s) =

ˆ̂
ξ

k
(0+, w, s)β

D
(w, v + s) , k � 0 .(3.33)

Substituting (3.17) of Lemma 3.1 into (3.33), the theorem follows. �

By taking the generating function of
ˆ̂
ϕ̂

k
(v, w, s) in (3.29) with respect to k (k = 0, 1, 2 · · · ),

the joint transform of [N(t), J(t), X(t), Z(t)] can be obtained.

Theorem 3.3 Let
ˆ̂
ϕ̂(v, w, s, u) be the matrix generating function of

ˆ̂
ϕ̂

k
(v, w, s) in (3.29)

defined by

ˆ̂
ϕ̂(v, w, s, u)

def
= [

ˆ̂
ϕ̂ij(v, w, s, u)] ;

ˆ̂
ϕ̂ij(v, w, s, u)

def
=

∞∑
k=0

ˆ̂
ϕ̂k:ij(v, w, s)uk .(3.34)

Then one has

ˆ̂
ϕ̂(v, w, s, u) = χ(w, s, u)β

D
(w, v + s) ,(3.35)
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where β
D
(w, v + s) is as given in (3.12),

χ(w, s, u)
def
= [I − ζ(w, s, u)]−1,(3.36)

and

ζ(w, s, u)
def
=


0 ζ11(w, s) 0 · · · 0
0 0 ζ22(w, s) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 ζJ−1,J−1(w, s)
uζJJ(w, s) 0 · · · 0 0

 .(3.37)

Proof

Multiplying uk to both sides of (3.29) and then summing from k = 0 to ∞, one finds

that

ˆ̂
ϕ̂(v, w, s, u) = [I − α∗(w, s)]−1β

D
(w, v + s)(3.38)

+ uζ1J(w, s)
∞∑

k=1

{
uζ1J(w, s)

}k−1

α∗
D
(w, s)1 α∗−1

D
(w, s)β

D
(w, v + s)

=
[
[I − α∗(w, s)]−1 +

uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s)

]
· β

D
(w, v + s) .

From (3.13), (3.14), (3.15), (3.36) and (3.37), it should be noted that[
[I − α∗(w, s)]−1 +

uζ1J(w, s)

1 − uζ1J(w, s)
α∗

D
(w, s)1 α∗−1

D
(w, s)

]
= χ(w, s, u) .(3.39)

Substituting (3.39) into (3.38) then yields (3.35), completing the proof. �

Remark 3.4 By setting u = 1 in (3.35), Theorem 3.3 is reduced to a special case of The-

orem 2.8.1 of Masuda [17]. Indeed, ζ(w, s, 1) is the bivariate transform of J(t) and Z(t),

where α∗∗(w, s) of Masuda [17] is equal to ζ(w, s, 1).

4. Asymptotic Expansion of E[Z(t)|J(0) = i] and Cor[N(t), Z(t)|J(0) = i]

The purpose of this section is to establish the asymptotic expansions of E[Z(t)|J(0) = i]

and Cor[N(t), Z(t)|J(0) = i] as t → ∞. To accomplish this, we introduce Theorem 1 of

Keilson [12]. Let Aj:k be the k-th moment of Xj. More formally, we define

Aj:k
def
=

∫ ∞

0

xkaj(x)dx .(4.1)

Also the following matrix is employed.

A
k

def
=


0 A1:k 0 · · · 0
0 0 A2:k · · · 0

0 0 · · · . . .
...

0 0 · · · 0 AJ−1:k

AJ :k 0 · · · 0 0

 .(4.2)

11



If
∫ ∞
0

x2dAj(x) < 0 for all j and Aj(x) are not lattice distribution with a common span,

one has

χ(0, s, 1) =
1

s
H

1
+ H

0
+ o(1)(4.3)

as s → 0+ where, for e�d = e�d A
0
, one has

H
1

def
=

1

m1
J ; J

def
= 1 e�d ; m1

def
= e�d A

1
1(4.4)

and

H
0

def
= H

1

(
− A

1
+

1

2
A

2
H

1

)
+

(
Z − H

1
A

1
Z

)(
A

0
− A

1
H

1

)
+ I .(4.5)

Here, Z is the fundamental matrix associated with the Markov chain governed by A
0
, i.e.

Z =
[
I − A

0
+ J

]−1

.(4.6)

Using Lemmas A.1, A.2 and A.3 in Appendix, the following theorem holds.

