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Abstract

We introduce a new mathematical representation of an extensive game situation,
called an information protocol, without using the hypothetical underlying structure
of nodes and branches. Its necessity has been emerging in our study of inductive
game theory. It has two main differences from a standard extensive game: one is the
use of information pieces (symbolic expressions) rather than information sets, and
the other is the replacement of a game tree by a causal relation. We will give a set of
axioms to show that our new formulation is equivalent to an extensive game. Also,
by deleting some axioms, we can capture some weaker forms of extensive games,
which are crucial to describing inductive game theory. Some theoretical results
for inductive game theory become drastically simplified in the present formulation
relative to previous formulations by the authors relying on extensive games.

1. Introduction

In this paper, we introduce a new mathematical representation of an extensive game
situation, called an information protocol, without using the hypothetical concepts such
as nodes and branches. The necessity of introducing such a new construct has been
emerging in our study of inductive game theory. Inductive game theory was initiated
in Kaneko-Matsui [6] and was developed more extensively in Kaneko-Kline [4] and [5].
Here, we first review the basic motivation of inductive game theory and how we have
found the necessity of a new representation in the research in inductive game theory.
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The basic motivation of inductive game theory is to ask how a player obtains his
initial beliefs/knowledge of the game situation from experiences accumulated by playing
the game. Its salient feature is the treatment of initial beliefs about the structure, and
not the adjustment or convergence of parameter values in response to his experiences.
The latter is a typical question in the game theory/economics literature, but this needs
the presumption that each player already has beliefs/knowledge of the game structure.
Contrary to this, it is the basic assumption of inductive game theory that any player
has no a priori beliefs/knowledge on the structure of the game.1

In Kaneko-Kline [4] and [5], extensive games in the sense of Kuhn [7] are modified
and adopted for the description of the objective social situation as well as for that
of inductively derived personal views. For this adoption of extensive games, we met
some conceptual difficulties and needed certain modifications. The difficulties are in the
treatments of:

(i) information;

(ii) memory capability of a player.

Since their treatments are crucial in this paper, we discuss them separately.
In the traditional formulation of an extensive game, “information” is described by an

information set consisting of some nodes in the game tree. If a player receives such a set
as information, he would identify it by looking at its elements. With this interpretation,
the implicit assumption of the understanding of the game tree sneaks into our theory.
To avoid this implicit assumption, we replace “an information set” by “an information
piece”, which is a symbolic expression such as a gesture, a sentence in the ordinary
language or a formula in the sense of mathematical logic2.

Also in the traditional formulation of an extensive game, the memory capability of
a player is described by an information set. For the consideration of the basic beliefs of
a player and his learning by past experiences, the formulation of memory in terms of an
information set is inadequate and insufficient. In inductive game theory, we cannot go
further without a more explicit and structured concept to express the memory capability
of a player. Therefore, we separately formulate memory by means of amemory function:
a local memory at a point of time in an extensive game consists of the sequence of the
information pieces received and actions taken. This was already done in Kaneko-Kline
[4] in the context of an extensive game. In Section 5 of this paper, we explain the notion
of memory in the context of an information protocol. With the memory described in
such a manner, we have the source for an inductive derivation of a personal view.

From now on, we will refer to the extensive game with the replacement of information
sets by information pieces, simply as an extensive game, and will treat the memory

1This does not imply that a player has no intelligent ability. We assume that he has some limited
ability of memory, which is discussed in Kaneko-Kline [4].

2For the definition of formulae, see, e.g., Mendelson [9] and Kaneko [3].
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function as an additional concept.
The basic principle for the above replacement and introduction is to adopt tangible

elements such as information pieces and actions in the theory of extensive games, while
avoiding intangible elements such as hypothetical concepts of nodes and branches. In
[4] and [5], however, we still used intangible tree structures and the question of whether
we can fully expel them from our theory was naturally arising. This question follows the
principle of Occam’s razor that a theory should cut unnecessary components. In our
case, we avoid the use of nodes and branches to describe a game tree by reformulating
an extensive situation as an information protocol.

The constituents of an information protocol are listed explicitly as:

(a) information pieces;

(b) actions;

(c) causality relation.

The causality relation is directly described by information pieces and actions. The
triple does not include the player assignment and payoff assignment, but they can be
additionally given and will be introduced in Section 5. Then, we give two basic axioms
and three nonbasic axioms for an information protocol. We will show that when an
information protocol satisfies all of those axioms, it can be transformed into an extensive
game with a tree structure, and we will show also the converse.

The concept of an information protocol enjoys various merits. One merit is the
successful expulsion of intangible elements from the theory. Another merit is that the
new theory is substantively simpler and is better suited for heuristic purposes than the
standard theory of extensive games. The reader will notice the simplicity of the theory of
information protocols, compared to the theory of extensive games, once he tries to spell
out a full set of conditions defining an extensive game as will be done in Section 3. In
game theoretical practices, basic notions such as a tree are typically borrowed without
giving a complete specification3. This indolence has not been problematic since the
definition of an extensive game has never been an object of game theoretical research.
Rather, game theorists have focused on the resulting outcomes and/or equilibria in a
given game. In inductive game theory, however, the precise definition of an extensive
game matters since it is an object of player’s inductive thought.

The axiomatic formulation of an information protocol manifests its power even more
when we consider the appropriate weakening of an extensive game in order to capture
the inductive derivation of a personal view. Limitations on experiences and memory
capacity imply that typically the inductively derived view will not be an extensive
game in the strict sense. It is very difficult to think about how the definition of an
extensive game should be weakened to capture these limitations. Kaneko-Kline [4] and

3For example, definitions of extensive games are found in von Neumann-Morgenstern [13], Kuhn [7],
Selten [12], Dubey-Kaneko [1] and Osborne-Rubinstein [11].
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[5] fumbled around with extensive games to obtain weakenings, but their definitions
were not complete. Using the theory of information protocols, the classifications for the
choices of such weakenings of extensive games becomes clear-cut and straightforward.

In order to show how an information protocol differs from an extensive game, we
consider the absent-minded driver game (1-person game) situation given by Isbell [2]
and Piccione-Rubinstein [10]. It is usually represented geometrically such as in Fig.1.1.
The standard story behind this game is that when the player arrives at an exit E, he
cannot recall if he has been to the exit E before or not. Since the decision nodes x0
and x1 lie in the same information set corresponding to E, the player is regarded as
being unable to distinguish between the two situations. In the situation represented by
x0, the player has not yet been to an exit in the game, while in the situation x1, he
has been to an exit once. Since he cannot recall at x1 that he was already at x0, this
situation is interpreted as involving a player with imperfect memory. Nevertheless, it
is the underlying assumption that the player is fully cognizant of the game structure
given in Fig.1.1.

z3 : 1
↑c

z2 : 2 ←−e x1 : E
↑c

z1 : 0 ←−e x0 : E

1
↑c

2 ←−e E
↑c

0 ←−e E

2 1
-e ↑c

0 ←−e E

1
↑c

? ←−e E

Fig.1.1 Fig.1.2 Fig.1.3 Fig.1.4

We drop the full cognizance assumption in our analysis. Also, we drop nodes and
branches, and describe the possible structure by sequences of information pieces and
actions, where E is now interpreted as a piece “Here is an exit”. The information
protocol representation of this extensive game is represented as Fig.1.2. The protocol
of Fig.1.2 can be considered as the objective description of the game situation or as a
subjective view made in the mind of the player.

Without the full cognizance assumption, if a player constructs his own separate view
based on his experiences, he may obtain the one described in Fig.1.3, which is consistent
with his forgetfulness. Observe that this personal view could not be expressed as an
extensive game in the standard sense, but it is naturally arising in this inductive setting.
The replacement of the full cognizance assumption by the partial experiences of a player
may be even more destructive. To see this, suppose that the absent driver always takes
“c” and has never experienced “e”. Every time he arrives as an “exit” he has no idea
of what will happen if he takes “e”. Fig.1.4 describes the information protocol that
such a player could derive from this situation. It can be expressed as an information
protocol, but not as an extensive game without some modification. One final point to
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make is that the protocols of Fig.1.3 and Fig.1.4 are actually much simpler than the
one described by Fig.1.2.

The main results of this paper are in showing the correspondences between the
various types of information protocols and the various weakenings of extensive games.
These are given in Section 4. We give the strongest results which connect an information
protocol with all the basic and non-basic axioms to an extensive game in Section 3. The
basic definitions for an information protocol and axioms for it are given in Section 2.
We show how the exposition and applications of inductive game theory are simplified by
the use of information protocols in Section 5. Finally, we give conclusions and directions
for further research in Section 6.