Theorem 4.1 For the matrices in Lemmas A.2 and A.3, we define

X
1

def
= H

1
(A

D:1
ρ# + D#

1
)H

1
A

D:1
;

X
0

def
=

1

2
V

2
A

D:2
− V

1
A

D:1
+

1

2
H

1
ρ

D
A

D:2
;

n2
def
= p�(0)S

2
1 − (p�(0)L

1
1)2 ;

n1
def
= p�(0)S

1
1 − 2p�(0)L

1
1p�(0)L

0
1 ;

z2
def
= p�(0)T

2
1 − (p�(0)X

1
1)2 ;

z1
def
= p�(0)T

1
1 − 2p�(0)X

1
1p�(0)X

0
1 ;

Co2
def
= p�(0)U

2
1 − p�(0)L

1
1p�(0)X

1
1 ; and

Co1
def
= p�(0)U

1
1 − p�(0)L

1
1p�(0)X

0
1 − p�(0)L

0
1p�(0)X

1
1 ,

where p�(0) is the initial probability vector of J(t) and 1�
def
= [1 · · ·1]. As t → ∞, one has

a) E[Z(t)|J(0) = i] = p�(0)(X
1
t + X

0
)1 + o(1)

b) Cor[N(t), Z(t)|J(0) = i] =
Co2t

2 + Co1t + o(t)√
n2z2t4 + (n2z1 + n1z2)t3 + n1z1t2 + o(t2)

Proof

a) Setting v = w = 0 in (3.35) leads to

ˆ̂
ϕ̂(0, 0, s, u) = χ(0, s, u)β

D
(0, s) .
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By differentiating the above expression with respect to u and setting u = 1, it can be seen

that

∂

∂u

{
ˆ̂
ϕ̂(0, 0, s, u)

}∣∣∣∣∣
u=1

=
∂

∂u

{
χ(0, s, u)

}∣∣∣∣∣
u=1

β
D
(0, s) .(4.7)

Applying Lemmas A.1 c) and A.2 a) to (4.7), it then follows that

∂

∂u

{
ˆ̂
ϕ̂(0, 0, s, u)

}∣∣∣∣∣
u=1

=
{ 1

s2
Q

2
+

1

s
Q

1
+ o

(1

s

)}{
A

D:1
− 1

2
A

D:2
+ o(s)

}
(4.8)

=
1

s2
Q

2
A

D:1
+

1

s
(Q

1
A

D:1
− 1

2
Q

2
A

D:2
) + o

(1

s

)
.

Hence one has

E[Z(t)|J(0) = i] = p�(0)L−1
{ ∂

∂u
ˆ̂
ϕ̂(0, 0, s, u)

∣∣∣∣∣
u=1

}
1

= p�(0)(Q
2
A

D:1
t + Q

1
A

D:1
− 1

2
Q

2
A

D:2
)1 + o(1)

= p�(0)(X
1
t + X

0
)1 + o(1) as t → ∞ ,

where L−1 means the inversion of the Laplace transform, i.e., L−1{α(s)} = a(t) with α(s) =

L{a(t)} =
∫ ∞

0
e−sta(t)dt, proving part a).

For part b), we first note that

L{E[N(t)Z(t)|J(0) = i]} = p�(0)L−1
{ ∂2

∂u∂w
ˆ̂
ϕ̂(0, w, s, u)

∣∣∣∣∣
u=1,w=0

}
1 .

The asymptotic expansion of the above expression is given in Lemma A.3 d), which in turn

yields that of

Cov[N(t), Z(t)|J(0) = i] = E[N(t)Z(t)|J(0) = i] − E[N(t)|J(0) = i]E[Z(t)|J(0) = i] .

More specifically, using Theorem 4.1 a) and Lemma A.3 a) and d), one finds that

Cov[N(t), Z(t)|J(0) = i] = Co2t
2 + Co1t + o(t) .(4.9)

One also sees from Lemma A.3 that

V[N(t)|J(0) = i] = n2t
2 + n1t + o(t) ,(4.10)

V[Z(t)|J(0) = i] = z2t
2 + z1t + o(t) .(4.11)

Part b) then follows from (4.10), (4.11) and (4.9) since Cor[N(t), Z(t)|J(0) = i] =