2. An Information Protocol and Axioms for It

An information protocol is a description of a game situation with multiple players. It is
used to describe such a situation objectively and/or subjectively. The definition of an
information protocol is given in terms of primitives that are observable by players, as
was discussed in Section 1.

In Section 2.1, we give a formal definition of an information protocol in terms of
sequences of information pieces received and actions taken. It has its own diagrammatic
representation which is similar to, but different from that of an extensive game. We
provide two basic axioms for it in Section 2.2, and three nonbasic axioms in Section
2.3. The first two axioms determine an information protocol as a forest, and the other
three determine it to be equivalent to an extensive game. An explicit comparison with
extensive games will be given in Sections 3 and 4.

2.1. Information Protocol

An information protocol is given as a triple Π = (W,A,≺) :
IP1: W is a nonempty set of information pieces ;

IP2: A is a nonempty set of actions;

IP3: ≺ is a nonempty subset of
S∞
m=0((W ×A)m ×W ).

Here (W×A)0×W is stipulated to beW . Throughout the paper, we assumeW ∩A = ∅
to avoid unnecessary complications. Condition IP3 means that ≺ is the union of a unary
relation on (W ×A)0×W =W , a binary relation on (W ×A)1×W , a trinary relation
on (W ×A)2 ×W ,..., etc. In this paper, we consider only finite information protocols,
i.e., W,A and ≺ are all finite sets.
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The subset ≺ of
S∞
m=0((W × A)m ×W ) is called a causality relation. We call each

element h(w1, a1), ..., (wm, am), wi ∈≺ a feasible sequence. We sometimes write
[(w1, a1), ..., (wm, am)] ≺ w

for h(w1, a1), ..., (wm, am), wi ∈≺. We will use hξ, wi to denote a generic element ofS∞
m=0((W ×A)m ×W ). When a feasible hξ, wi is in (W ×A)0 ×W , it is just hwi and

is denoted by ≺ w.
An information protocol Π = (W,A,≺) is intended to describe objectively and/or

subjectively a finite game situation. In Π, [(w1, a1), ..., (wm, am)] ≺ w means that the
information pieces w1, ..., wm have successively occurred and the action at was taken at
each wt (t = 1, ...,m), and then the information piece w occurs. Note that [(w1, a1), ...,
(wm, am)] is not necessarily an exhaustive history before w. The concept of an exhaustive
history to w will be defined later.

We have various interpretations of an element w ∈ W. As already mentioned in
Section 1, w is interpreted as a symbolic expression like a gesture, a sentence in an
ordinary language, or a formula in the sense of mathematical logic. The other one is
that w is an information set in the sense of von Neumann-Morgenstern [13] and Kuhn
[7]. Our intention is to take the former interpretation rather than the latter.

When we use an information protocol Π = (W,A,≺) for a game theoretical analysis,
we need two more concepts: (i) the player assignment π and (ii) the payoff assignments
h = (h1, ..., hn). However, the purpose of this paper is to study the possibility of an
alternative formulation of an extensive game without using an underlying tree structure
as discussed in Section 1. Therefore, we will ignore these additional components, except
in Section 5.

Here, we remark that an information protocol may be regarded as a concept similar
to a graph. One might wonder why feasible sequences of lengths more than 2 are needed.
The necessity is caused by using one information piece for various “nodes” in a graph.
Effectively, we replace the concept of a node in a game tree by the concept of a sequence
of information pieces and actions.

Since the introduction of “information pieces” is very basic to our approach and is
already a big departure from the standard extensive game, we illustrate “information
pieces” by giving a simple formulation of the absent-minded deriver game.

Example 2.1 (Absent-Minded Driver Game). Consider the diagram of Fig.1.2.
One representation of this situation as an information protocol is: W = {E, 0, 1, 2}, A =
{c, e} and the set of feasible sequences is given as:

≺2o = {hEi, h(E, e), 0i, h(E, c), Ei, h(E, c), (E, e), 2i, h(E, c), (E, ci, 1i}. (2.1)

Notice that 0, 1, 2 are treated as information pieces. Thus, we may sometimes regard
end information pieces as including the information of payoffs. In (2.1), each feasible
sequence is listed by counting from the root hEi.
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This is not the only representation, and another possibility is to include the set of
all nonempty subsequences in ≺2o as feasible sequences, that is, we define ≺2 to be the
union of ≺2o and

{h0i} ∪ {h(E, c), 2i, h(E, e), 2i, h2i} ∪ {h(E, c), 1i, h(E, ci, 1i, h1i}. (2.2)

We will take the second approach, which is required by one basic axiom B1 to be
introduced in Section 2.2. The choice of this axiom is not substantive, but is rather for
simplicity in the mathematical treatment.

The diagram of Fig.1.3 is formulated in this way with the same W, A and

≺3 = {hEi, h(E, e), 0i, h(E, e), 2i, h(E, c), 1i, h0i, h2i, h1i}. (2.3)

Finally, the diagram of Fig.1.4 is formulated with the same W, A and

≺4 = {hEi, h(E, c), 1i, h1i}. (2.4)

Here no sequence with e at E is included, since the player has never experienced the
outcome of the choice e at E.

To develop more concepts and to state axioms, we introduce decision pieces and
endpieces. Let Π = (W,A,≺) be an information protocol. We partition W into:

(Decision Pieces): WD = {w ∈W : [(w, a)] ≺ u for some some a ∈ A and u ∈W};
(Endpieces): WE =W −WD.

These may be regarded as corresponding to the information sets and endnodes in the
extensive game. In the protocol of Fig.1.2, WD = {E} and WE = {0, 1, 2}.

2.2. Basic Axioms for an Information Protocol

Here, we give two basic axioms, B1 and B2, for an information protocol Π = (W,A,≺).
We need the notion of a subsequence of an sequence in

S∞
m=0((W×A)m×W ), which

was already used in (2.2) without giving its definition. For this, we regard each (vt, at)
as a component in the sequence, [(v1, a1), ..., (vm, am)] ∈

S∞
m=1(W ×A)m. We say that

h(v1, a1), ..., (vm, am), vm+1i is a subsequence of h(u1, b1), ..., (uk, bk), uk+1i iff
[(v1, a1), ..., (vm, am), (vm+1, a)] is a subsequence of [(u1, b1), ..., (uk, bk), (uk+1, b)]
for some a and b.

For example, huk+1i is a subsequence of h(u1, b1), ..., (uk, bk), uk+1i since [(uk+1, a)] is a
subsequence of [(u1, b1), ..., (uk, bk), (uk+1, a)] for any a. The supersequence relation is
defined likewise.
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The first basic axiom states that all subsequences of feasible sequences are also
feasible.

Axiom B1 (Contraction): Let hξ, vi be a feasible sequence, and hξ0, v0i a subsequence
of hξ, vi. Then hξ0, v0i is a feasible sequence.

The second basic axiom guarantees that the decision pieces can be distinguished
from the endpieces.

Axiom B2 (Weak Extension): If ξ ≺ w and w ∈ WD, then there are a ∈ A and
v ∈W such that [ξ, (w, a)] ≺ v.

Any protocol that satisfies Axioms B1 and B2 is called a basic protocol.
In Example 2.1, we described the information protocols (W,A,≺2) to (W,A,≺4)

corresponding to Fig.1.2 to Fig.1.4. These are basic protocols, but (W,A,≺2o) given by
(2.1) violates Axiom B1. While Axiom B1 is mathematically convenient, it gives too
many sequences for illustrations. Presently, we will give a lemma which enables us to
focus on some subset of ≺. For that we need to discuss maximal sequences and initial
segments.

We say that a feasible sequence hξ, vi is maximal iff there is no proper feasible
supersequence hξ0, v0i of hξ, vi. It is an exhaustive sequence to an endpiece. We say
that h(w1, a1), ..., (wk, ak), wk+1i for k = 0, ...,m are initial segments of hξ, wm+1i =
h(w1, a1), ...., (wm, am), wm+1i. When k = m, hξ, wm+1i itself is an initial segment of
hξ, wm+1i. A position hξ, vi is defined to be an initial segment of some maximal feasible
sequence. Each position can be regarded as an exhaustive history up to v. Axiom B1
guarantees that a position is always a feasible sequence.

We denote the set of positions by Ξ, and we partition Ξ into

the set of end positions - - ΞE = {hξ, wi ∈ Ξ : w ∈WE};
the set of decision positions - - ΞD = {hξ, wi ∈ Ξ : w ∈WD}.

Note that this partition is based on the last piece w being in WE or WD, and that it
may be possible that for some w ∈W, there is no feasible sequence hξ, wi, in which case
no position with w exists.

We have the following results about positions for basic protocols.

Lemma 2.1. Let Π = (W,A,≺) be a basic protocol.
(a): If hξ, wi is a feasible sequence, then there is a position hη, wi and η is a superse-
quence of ξ.

(b): hξ, wi is a feasible sequence if and only if hξ, wi is a subsequence of a maximal
feasible sequence.

(c): hξ, wi is a maximal feasible sequence if and only if hξ, wi is an end position.
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(d): For any hξ, wi ∈ Ξ, w ∈WD if and only if there is a position hξ, (w, a), vi ∈ Ξ.
In fact, Axiom B2 is not used for (a) and (b).

Proof.(a): Let hξ, wi be a feasible sequence. If it is maximal, then it is a position.
Suppose that there is a proper feasible supersequence hη0, vi of hξ, wi. We can take
hη0, vi as a maximal feasible sequence, since (W,A,≺) is finite. Then, there is an initial
segment (position) hη, wi of hη0, vi and η is a supersequence of ξ.

(b): By Axiom B1, every subsequence of a maximal feasible sequence is a feasible se-
quence. Conversely, let hξ, wi be a feasible sequence. Then by (a), there is a position
hη, wi and η is a supersequence of ξ. Since hη, wi is a position, it is an initial segment
of a maximal feasible sequence hη0, w0i. Hence, hξ, wi is a subsequence of the maximal
feasible sequence hη0, w0i.
(c): Suppose that hξ, wi is a maximal feasible sequence. Then it is a position. If it were
a decision position, then by Axiom B2, there would be a feasible sequence hξ, (w, a), vi
for some a ∈ A and v ∈ W . But this is impossible, since hξ, wi is a maximal feasible
sequence. Hence, hξ, wi is an end position.

Conversely, let hξ, wi be an end position. Then it is an initial segment of a maximal
feasible sequence hη, vi. If hξ, wi is strictly shorter than hη, vi, then there is an initial
segment hξ, (w, a), ui of hη, vi. Then, [(w, a)] ≺ u by Axiom B1, which means w ∈ WD

contradicting that hξ, wi is an end position. Hence, hξ, wi is a maximal feasible sequence.
(d): Let hξ, wi ∈ Ξ. Suppose w ∈WD. Then, hξ, wi is not a maximal feasible sequence
by (c). But since it is a position, it is an initial segment of some maximal feasible
sequence hη, ui. Thus, we can take the initial segment of hη, ui which is one-component
longer than hξ, wi which is the position we look for. The converse follows by B1 using
the converse of (c).

As noted, the set of feasible sequences is quite big, since Axiom B1 requires it to be
subsequence-closed. However, Lemma 2.1 suggests that we can simplify our description
of a basic protocol by just listing the set of end positions, rather than the entire list of
feasible sequences. A fortiori, the set of positions is enough as well. We will use this
simplification throughout the paper. In Example 2.1, ≺2o is the set of positions of ≺2 .

We consider three more examples to illustrate basic protocols. Fig.2.1 and Fig.2.3
are represented as basic protocols, but Fig.2.2 is not be since the sequence h(u, a), wi
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cannot be extended and thus B2 is violated.

v v
↑b ↑a
u u
-a %b

w0

w v
↑a ↑b
u w

w w
↑a ↑b
u v

Fig.2.1 Fig.2.2 Fig.2.3

2.3. Non-basic Axioms

We regard the basic axioms as too weak to describe an objectively given game theoretic
situation, but perhaps not for a subjective view of a player. We will consider three other
axioms. All of them together with the basic axioms determine an extensive game. Our
presentation of those axioms are planned so that some choices of those non-basic axioms
correspond to weak forms of extensive games adopted for subjective views of players in
Kaneko-Kline [4] and [5].

Axiom N1 (Root): There is a distinguished root element w0 ∈ W such that hw0i is
an initial segment of every position.

This axiom implies that all positions start with w0. Without this axiom, an infor-
mation protocol may have various starts such as Fig.2.2 and Fig.2.3.

The next axiom states that each position has the exhaustive history to determine
the present piece.

Axiom N2 (Determination): Let hξ, ui and hη, vi be positions so that ξ and η are
nonempty sequences. If ξ = η, then u = v.

In Example 2.1, the protocol of Fig.1.3 violates Axiom N2, since the same exhaustive
history (E, e) determines two different pieces, 0 and 2.

The next axiom states that the set of available actions depends upon the last piece
of a position. It is a strengthening of Axiom B2. Fig.2.1 is excluded by this axiom.

Axiom N3 (History Independent Extension): If hξ, wi is a position and [(w, a)] ≺
u for some u, then there is a v ∈W such that hξ, (w, a), vi is a position.

This is satisfied even by Fig.1.3 and Fig.1.4. The information protocol for Fig.1.4
satisfies all of these axioms.

The next lemma states that under axiom B1, N3 is a strengthening of B2.

Lemma 2.2. If an information protocol satisfies B1 and N3, then it satisfies B2.

Proof. Let hξ, wi be a feasible sequence and a an action with [(w, a)] ≺ u for some u.

10



By Lemma 2.1.(a), there is a position hη, wi such that η is a super sequence of ξ. By
N3, we have a v ∈ W so that hη, (w, a), vi is a position, which is a feasible sequence.
Using B1, hξ, (w, a), vi is a feasible sequence.

Thus, B2 and N3 are dependent. Since we will sometimes use B2 only and sometimes
N3 additionally, it would be cumbersome to take this dependence into account in each
result. Thus, we will ignore this dependence result in the following.4

For the transformation of an information protocol into an extensive game we will
use the following notion. For an information piece v ∈W , we define the set of available
actions at w by:

Aw = {a ∈ A : [(w, a)] ≺ u for some u ∈W}. (2.5)

This is the set of actions that are used at some occurrence of w. When Axiom N3
holds, the set Aw would be the same as the set of available actions at a position hξ, wi
described as:

{a ∈ A : hξ, (w, a), vi is a position for some v}. (2.6)

Without Axiom N3, however, these sets may differ and some actions in Aw may be
available only at some positions ending in w. For example, in the protocol of Fig.2.1,
the set Au = {a, b}, but the set of actions available at the position h(w0, a), ui is reduced
to {b}, and it is only {a} at the position h(w0, b), ui.

3. Comparisons with Extensive Games

In this section, we will compare information protocols to extensive games in the most
strong sense with the replacement of information sets by information pieces. We will
postpone, to Section 4, comparisons between information protocols in weak senses and
the corresponding extensive games used in Kaneko-Kline [4] and [5].

Definition 3.1 (Extensive Games). An extensive game Γ = ((X,<), (λ,W ),
{(ϕx, Ax)}x∈X) is defined as follows:
K1(Game Tree): (X,<) is a finite forest (in fact, a tree by K13);

K11: X is a finite non-empty set of nodes, and < is a partial ordering over X;

K12: {x ∈ X : x < y} is totally ordered with < for any y ∈ X;5

K13(Root): X has the smallest element x0, called the root.6

4The axioms other than B2 and N3 are independent, which is verified by our examples.
5The binary relation < is called a partial ordering on X iff it satisfies (i)(irreflexivity): x ≮ x; and

(ii)(transitivity): x < y and y < z imply x < z. It is a total ordering iff it is a partial ordering and
satisfies (iii)(totality): x < y, x = y or y < x for all x, y ∈ X.

6A node x is called the smallest element in X iff x < y or x = y for all y ∈ X.
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Now, X is partitioned into the set XD of decision nodes and the set XE of endnodes
so that every node in XD has at least one successor, and every node in XE has no
successors;7

K2(Information Function): W is a finite set of information pieces and λ : X →W is a
function with λ(x) 6= λ(z) for any x ∈ XD and z ∈ XE;

K3(Available Action Sets): Ax is a finite set of available actions for each x ∈ X;
K31: Ax = ∅ for all x ∈ XE;

K32: for all x, y ∈ XD, λ(x) = λ(y) implies Ax = Ay;

K33(Bijective): for any x ∈ X, ϕx is a bijection from the set of immediate successors of
x to Ax.

Usually, the above set of conditions is regarded as the definition of an extensive game.
However, we need one more condition, the reason for which will be given after stating
the condition and the main theorems of this section. For this additional condition to be
stated, we need the notion of a history of information pieces and actions up to a node
x.

For any x ∈ X, we define the history up to x = xm+1 by

θ(x) = h(λ(x1), a1), ..., (λ(xm), am),λ(xm+1)i, (3.1)

where hx1, ..., xm, xm+1i is the exhaustive sequence to x = xm+1 in Γ with xt < xt+1
and at = ϕxt(xt+1) for all t = 1, ...,m. This notion is uniquely defined by K12. We use
Θ(Γ) = {θ(x) : x ∈ X} to denote the set of histories in an extensive game Γ. If there is
no history such that it is a proper supersequence of θ(x), then θ(x) is called a maximal
history. We formulate the last condition for an extensive game as:

K4: for any x ∈ X, θ(x) is an initial segment of a maximal history.
Since this condition looks different from the other conditions, we will consider the nature
of K4 using a few examples after presenting the main theorems of this section.