Cov[N(t), Z(t)|J(0) = i]/
√

V[N(t)|J(0) = i]V[Z(t)|J(0) = i] . �

In the next section, as an example of applications of these asymptotic results, we investigate

optimal preventive maintenance policies for production systems where the opportunity cost

for system down is huge.
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5. Numerical Exploration of Optimal Preventive Maintenance Policies for Pro-
duction Management

We consider a production system where the system down cost is huge. A typical example may

be the production of semi-conductor chips because the production machines are extremely

expensive and the repair takes a long time since vendor engineers often have to be called in

once the system fails. In such a situation, preventive maintenance is widely practiced where

minimal repairs take place as minor problems occur, which can be addressed by on-site

engineers. A complete overhaul demanding the presence of vendor engineers is conducted

only after minimal repairs are repeated certain many times, as depicted in Figure 5.1. The

question then is to determine when to conduct a complete overhaul. The reward process

defined on the cyclic renewal process proposed in this paper provides a useful computational

vehicle for numerically exploring optimal preventive maintenance policies of this sort in a

dynamic environment. In this section, we demonstrate this claim using Theorem 4.1 a).

Figure 5.1: Typical Sample Path of [N(t), J(t), X(t)] for Preventive Maintenance Model

The idea behind minimal repairs is to prolong the availability of the system in the

time interval (0, T ] by accommodating a partial system adjustment from time to time. This

approach can be effective since minimal repairs can be done at much lower cost and in much

shorter time in comparison with a complete overhaul. Starting with a fresh system lifetime,

it is natural to assume that the time until the next minimal repair becomes shorter while

the subsequent minimal repair time becomes longer as this cycle is repeated. When it is

decided to conduct a complete overhaul, the system is brought back to its original fresh

state upon completion of the overhaul.

In order to incorporate this probabilistic structure, we employ Gamma variates. More

specifically, let {X̂i}∞i=1 and {X̃i}∞i=1 be sequences of i.i.d. exponential random variables with

parameters λ and µ respectively, where the former is used to construct system lifetimes while

the latter is employed to structure repair times. The system lifetime X1 when it is in the

fresh state is assumed to be a Gamma variate of integral order K(0) with scaling parameter

λ, i.e.,

X1 =

K(0)∑
i=1

X̂i .(5.1)

We also assume that the time required for conducting a complete overhaul is a Gamma

variate of integral order K(1) with scaling parameter µ. Assuming that K minimal repairs

14



would take place, one has

X2(K+1) =

K(1)∑
i=1

X̃i .(5.2)

So as to reflect the fact that the time until the next minimal repair becomes shorter while

the subsequent minimal repair time becomes longer as this cycle is repeated, we define

Xj =

{
X̂1 + X̂2 + · · · + X̂K(2)+2−(j+1)/2 if j = 3, 5, · · · , 2K + 1

X̃1 + X̃2 + · · · + X̃j/2 if j = 2, 4, · · · , 2K
,(5.3)

where K(2) is a parameter satisfying K � K(2) � K(0). For j odd, Xj is the time until

the next minimal repair which decreases stochastically with respect to j. For j even, Xj is

the subsequent minor repair time which increases stochastically in j.

Let αj(s) be the Laplace transform of the p.d.f of Xj. From (5.1), (5.2) and (5.3), it can

be seen that

αj(s) =



( λ

s + λ

)K(0)

if j = 1( λ

s + λ

)K(1)

if j = 2(K + 1)( λ

s + λ

)K(2)+1− j+1
2

if j = 3, 5, · · · , 2K + 1( µ

s + µ

) j
2

if j = 2, 4, · · · , 2K

.(5.4)

By differentiating (5.4) with respect to s once or twice and setting s = 0, one finds that

E[Xj] =



K(0)

λ
if j = 1

K(1)

µ
if j = 2(K + 1)

1

λ

(
K(2) + 2 − j + 1

2

)
if j = 3, 5, · · · , 2K + 1

j

2µ
if j = 2, 4, · · · , 2K

,(5.5)

and

E[X2
j ] =



1

λ
K(0)(K(0) + 1) if j = 1

1

µ
K(1)(K(1) + 1) if j = 2(K + 1)