The main difference between the above formulation of an extensive game and that
of Kuhn [7] is the use of information pieces rather than information sets. Then the
function λ assigns an information piece to each node. This means that when a player
reaches a node x, he receives an information piece λ(x), but we should not interpret this
as meaning that the player perceives λ(·) as a function. The latter needs the assumption
that he knows the underlying structure of the extensive game, which should be avoided.
A motivation for introducing an information protocol is to avoid this unintended but
prevailing interpretation of an extensive game.

7We say that y is a successor of x iff x < y, and that y is an immediate successor of x iff x < y and
there is no z ∈ X such that x < z and z < y.
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As in the formulation of an information protocol, the above formulation of an exten-
sive game does not have a player assignment and payoff assignments. These eliminations
are made to facilitate the purpose at hand: the comparison between an extensive game
and an information protocol.

Now we show how to transform an information protocol into an extensive game. In
this section, we give the results for the case of an information protocol with B1-B2,
N1-N3 and an extensive game with K1-K4. The proofs of these results will follow from
the theorems given in Section 4.

Let us recall that given an information protocol Π = (W,A,≺), the set of positions
Ξ is defined without any axioms for Π. Then, we define the induced extensive game
Γ(Π) = ((X,<), (λ,W ), {(ϕx, Ax)}x∈X) as follows:
G1: X = Ξ, and for any hξ, wi, hη, vi ∈ X = Ξ,

hξ, wi < hη, vi⇐⇒ hξ, wi is a proper initial segment of hη, vi (3.2)

G2: λ(x) = w for any x = hξ, wi ∈ X = Ξ;

G3: for any x = hξ, wi ∈ X = Ξ,

G3a: Ax = Ahξ,wi = {a : [(w, a)] ≺ v for some v};
G3b: ϕx(hξ, (w, a), vi) = a for any immediate successor hξ, (w, a), vi ∈ Ξ.
In particular, we note that those definitions do not require any conditions on the infor-
mation protocol Π = (W,A,≺).

Now, we can state the transformation from an information protocol with all the
axioms to an extensive game.

Theorem 3.1 (From an Information Protocol to an Extensive Game). Let
Π = (W,A,≺) be an information protocol satisfying Axioms B1-B2 and N1-N3. Then,
Γ(Π) satisfies K1-K4, and the set of histories Θ(Γ(Π)) coincides with the positions Ξ(Π).

Thus, we can transform an information protocol satisfying all the axioms into an
extensive game with all the conditions, and the set of positions in Π is preserved as the
set of histories in Γ(Π).

Let us consider the converse of Theorem 3.1. Let an extensive game Γ =
((X,<), (λ,W ), {(ϕx, Ax)}x∈X) be given. Then we define the induced information pro-
tocol Π(Γ) = (W,A,≺) as follows:
P1: A =

S
x∈X Ax;

P2: ≺ = {hξ, wi : hξ, wi is a subsequence of some history in Θ(Γ)}.
We remark that the setW in Π(Γ) is simply taken from Γ, and also that some of K1-K4
are unnecessary for P1 and P2. These remarks will be used in Section 4.
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Now, we have the converse of Theorem 3.1.

Theorem 3.2 (From an Extensive Game to an Information Protocol). Let
Γ = ((X,<), (λ,W ), {(ϕx, Ax)}x∈X) be an extensive game satisfying K1-K4. Then,
Π(Γ) satisfies Axioms B1-B2 and N1-N3, and the set of positions Ξ(Π(Γ)) coincides
with the set of histories Θ(Γ).

By the above two theorems, the set of information protocols satisfying B1-B2, N1-
N3 and extensive games satisfying K1-K4 can be regarded as equivalent structures. For
this equivalence to be complete, we have stated that the set of positions coincides with
the set of histories, in which sense the structure is preserved in the transformations.

In fact, it is a difference between Π and Π(Γ(Π)) that Π may contain superfluous
actions, but they disappear in Π(Γ(Π)). Hence, when Π = (W,A,≺) itself has no such
superfluous actions, we have the exact equivalence between Π and Π(Γ(Π)). Technically,
we say that Π = (W,A,≺) has no superfluous actions iff for any a ∈ A, there are
w, v ∈W such that [(w, a)] ≺ v. This means simply that there are no actions in A that
do not appear in any feasible sequence. In this case, we have the following result about
multiple applications of the transformations.

Theorem 3.3 (Reversibility). Let Π = (W,A,≺) be an information protocol with
no superfluous actions and with Axioms B1-B2 and N1-N3. Let Γ(Π) be the induced
extensive game from Π and Π(Γ(Π)) the induced protocol from Γ(Π). Then, we have
Π(Γ(Π)) = Π, diagrammatically,

Π
Th.3.1−→ Γ(Π)

Th.3.2−→ Π(Γ(Π)) = Π (3.3)

Proof. By definition, W does not change from Π to Π(Γ(Π)). Let us see that the action
set A does not change. Since now A has no superfluous actions in Π, each a is used
at some node x = hξ, wi in Γ(Π) by G3a, i.e., a ∈ Ax. By P1, a is included in A of
Π(Γ(Π)). Finally, we should see that ≺ does not change from Π to Π(Γ(Π)), but this
follows from Theorem 3.1, P2 and Axiom B1.

Theorem 3.3 states that the two transformations of taking the induced game and
induced protocol are reversible. However, if we start with an extensive game Γ, this
relation needs some modification, since Γ(Π(Γ)) may have different names of nodes from
Γ. However, after one transformation, we have the reversibility since:

Γ
Th.3.2−→ Π(Γ)

Th.3.1−→ Γ(Π(Γ))
Th.3.2−→ Π(Γ)

Th.3.1−→ Γ(Π(Γ)) (3.4)

The point is that the third and fifth induced extensive games are identical. Starting with
an extensive game Γ with the arbitrary names of nodes, we transform Γ into the induced
protocol Π(Γ), where the initially given nodes disappear. After this transformations, the
induced protocol and induced game are constructed from the same ingredients. Thus,
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we have the reversibility in (3.4). In fact, Π and Π(Γ(Π)) are isomorphic, i.e., only the
names of nodes are different.

Now, we are in the state to see the necessity of condition K4. Condition K4 is related
to the following condition given by Kuhn [7]:

(Irreflexivity): For any two nodes x, y ∈ X, if x < y, then λ(x) 6= λ(y).

This means that the same information piece does not occur more than once in one play.
Irreflexivity implies Condition K4. The extensive game of Fig.1.1 violates Irreflexivity
but satisfies Condition K4. Condition K4 excludes the game of Fig.3.1, where the same
information piece u is attached to the endnodes z1 and z2.

z3 : v
↑b

z2 : u ←−a x1 : w
↑b

z1 : u ←−a x0 : w

v
↑b

u ←−a w
↑b
w

Fig.3.1 Fig.3.2

Let us see the induced protocol Π(Γ) defined by P1 and P2 from the game Γ of
Fig.3.1, which is described by Fig.3.2. While this transformation is well defined, the
history θ(z1) = h(w, a), ui is not a position in the induced protocol. Hence, something
in the basic structure is lost in the transformation. Incidentally, the induced protocol
also violates Axiom N3. On the other hand, the game of Fig.1.1 can be transformed
without losing any of the basic structure since it satisfies K4. In this sense, K4 but not
irreflexivity, is needed for the successful transformation of an extensive game into an
information protocol.

In the next section we will show that the basic structure in terms of the histories in
a game and the positions in a protocol are preserved by the transformations described
in Theorems 3.1 and 3.2 even for weak structures.

4. Information Protocols and Extensive Games in Weak Forms

Kaneko-Kline [4] and [5] described the objective social situation as an extensive game
satisfying conditions K1-K4. In their inductive game theory, a player accumulates some
experiences by making trial deviations and then constructs his personal view from his
accumulated experiences. Thus, his view may be smaller than the objective extensive
game and it may violate some part of K1-K3. In [4] and [5], therefore, some weak forms
of extensive games were adopted for personal views. In this section, we discuss how
to weaken the theory of information protocols when we use information protocols for
inductively derived personal views.
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Let us recall that a full form of an extensive game Γ is defined by K1-K4. Now, we
weaken K13, K33 into K13o, K33f as follows:

K13o: if x and y are minimal nodes in (X,<), then λ(x) 6= λ(y);

K33f (Function): for any x ∈ X, ϕx is a function from the set of immediate successors
of x to Ax.

We say that Γ is a basic extensive game iff it is defined by K1-K4 with the replacements
of K13, K33 by K13o, K33f. In this section, we show that these choices of relaxations
lead to a basic information protocol satisfying Axioms B1 and B2, but not necessarily
N1-N3.

In Kaneko-Kline [4], a basic extensive game was defined without K13o. The addition
of K13o changes nothing essential in the analysis of [4], but only simplifies the results.
We adopt K13o for a basic extensive game since it makes the connection to a basic
information protocol more straightforward. On the other hand, in [5], the strong root
assumption K13(root) is maintained, since the memory function and domain of accu-
mulation considered there permit it. Also in [5], the condition K33f was strengthened
to K33i given as

K33i(Injective): for any x ∈ X, ϕx is an injective function from the set of immediate
successors of x to Ax.

By a simple parallelism, we have another strengthening of K33f:

K33s(Surjective): for any x ∈ X, ϕx is an surjective function from the set of immediate
successors of x to Ax.

Although K33s did not appear in [4], [5], it will be shown in Section 5 that it has some
status in inductive game theory. Now, we show how these distinctions correspond to
different axioms for an information protocol. For example, we will see that K33i and
K33s for extensive game exactly correspond to Axioms N2 and N3.

We will make comparisons in the same manner as in Theorems 3.1 and 3.2, but the
present comparisons are made between weak forms of extensive games and information
protocols. Given an information protocol Π, the game structure Γ(Π) is defined by
G1,G2 and G3, and conversely, given an extensive game Γ, the information protocol
Π(Γ) is defined by P1 and P2. As noted in Section 3, the definition of Γ(Π) in G1,G2
and G3 does not need any condition on Π, but the definition of the induced protocol
Π(Γ) in P1 and P2 needs some conditions for Γ. However, when Γ is a basic extensive
game, the definition in P1 and P2 has no problem.

We have the four theorems for these correspondences. The first result is the corre-
spondence between a basic information protocol and a basic extensive game:

Th.4.1 - - a basic information protocol ←→ a basic extensive game.
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Then, we can make comparisons between the axioms. The results are summarized as
follows:

Th.4.2 - -Axiom N1(Root) ←→ K13 (Root)

Th.4.3 - -Axiom N2 (Determination) ←→ K33i (Injective)

Th.4.4- -Axiom N3 (Independent Extension) ←→ K33s (Surjective)

Let us start with the first correspondence. We mention the additional equivalence
results between the set of histories and the set of positions only in the first theorem.
These equivalence results hold in the other three theorems, too.

Theorem 4.1 (a Basic Protocol -vs- a Basic Game):

(1): Let Γ be a basic extensive game. Then the induced protocol Π(Γ) is a basic
information protocol, and the set of positions Ξ(Π(Γ)) coincides with the set of histories
Θ(Γ).

(2): Let Π be a basic information protocol. Then the induced game Γ(Π) is a basic
extensive game, and the set of histories Θ(Γ(Π)) coincides with the set of positions
Ξ(Π).

Proof. (1): It suffices to check Axioms B1, B2 for Π(Γ) = (W,A,≺). Axiom B1
follows the definition P2 of feasible sequences. Consider Axiom B2. Suppose that
(i) hξ, wi is a feasible sequence and (ii) [(w, a)] ≺ v for some v. Then, using P2 on
(i), hξ, wi is a subsequence of some history hξ0, wi = θ(x) ∈ Θ(Γ). Using P2 on (ii),
h(w, a), vi is a subsequence of some hη0, vi = θ(y) ∈ Θ(Γ). Then there is some y0 ∈ XD

such that λ(y0) = w and θ(y0) is an initial segment of θ(y). Since λ(y0) = λ(x) = w
and y0 ∈ XD, we have x ∈ XD by K2. Hence, x has an immediate successor x0 and
θ(x0) = hξ0, (w,ϕx(x0)),λ(x0)i. Then, by B1, hξ, (w,ϕx(x0)),λ(x0)i is a feasible sequence
and B2 is satisfied.

Now let us prove Ξ(Π(Γ)) = Θ(Γ). Let hξ, vi ∈ Ξ(Π(Γ)). Then hξ, vi is an initial
segment of a maximal feasible sequence hξ0, v0i. By P2 and the maximality of hξ0, v0i in
Ξ(Π(Γ)), it follows that hξ0, v0i = θ(x) for some x ∈ X. Since hξ, vi is an initial segment
of θ(x), it must be that hξ, vi = θ(y) for some y ∈ X. Conversely, let hξ, vi ∈ Θ(Γ).
Then hξ, vi = θ(y) for some y ∈ X. By K4, θ(y) is an initial segment of some maximal
history in Θ(Γ). By P2, every maximal history in Θ(Γ) is a maximal feasible sequence,
a fortiori, a position in Ξ(Π(Γ)).

(2): We show that Γ(Π) satisfies K1-K4 with K13o and K33f instead of K13 and K33.
K1: By (3.2), (X,<) is a partially ordered set - K11, and it satisfies K12. Consider
K13o. If two connected parts have the same initial information piece λ(x) = λ(y) = w,
we have, by G1 and G2, x = y = hwi.
K2: Since Π is a protocol, the set W is partitioned into WD and WE. By G2, λ is a
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function from X = Ξ toW. Since Π is basic, by Lemma 2.1.(d) and the definition of G1,
hξ, vi ∈ XD if and only if v ∈WD. Hence, λ(x) 6= λ(z) for any x ∈ XD and z ∈ XE.

K3: If hξ, vi ∈ XE, then hξ, vi is an endposition and Ahξ,vi = ∅ - K31. By G2 and G3a,
Ax = Ay if λ(x) = λ(y) - K32. Let us see K33f. Let x = hξ, wi ∈ XD and let y be an
immediate successor of x. Then, by G1, y takes the form of y = hξ, (v, a), wi for some
a ∈ Ax and w ∈W . By G3a and G2b, ϕx(y) = a ∈ Ax. Thus, we proved K33f.
K4: Since Π is a protocol, each x ∈ X = Ξ(Π) is an initial segment of a maximal feasible
sequence y ∈ X = Ξ(Π). Since Θ(Γ) = Ξ(Π(Γ)) and θ(x) = x and θ(y) = y, it follows
that θ(x) is an initial segment of a maximal history θ(y).

Finally, let us see Θ(Γ(Π)) = Ξ(Π). For this, it is enough to observe that in the
induced game Γ(Π), the history θ(x) = x for each x ∈ X = Ξ(Π).

We have the correspondence between a basic extensive game and a basic protocol.
Observe that we have the equivalences Ξ(Π(Γ)) = Θ(Γ) in the first statement and
Θ(Γ(Π)) = Ξ(Π) in the second statement. These equivalences hold in the following
three correspondence theorems. The reversibilities Π(Γ(Π)) to Π and Γ(Π(Γ)) to Γ will
be considered after the correspondence theorems.

The next theorem simply states that Axiom K13(Root) corresponds to Axiom N1(Root).

Theorem 4.2 (Root -vs- Root):
(1): Let Γ be a basic extensive game with K13(Root). Then the induced protocol Π(Γ)
is a basic information protocol with N1(Root).

(2): Let Π be a basic information protocol with N1. Then the induced game Γ(Π) is a
basic extensive game with K13.

Proof. (1): Let hξ, vi be a position in Π(Γ). Then hξ, vi is an initial segment of some
maximal history θ(x) ∈ Θ(Γ). By K13, θ(x) starts with λ(xo) ∈W , where xo is root in
X. Hence, hλ(xo)i is an initial segment of every position in Π(Γ).
(2): Since Π satisfies N1, every position hξ, vi starts with the same w0. By G1, hw0i is
the smallest node in Γ(Π).

The following theorem states the correspondence between K33i and N2.

Theorem 4.3.(Injective -vs- Determination):
(1): Let Γ be a basic extensive game with K33i(Injective). Then the induced protocol
Π(Γ) is a basic information protocol with N2(Determination).

(2): Let Π be a basic information protocol with N2. Then the induced game Γ(Π) is a
basic extensive game with K33i.

Proof. (1): Let hξ, ui and hη, vi be positions in Π(Γ) and suppose ξ = η. Then
hξ, ui = θ(x) and hη, vi = θ(y) for some x and y in X. Let x1, ..., xk = x be the path to
x and y1, ..., yk = y be the path to y. Since ξ = η, it follows by K130, that x1 = y1. Then
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by K33i (Injection), xj = yj for j = 2, ..., k. Hence, x = y and u = λ(x) = λ(y) = v.