1

λ

(
K(2) + 2 − j + 1

2

)(
K(2) + 3 − j + 1

2

)
if j = 3, 5, · · · , 2K + 1

j

2µ

(j

2
+ 1

)
if j = 2, 4, · · · , 2K

.(5.6)
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We next turn our attention to the reward structure. The reward rate function ρ(j) is

defined as

ρ(j) =

{
ρUP if j = 1, 3, · · · , 2K + 1

−ρDOWN if j = 2, 4, · · · , 2K + 2
,(5.7)

where ρUP and ρDOWN are parameters satisfying ρUP > 0 and ρDOWN > 0. The fixed cost for

calling in on-site engineers for a minimal repair and that for calling in vendor engineers for

a complete overhaul can be expressed in terms of random reward jumps Dj. The associated

means are defined as

E[Dj] =


−D if j = 1, 3, · · · , 2K + 1

0 if j = 2, 4, · · · , 2K

−10D if j = 2K + 2

.(5.8)

In what follows, a set of parameter values for λ, ρDOWN, D, i, K(0), K(1) and K(2)

would be fixed as specified in Table 5.1 below. Numerical experiments are then conducted

to explore the optimal value of K, which maximizes the expected reward per unit time in

the time interval (0, T ] as a function of K and T for given values of µ and ρUP.

Table 5.1: Parameter Values for λ, ρDOWN, D, i, K(0), K(1) and K(2)
λ ρDOWN D i K(0) K(1) K(2)
3 10 100 1 100 100 50

More specifically, let C0(K) and C1(K) be defined as

C0(K)
def
= p�(0)X

0
1(5.9)

and

C1(K)
def
= p�(0)X

1
1 ,(5.10)

so that one has from Theorem 4.1 a)

E[Z(T )|J(0) = 1]

T
= C1(K) +

1

T
C0(K) + o(1) .(5.11)

The optimal number of minimal repairs, denoted by K∗
T , is now given as

K∗
T

def
= arg max

K
E[Z(T )|J(0) = 1]/T(5.12)

= arg max
K

{
C1(K) +

1

T
C0(K) + o(1)

}
.

Of interest is to understand the behavior of K∗
T as K and T are varied for given values of

µ and ρUP.

Figures 5.2 through 5.7 exhibit E[Z(T )|J(0) = 1]/T as a function of K and T for each

pair of µ = 3, 5, 15 and ρUP = 15, 20 arranged in lexicographic order.
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Figure 5.2: E[Z(T )|J(0) = 1]/T for (µ, ρUP) =
(3, 15)
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Figure 5.3: E[Z(T )|J(0) = 1]/T for (µ, ρDOWN) =
(3, 20)

5
10

15
20

25
30

500
1000

1500
2000

2500
3000
-10

-5

0

5

10

KT

E
[Z
(T
)¦J
(0
)=
1]
/T

Figure 5.4: E[Z(T )|J(0) = 1]/T for (µ, ρUP) =
(5, 15)

5
10

15
20

25
30

500
1000

1500
2000

2500
3000
-10

-5

0

5

10

KT

E
[Z
(T
)¦J
(0
)=
1]
/T

Figure 5.5: E[Z(T )|J(0) = 1]/T for (µ, ρDOWN) =
(5, 20)
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Figure 5.6: E[Z(T )|J(0) = 1]/T for (µ, ρUP) =
(15, 15)
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Figure 5.7: E[Z(T )|J(0) = 1]/T for (µ, ρDOWN) =
(15, 20)
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Figure 5.8: E[Z(T )|J(0) = 1]/T for T =
3000, ρUP = 15 and µ = 3, 5, 15
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Figure 5.9: E[Z(T )|J(0) = 1]/T for T =
3000, ρUP = 20 and µ = 3, 5, 15

Table 5.2: K∗
T (T = 500, 1000, 1500, 2000, 2500, 3000) for each pair of µ = 3, 5, 15 and ρUP =

15, 20
(µ, ρUP) \ T 500 1000 1500 2000 2500 3000

(3, 15) 18 17 16 16 16 16
(3, 20) 17 16 15 15 15 15
(5, 15) 19 18 17 17 17 17
(5, 20) 18 17 17 16 16 16
(15, 15) 22 20 20 19 19 19
(15, 20) 21 19 19 19 19 19

Table 5.3: K∗
∞ for µ = 3, 5, 15 and ρUP = 15, 20
ρUP \ µ 3 5 15

15 16 17 19
20 15 16 18

In order to facilitate the understanding of the functional behavior, E[Z(T )|J(0) = 1]/T

are plotted in Figures 5.8 and 5.9 as the marginal functions of K for T = 3000 and ρUP =