(2): Let x ∈ XD , and consider any two distinct immediate successors y and y0 of x.
We show ϕx(y) 6= ϕx(y

0). By G1, x = hξ, vi ∈ Ξ, and y and y0 are positions of the form
y = hξ, (v, a), wi and y0 = hξ, (v, b), ui. Since y and y0 are distinct, we have a 6= b by
N2. Hence, by G3b, ϕx(y) = a 6= b = ϕx(y

0), which implies that ϕx is an injection, i.e.,
K33i.

Next, we can obtain the correspondence between K33s and N3.

Theorem 4.4.(Surjective -vs- Independent Extension):
(1): Let Γ be a basic extensive game with K33s(Surjective). Then the induced protocol
Π(Γ) is a basic information protocol with N3(Independence).

(2): Let Π be a basic information protocol with N3. Then the induced game Γ(Π) is a
basic extensive game with K33s.

Proof. (1): Let hξ, wi be a position in Π(Γ), and a ∈ Aw. Then, θ(x) = hξ, wi for
some x ∈ XD. We find an immediate successor y of x with ϕx(y) = a by K33s. Then,
θ(y) = hξ, (w, a),λ(y)i is a history, which is an initial segment of a maximal history by
K4. Hence, by P2 hξ, (w, a),λ(y)i is a position in Π(Γ).
(2): Let x ∈ XD , and consider any a ∈ Ax. We need to show that ϕx(y) = a for
some immediate successor y of x. By G1, x = hξ, vi ∈ Ξ, and by G3a, [(v, a)] ≺ w for
some w ∈ W . Hence, by N3, there is a position hξ, (v, a), ui for some u ∈ W . By G1,
y = hξ, (v, a), ui is an immediate successor of x, and by G3b, ϕx(y) = a.

Finally, we consider the reversibility in the sense of (3.3) and (3.4). We already
discussed that an information protocol may have superfluous actions. Similarly, an
extensive game may have superfluous actions when K33(Bijective) is replaced by K33i
or K33f. Thus, we have the following definition: a basic extensive game Γ has no
superfluous actions iff for any w ∈W and any a ∈ Aw, there is some x, y ∈ X such that
λ(x) = w and ϕx(y) = a. That is, any action a ∈ Aw is used at some node assigned
information piece w. This does not require that a is used at every node with w even
when a ∈ Aw.

We can have the following theorem.

Theorem 4.5 (Reversibilities):

(1): Let Π be a basic protocol with no superfluous actions. Then Π(Γ(Π)) = Π.

(2): Let Γ be a basic extensive game satisfying K33i(Injective).

(a): Then there is a bijection ψ from the set of nodes X of Γ to the set of nodes of
Γ(Π(Γ)) such that ψ(x) = θ(x) for all x ∈ X, where θ(x) is the history up to x in Γ.
(b): Suppose that Γ = ((X,<), (λ,W ), {(ϕx, Ax)}x∈X) has no superfluous actions.
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Then ψ is structure-preserving from Γ to Γ(Π(Γ)) = ((X 0, <0), (λ0,W 0), {(ϕ0x, A0x)}x∈X0),
i.e., x < y ⇔ ψ(x) <0 ψ(y), and for all x ∈ X, Ax = A0ψ(x), λ(x) = λ0(ψ(x)) and
ϕx(y) = ϕ0ψ(x)(ψ(y)) for any immediate successor y of x.

The first assertion is the same as Theorem 3.3, and can be proved in the same
manner. For (2b), we need to start with a basic extensive game satisfying K33i and
with no superfluous actions. Then, actually, we can write

Γ −→ Π(Γ) −→ Γ(Π(Γ)) ∼= Γ.

The last part that Γ(Π(Γ)) ∼= Γ is the assertion (2b) that the structure of Γ is preserved
in Γ(Π(Γ)). In the case of no superfluous actions for Γ and K33i, the two structures are
equivalent up to the names of nodes. If, on the other hand, Γ(Π(Γ)) does not satisfy
K33i, then the set of nodes in Γ(Π(Γ)) may be smaller than the set in Γ, but we could
use the notion of g-morphism given in Kaneko-Kline [4] to show a sense in which the two
structures may be regarded as equivalent. Finally, with some superfluous action a in Γ,
the structure Π(Γ) would contain the superfluous action a, but the structure Γ(Π(Γ))
would not include a. Nevertheless, the two structures could be regarded as equivalent
up to superfluous actions.

Lemma 4.1 (Bijection between X and Θ(Γ)): Let Γ be a basic extensive game
satisfying K33i(Injection). Then θ is a bijection from X to Θ(Γ).

Proof. First, we note that (X,<) is a finite forest, that is, each connected part in
(X,<) is a tree. This is guaranteed by K11 and K12. Also, the immediate successors
of each node are well defined whenever successors exist. We show by induction on a
tree in (X,<) from its root that θ(x) = θ(x0) implies x = x0. When θ(x) = θ(x0) is
of length 1, we have x = x0 by K130. Now, make the inductive hypothesis that the
assertion holds up to length k. Let θ(x) = h(λ(x1), a1), ..., (λ(xk), ak),λ(x)i = θ(x0) =
h(λ(x01), a01), ..., (λ(x0k), a0k),λ(x0)i. Hence, ak = a0k,and

h(λ(x1), a1), ..., (λ(xk−1), ak−1),λ(xk)i = h(λ(x01), a01), ..., (λ(x0k−1), a0k−1),λ(x0k)i.

By the induction hypothesis, we have xk = x0k. Then, since ϕxk = ϕx0k is an injection by
K33i, ϕxk(x) = ak = ak0 = ϕxk(x

0) implies x = x0.

Proof of Theorem 4.5 (2): The set of nodes in Γ(Π(Γ)) is the set of positions Ξ(Π(Γ))
by G1. By P2, we have Ξ(Π(Γ)) = Θ(Γ). By Lemma 4.1, θ : Γ → Θ(Γ) is a bijection.
Thus (a) holds.

Consider (b). Since Γ has no superfluous actions, we have Ax = Aλ(x) for any x ∈ X.
The other assertions can be verified.
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5. Inductive Game Theory using Information Protocols

In Sections 3 and 4, we discussed equivalence and correspondence results between ex-
tensive games and information protocols. Although these constructs can be regarded as
equivalent, they have certain theoretical differences, e.g., an extensive game has nodes
as a base concept but an information protocol doesn’t. In this section, we give a brief
discourse of inductive game theory using information protocols. We will see how this
differs from the inductive game theory based on extensive games in Kaneko-Kline [4]
and [5], as well as how the equivalence results can be used to translate one theory into
the other.

Inductive game theory has three steps: (1) playing and accumulating memories;
(2) inductive derivations of personal views from accumulated memories; (3) decision
making using a personal view. The first two steps are relevant for this paper. For
(1), we need to define a memory function for a player and a domain of accumulation
of memories. These are the sources of the inductively derived view of (2). Then, we
analyze the correspondences between the axioms the inductively derived view satisfies
and the choice of a domain.

5.1. Players, Memories and Behaviors

First, we need to add a player-assignment π and payoff functions h = (h1, ..., hn) to an
information protocol (W,A,≺). We denote a player set by N = {1, ..., n}. A complete
description of a situation including the player assignment and payoffs is written as
Π = ((W,A,≺),π, h), where π and h = (h1, ..., hn) are given as:
IP4: π :W → 2N , where |π(w)| = 1 for all w ∈WD and π(w) = N for all w ∈WE;

IP5: hi :WE → R for all i ∈ N.
Definition IP4 means that each decision piece is received by only one player and each
endpiece is received by all the players. Definition IP5 means that the players receive
payoffs at the endpieces. The above definitions do not need any axioms, since the
separation between WD and WE suffices for these definitions.

The information protocol of Fig.5.1 has two players with the player-assignment
π(w0) = {1} and π(u1) = π(u2) = {2}. This means that player 1 moves at the root and
player 2 moves at the other decision pieces. The endpieces belong to both players by
condition IP4, e.g., π(e1) = {1, 2}. An example of payoffs could be given as h1(et) = t
and h2(et) = −t for t = 1, 2, 3, 4.
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e1 e2 e3 e4
-a ↑b ↑a %b

u1 u2
-a %b

w0

Fig.5.1

Next, we describe the memory capability of each player by a memory function mi. A
player’s memories described by his memory function will be the source for his inductively
derived view. These memories will take the form of sequences of past information pieces
received and actions taken. To simplify the description of a player’s memory, we assume
throughout the following that each information piece w contains:

M1: the set Aw of available actions in the sense of (2.5);
M2: the value π(w) of the player assignment π if w is a decision piece;
M3: player i’s own payoff hi(w) (as a numerical value) if w is an endpiece8.

We can interpret the functions π and hi as devices to extract the information about the
available actions, player assignment, and payoff from each piece. Assumptions M1-M3
simplify the description of memory by providing relevant information for a personal
view. Recall that we interpret information pieces as symbolic expressions that could
easily contain the information expressed in M1-M3.

In this paper, we use a specific memory function called the exact-perfect recall
(EPR-) memory function9. We take two steps to define this function. First, we define
the set of positions belonging to player i in Π :

Ξi = {hξ, wi ∈ Ξ : i ∈ π(w)}. (5.1)

Then, let hξ, wii = h(v1, b1), ..., (vl, bl), vl+1i be the maximal subsequence of hξ, wi ∈ Ξi
so that each vk in hξ, wii is a piece of player i, i.e., i ∈ π(vk) for k = 1, ..., l + 1. In
the 2-person protocol of Fig.5.1, h(w0, a), (u1, a), e1i ∈ Ξ1 and h(w0, a), (u1, a), e1i1 =
h(w0, a), e1i, since player 2 moves at u1.

The EPR-memory function mi is defined by

mihξ, wi = {hξ, wii} for all hξ, wi ∈ Ξi. (5.2)
8 It would be more consistent to assume that each player receives only his part of each endpiece. For

simplicity, however, we do not put subscript “i”.
9 In Kaneko-Kline [4], a general definition of a memory function is given in an extensive game. It can

be converted into the present paper for information protocols.

22



That is, it gives player i a local memory of his past actions and information pieces
received. In [4], a more general definition of a memory function is given in the context
of an extensive game.

Our analysis of inductive game theory starts with the pair of an information protocol
Π with payoffs and players, and an n-tuple of memory functions m =(m1, ...,mn). Then,
each player’s behavior depends on his memory as described by his memory function. A
behavior pattern σi of player i in (Π,m) is a function defined on Ξi with

σihξ, wi ∈ {a : hξ, (w, a), ui ∈ Ξ for some u}; (5.3)

mihξ, wi = mihη, vi implies σihξ, wi = σihη, vi. (5.4)

This means that σi assigns an action compatible with the information protocol Π and
the memory function mi of player i.

The concept of a behavior pattern is the same as the standard concept of a strategy.
However, it should be interpreted as describing his behavior pattern regularly taken.
His decision making is made only after his personal view is inductively derived. This
paper does not touch the problem of decision making. See Kaneko-Kline [5] for decision
making based on personal views.

Before moving on to our study of inductive game theory, we return to the absent-
minded driver situation modelled as a 1-player protocol in Figure 1.2. First, we observe
that if we apply the EPR-memory function to this example, then it does not involve
any forgetfulness. A player with the EPR-memory function can distinguish between the
two exits by his memories. At the first exit, he will have the memory value {hEi}, while
at the second exit his memory value is {h(E, c), Ei}. Thus his behavior pattern may
differ at the two exits. The EPR-memory function removes the absent-minded driver
“paradox” by separating the problem of memory from that of information transmission.

If, however, we try to capture forgetfulness in the story of the absent-minded driver,
we would need a different memory function. Here we consider one alternative memory
function mF1 defined by:

mF1 hξ, wi =

⎧⎪⎪⎨⎪⎪⎩
{hEi} if hξ, wi = hEi or h(E, c), Ei
{h(E, e), 0i} if hξ, wi = h(E, e), 0i
{h(E, e), 2i} if hξ, wi = h(E, c), (E, e), 2i
{h(E, c), 1i} if hξ, wi = h(E, c), (E, c), 1i.

(5.5)

That is, player 1 forgets, at the second exit, that he was previously at an exit. At any
endposition he recalls only the last piece of information he received and the last action
he took. There are other types of forgetfulness that a player might have, which can be
expressed by different memory functions. We have simply chosen one consistent with
the absent-minded driver story. More importantly, the view derived by a player with mF1
differs from that by a player with the EPR-memory function, which will be considered
in Section 5.2.
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5.2. The Objective Situation and Experienced Domains

For inductive game theory, the choice of the memory function and the domain of accu-
mulation of memories are paramount to determining the inductively derived view of a
player. In this paper we stick to the EPR-memory function, but we consider several do-
mains of accumulation. To describe these, we start with an objective situation (Πo,mo)
consisting of an information protocol Πo = ((W o, Ao,≺o),πo, ho) with B1-B2, N1-N3
and a profile of EPR-memory functions mo = (mo1, ...,m

o
n), where the player set is given

as No = {1, ..., n}. The set of positions in Πo is denoted by Ξo, and that for player i is
Ξoi .

We assume that the players typically follow a specific profile of behavior patterns
σo = (σo1, ...,σ

o
n), but occasionally they make deviations from this given behavior profile.

Each player learns about the situation from these trials and the memories he recalls after
some repeated plays of the objective situation.

· · · → (Πo,mo)→ (Πo,mo)→ (Πo,mo)→ · · ·
Fig.5.2

Let us consider the repeated situation of (Πo,mo) described in Fig.5.2, where each
player makes a trial once in a while independently with a small frequency (probability).
It is a rare event that two or more players make simultaneous trial deviations from their
behavior patterns. Memories from very rare events might disappear (be forgotten) in the
mind of a player, but memories from some other forms of experiences could remain as
long-term memories. In this paper, other than the full domain of a player’s positions Ξoi ,
we consider two other domains of accumulation: one consisting of his active experiences,
and the other consisting of both active and passive experiences. The active experiences
come from a player’s own trials, and the passive ones come from the trials of some other
players. We will see how the choice of these domains affect his inductively derived view
and which axioms are satisfied by the derived view.

To describe these three domains, we need a few more definitions. Given a pro-
file of behavior patterns σ = (σ1, ...,σn), we define the induced endposition hξ, wi =
h(w1, a1), ..., (wm, am), wm+1i by: for any k = 1, ...,m,

if j ∈ πo(wk), then σjh(w1, a1), ..., (wk−1, ak−1), wki = ak. (5.6)

We say that any initial segment h(w1, a1), ..., (wk, ak), wk+1i of hξ, wi is reachable by
σ = (σ1, ...,σn). That is, a position hη, vi is reachable by σ if and only if it is an initial
segment of the endposition hξ, wi induced by σ.

Let us return to the regular behavior patterns σo = (σo1, ...,σ
o
n) mentioned above.

For a player i ∈ No, we define the unilateral domain of active experiences by:

DAi (σ
o) =

S
σi

{hξ, wi ∈ Ξoi : hξ, wi is reachable by (σo−i,σi)}, (5.7)
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where σi under the union symbol varies over the set of all possible behavior patterns
for player i. We also define the unilateral domain of passive and active experiences by

DUi (σ
o) =

S
j∈No

S
σj

{hξ, wi ∈ Ξoi : hξ, wi is reachable by (σo−j ,σj)}. (5.8)

The domain DAi (σ
o) for player i consists of positions induced by his own trials (active

experiences), and DUi (σ
o) consists of positions induced either by his own trials or trials

of some other players (active and passive experiences). Since simultaneous trials are
excluded from either domain, we typically have the the relationship:

DAi (σ
o) Ã DUi (σo) Ã Ξoi . (5.9)

For example, let Πo be the 2-person protocol given as Fig.5.1, and let σo assign
the choice of a to each position of each player. Then the active domain DA1 (σ

o) for
player 1 consists of three positions ending with w0, e1, e3 in Fig.5.3, i.e., DA1 (σ

o) =
{hw0i, h(w0, a), (u1, a), e1i, h(w0, b), (u2, a), e3i}. The unilateral domainDU1 (σo), depicted
in Fig.5.4, contains another endposition ending with e2, which is induced by a unilateral
deviation of player 2. The position ending with e4 requires simultaneous deviations by
players 1 and 2 and occurs in Ξo1.

e1 e3
-a ↑a
u1 u2
-a %b

w0

e1 e2 e3
-a ↑b ↑a

u1 u2
-a %b

w0

Fig.5.3 Fig.5.4

The domains DAi (σ
o) and DUi (σ

o) are natural candidates for the domain of expe-
riences when the game has various players. When the game is very small, it may be
also natural to have the entire domain Ξoi for player i. In this section, we consider these
three domains.

Let Di be either DAi (σ
o), DUi (σ

o) or Ξoi . Then we define the memory kit by

TDi =
S

hξ,wi∈Di
moi hξ, wi. (5.10)

The memory kit TDi is interpreted as the set of accumulated long-term memories for
player i. In the case of DAi (σ

o), the regular experiences along the play induced by σo

become long-term memories, and so do the memories induced by his own deviations.
Player i constructs his personal view based on his memory kit TDi .
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When mo
i is the EPR-memory function and Di is the domain of accumulation, the

memory kit is described as

TDi = {hξ, wii : hξ, wi ∈ Di}.