15, 20. The values of the optimal number of minimal repairs K∗
T are given in Table 5.2 for

T = 500, 1000, · · · , 3000. From Table 5.2 and Figures 5.2 through 5.7, one observes that

K∗
T decreases as T increases and E[Z(T )|J(0) = 1]/T appears to be a concave function

of K(1 � K � 30) for all µ = 3, 5, 15 and ρUP = 15, 20. The optimal K∗
∞ in the long

run average is summarized in Table 5.3, showing that K∗
∞ increases as µ increases or ρUP

decreases. When T is relatively small, the optimal K∗
∞ may not be optimal as can be seen

from Tables 5.2 and Table 5.3, demonstrating the importance of dynamic analysis.

We next turn our attention to Cor[N(T ), Z(T )|J(0) = i] for capturing the time-dependent

correlation structure numerically based on Theorem 4.1 b). Parameter values for λ, ρDOWN,

D, i, K(0), K(1) and K(2) are again as in Table 5.1. Figures 5.10 through 5.15 illustrate

Cor[N(T ), Z(T )|J(0) = i] as a function of K and T for each pair of µ = 3, 5, 15 and
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ρUP = 15, 20. They are also exhibited as marginal functions of K in Figures 5.16 through

5.21.
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Figure 5.10: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (3, 15)
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Figure 5.11: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (3, 20)
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Figure 5.12: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (5, 15)
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Figure 5.13: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (5, 20)
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Figure 5.14: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (15, 15)
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Figure 5.15: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (15, 20)
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Figure 5.16: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (3, 15)

5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

K

E
[Z
(T
)¦J
(0
)=
1]
/T

T=500
T=1000
T=1500
T=2000
T=2500
T=3000

Figure 5.17: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (3, 20)

5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

K

E
[Z
(T
)¦J
(0
)=
1]
/T

T=500
T=1000
T=1500
T=2000
T=2500
T=3000

Figure 5.18: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (5, 15)
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Figure 5.19: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (5, 20)
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Figure 5.20: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (15, 15)
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Figure 5.21: Cor[N(T ), Z(T )|J(0) = 1] for
(µ, ρUP) = (15, 20)
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From Figures 5.16, 5.18 and 5.20, one finds that Cor[N(T ), Z(T )|J(0) = 1] is uni-

modal with respect to K. Figures 5.17, 5.19 and 5.21 for µ = 3, 5, 15 and ρUP = 20

show that Cor[N(T ), Z(T )|J(0) = 1] increases as µ increases. In the cases of T = 500,

Cor[N(T ), Z(T )|J(0) = 1] is monotonically increasing as a function of K for all values of

µ = 3, 5, 15.

6. Concluding Remarks

In this paper, a cyclic renewal process is considered as an extension of an alternating renewal

process where each of the underlying i.i.d. nonnegative random increments is composed

of multiple stages. Such a process may be appropriate for analyzing optimal preventive

maintenance policies for production management, where a pair of two stages representing

an uptime until a minor failure and the subsequent minimal repair time would be repeated

until it is decided to conduct a complete overhaul. In order to address economic problems

in such applications, also introduced is a reward process with jumps defined on the cyclic

renewal process. When the system is running in stage j, the profit grows linearly at the

rate of ρ(j). Upon a minor failure, the subsequent minimal repair in stage (j + 1) incurs

the linear cost at the rate of ρ(j + 1). In addition, the fixed cost may be imposed whenever

either a minimal repair or a complete overhaul takes place, resulting in jumps of the reward

process. The problem is then to determine when to conduct a complete overhaul so as to

maximize the total reward in the time interval (0, T ].

The multivariate Markov process generated from both the cyclic renewal process and

the reward process is studied extensively, yielding various transform results explicitly and

deriving their asymptotic expansions. These results are used to numerically explore optimal

preventive maintenance policies for production management, demonstrating the usefulness

of the cyclic renewal model.
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A.Appendix

In this appendix, we establish various lemmas concerning the asymptotic expansions of the

transform results obtained in Section 3. These lemmas can be proven from (4.3) combined

with appropriate differentiation in a straightforward manner, and the proofs are omitted.

The asymptotic theorems needed for numerically exploring the underlying reward and cor-

relation structure are derived in Section 4 using these lemmas.

Let α#(s) and 1# be the matrices defined by

α#(s)
def
=


0 α1(s) 0 · · · 0
0 0 α2(s) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 αJ−1(s)
αJ(s) 0 · · · 0 0

 , 1# def
=


0 1 0 · · · 0
0 0 1 · · · 0

0 0 · · · . . .
...

0 0 · · · 0 1
1 0 · · · 0 0

 .

Lemma A.1 As s → 0+, the following expressions hold true.

a) α#(s) = 1# − sA
1
+

1

2
s2A

2
+ o(s2)

b)
d

ds
α#(s) = −A

1
+ sA

2
+ o(s) ;

( d

ds

)2

α#(s) = A
2
+ o(1)

c) β
D
(0, s) = A

D:1
− 1

2
sA

D:2
+ o(s)

d)
∂

∂w
β

D
(w, s)

∣∣∣∣∣
w=0

= −1

2
ρ

D
A

D:2
+ o(1) ;

∂2

∂w2
β

D
(w, s)

∣∣∣∣∣
w=0

= o
(1

s

)
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Lemma A.2 As s → 0+, the following statements hold.

a)
{ ∂

∂u
χ(0, s, u)

}∣∣∣∣∣
u=1

=
1

s2
Q

2
+

1

s
Q

1
+ o

(1

s

)
b)

{ ∂2

∂u2
χ(0, s, u)

}∣∣∣∣∣
u=1

=
1

s3
K

3
+

1

s2
K

2
+ o

( 1

s2

)
c)

{ ∂

∂w
ζ(w, s, 1)

}∣∣∣∣∣
w=0

= −(A
D:1

ρ# + D#

1
) + s(A

D:2
ρ# + A

D:1
D#

1
) + o(s)

d)
{ ∂2

∂w2
ζ(w, s, 1)

}∣∣∣∣∣
w=0

= A
D:2

ρ
D
ρ# + 2A

D:1
ρ

D
D#

1
+ D#

2
+ o(1)

e)
{ ∂

∂w
χ(w, s, 1)

}∣∣∣∣∣
w=0

=
1

s2
V

2
+

1

s
V

1
+ o

(1

s

)
f)

{ ∂2

∂w2
χ(w, s, 1)

}∣∣∣∣∣
w=0

=
1

s3
W

3
+

1

s2
W

2
+ o

( 1

s2

)
g)

{ ∂2

∂u∂w
χ(w, s, u)

}∣∣∣∣∣
u=1,w=0

=
1

s3
R

3
+

1

s2
R

2
+ o

( 1

s2

)
where

ρ
D

def
=

ρ(1) 0
. . .

0 ρ(J)

 , ρ# def
=


0 ρ(1) 0 · · · 0
0 0 ρ(2) · · · 0

0 0 · · · . . .
...

0 0 · · · 0 ρ(J − 1)
ρ(J) 0 · · · 0 0

 ,

D#

1

def
=


0 E[D1] 0 · · · 0
0 0 E[D2] · · · 0

0 0 · · · . . .
...

0 0 · · · 0 E[DJ−1]
E[DJ ] 0 · · · 0 0

 ,

D#

2

def
=


0 E[D2

1] 0 · · · 0
0 0 E[D2

2] · · · 0

0 0 · · · . . .
...

0 0 · · · 0 E[D2
J−1]

E[D2
J ] 0 · · · 0 0

 , 1̂
def
=


0
... 0
0
1

 ,
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Lemma A.3 As t → ∞,

a) E[N(t)|J(0) = i] = p�(0)(L
1
t + L

0
)1 + o(1)

b) E[N2(t)|J(0) = i] = p�(0)(S
2
t2 + S

1
t)1 + o(t)

c) E[Z2(t)|J(0) = i] = p�(0)(T
2
t2 + T

1
t)1 + o(t)

d) E[N(t)Z(t)|J(0) = i] = p�(0)(U
2
t2 + U

1
t)1 + o(t)

where

L
1

def
= Q

2
A

D:1
, L

0

def
= Q

1
A

D:1
− 1

2
Q

2
A

D:2
,

S
2

def
= K

3
A

D:1
, S

1

def
= (K

2
+ Q

2
)AD:1 − 1

2
K

3
A

D:2
,

T
2
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= W

3
A

D:1
, T

1
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= W

2
A

D:1
− 1

2
W

3
A
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− V

2
ρ

D
A
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,

U
2
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= −R
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A
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, U

1
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= −R
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A

D:1
+

1

2
R

3
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D:2
+

1
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D
A
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