The domain Di is the set of experiences from the objective point of view, but the
memory kit TDi consists of the subjective memories of player i. In Fig.5.3, the active
domain D1 = DA1 (σ

o) was given above, and then the memory kit is given as TD1 =
{hw0i, h(w0, a), e1i, h(w0, b), e3i} by excluding the decision pieces of player 2.

Now, we define the inductively derived view (i.d.view) Πi = ((W i, Ai,≺i),πi, hi)
from the memory kit TDi by

ID1: W i = {w : w is included in some sequence in TDi};
ID2: Ai =

S
w∈W i Aow;

ID3: ≺i = {hξ, wi : hξ, wi is a subsequence of some sequence in TDi};
ID4: πi(w) = {i} for all w ∈W i;

ID5: hi(w) = hoi (w) for all w ∈W iE.

Since the set of available actions at w ∈ W i is written on w by Assumption M1, we
require as ID2 that the set of all actions in Aow appear in A

i. Nevertheless, the set of
available actions Aiw in the sense of (2.5) in Π

i may differ from Aow. Condition M2 is
consistent with ID4, which states that Πi is a 1-person protocol. Condition M3 about
objective payoffs is used in ID5.

A salient feature of the above definition is the unique determination of the i.d.view
without imposing any of B1-B2 and N1-N3. The question is which axioms the i.d.view
satisfies. This contrasts with our findings for extensive games. Although in [4] and [5]
an i.d.view was defined in a parallel manner using an extensive game, we needed to
make an appropriate choice of some conditions from K13o,K13, K33f, K33i, K33s and
K33. In [5], we restricted our attention to an i.d.view satisfying K13 and K33 to obtain
the uniqueness of it, but the choices of names of nodes remained and the uniqueness
was obtained up to isomorphisms. In [4], K13o and K33f were chosen, and we needed
some procedure to make comparisons of multiple i.d.views. By our direct approach with
information protocols, we can avoid these types of problems.

5.3. Analysis of Axioms for I.d.views

Here, we analyze which axioms are satisfied by the i.d.view for each of the three domains
DAi (σ

o), DUi (σ
o), and Ξoi . We also consider some sufficient conditions for the axioms

when those are not generally satisfied by the i.d.view. We assume throughout the
following, except for discussions on the absent-minded driver game in the very end of
this section, that player i’s mo

i is the EPR-memory function.
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First, we show that the i.d.view Πi = ((W i, Ai,≺i),πi, hi) is a basic information
protocol for each domain in question.

Lemma 5.1 (I.d.views are basic): Let Πi = ((W i, Ai,≺i),πi, hi) be the i.d.view from
the memory kit TDi , and let Di be D

A
i (σ

o), DUi (σ
o) or Ξoi . Then (W

i, Ai,≺i) satisfies
B1 and B2.

Proof. Condition B1 is satisfied by ID3. Consider B2. Let hζ, wi be a feasible sequence
in ≺i and a ∈ Aiw. Then w ∈ W oD, and we can find an endposition hξ, vi in Di such
that hξ, vii includes hζ, (w, b), vi as a subsequence for some b. Since moi hξ, vi = {hξ, vii},
we have hξ, vii ∈ TDi . Hence, by ID3, hζ, (w, b), vi is a feasible sequence in ≺i .

This lemma is partial in the sense that it does not state whether or not the non-basic
axioms are satisfied. The next result is that the non-basic axioms are all satisfied for
the active domain DAi (σ

o).

Theorem 5.1 (I.d.views for DAi (σ
o) are full): Let Πi = ((W i, Ai,≺i),πi, hi) be

the i.d.view from the memory kit TDi , and Di = DAi (σ
o). Then (W i, Ai,≺i) satisfies

N1-N3.

Proof. Consider N1. Let hξ, wi be the endposition induced by σo. Then hξ, wii is
an endposition in Ξi. Let hvi denote the initial segment of hξ, wii of length 1. Since
Di = D

A
i (σ

o), all players other than i follow σo, so every player j before v follows σoj .
Hence, hη, vii has hvi as an initial segment for any hη, vi ∈ Di = DAi (σo).

Consider N2. Let hξ, wi and hη, vi be two positions in Ξi. Then, we have two
positions hξ0, wi and hη0, vi in DAi (σo) with hξ0, wii = hξ, wi and hη0, vii = hη, vi. Since
Di = DAi (σ

o), all players other than i follow σo. Hence, ξ = η if and only if ξ0 = η0.
Hence, by N2 on Πo, we have w = v.

Consider N3. Let hξ, wi be a position in Πi and a ∈ Aiw. Then hξ, wi = hξ0, wii
for some position hξ0, wi in DAi (σo). This position hξ0, wi is reachable by some profile
(σo−i,σi) having the additional property σihξ0, wi = a. This profile will induce some end-
position hη, ui in Πo. This has an initial segment hη0, u0i so that hη0, u0ii = hξ, (w, a), u0i
is a position in Πi.

The above result can be obtained alternatively from a result for extensive games in
Kaneko-Kline [4], using Theorems 3.1 and 3.2.

For the other two domains, DUi and Ξoi , Axioms N1 and N2 may not be satisfied
by the i.d.view. Counter examples will be given presently. When the domain is Ξoi ,
however, Axiom N3 will be satisfied.

Theorem 5.2 (N3 for Ξoi ): Let Π
i = ((W i, Ai,≺i),πi, hi) be the i.d.view from the

memory kit TDi , and Di = Ξ
o
i . Then (W

i, Ai,≺i) satisfies N3.
Proof. Let hξ, wi be a position in Πi and a ∈ Aw. Then, there is a position hη, wi in Ξoi
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such that hη, wii = hξ, wi. By N3 for Πo, there is a position hη, (w, a), vi in Ξo. There
is an endposition hη0, v0i in Ξoi such that hη, (w, a), vi is an initial segment of hη0, v0i.
Hence, for some u, hξ, (w, a), ui is an initial segment of hη0, v0ii. This means that we
have a position hξ, (w, a), ui is a position in Πi.

To see a possible violation of N1, we consider the i.d.view derived from Ξo2 in Fig.5.1.
Recall σo that assigns action a to every decision piece. The i.d.view for player 2 has
two starts u1, u2 such as depicted in Fig.5.5 and violates N1.

e1 e2 e3 e4
-a ↑b ↑a %b

u1 u2

Fig.5.5

e1 e2 e3 e4
-a ↑a %b %b

wo

e1 e2 e3
-a ↑b ↑a
u1 u2

Fig.5.6 Fig.5.7

Next, consider the i.d.view derived from Ξo1 for player 1 in the same objective protocol.
It is depicted in Fig.5.6 and violates N2. In this example, since 1 moves at the root, his
i.d.view could never violate N1. This observation is verified in the next theorem. Before
it, we consider the problems when Di = DUi (σ

o).
When D2 = DU2 (σ

o), the i.d.view for player 2 becomes Fig.5.7, and N1 is violated.
A violation of N2 is obtained for the i.d.view for D1 = DU1 (σ

o). The i.d.view of player
2 in Fig.5.7 might appear to be a violation of N3, since u2 has no immediate successor
for the action b. However, careful inspection shows that N3 is not actually violated in
this example since there is no feasible sequence of the form h(u2, b), wi for Π2. Indeed,
we can construct a counterexample against N3. One example comes from the 2-player
protocol Πo of Fig.5.8 where player 1 moves only at the root w0 and player 2 moves
at u and v. Let σo assign the action a everywhere. Then player 2’s i.d.view for DU2 (σ

o)
violates N3.

e2 e3 e4 e5
-a %b -a %b

v e1 v
-a %b ↑b
u ←−a w0

Fig.5.8
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In sum, for the full domain Ξoi , Axiom N3 is always satisfied, but Axioms N1, N2
might not hold. For the domain DUi (σ

o), none of the non-basic axioms N1-N3 are
guaranteed. Nevertheless, we can find some sufficient conditions for these axioms.

Theorem 5.3. (Sufficient Conditions for N1 and N2 on DUi (σ
o) or Ξoi ): Let

Πi = ((W i, Ai,≺i),πi, hi) be the i.d.view from the memory kit TDi and let Di be
DUi (σ

o) or Ξoi .

(1): Suppose that i ∈ πo(w0). Then (W i, Ai,≺i) satisfies N1.
(2): Suppose that for any hξ, wi, hη, vi ∈ Ξoi , if hξii = hηii and it is a nonempty sequence,
then w = v. Then (W i, Ai,≺i) satisfies N2.
Proof.(1): If i ∈ πo(w0), then hw0i is the root of Πi.
(2): Let hξ, wi and hη, vi be two positions in Ξi with ξ = η. Then, we have two positions
hξ0, wi and hη0, vi in Ξoi so that hξ0, wii = hξ, wi and hη0, vii = hη, vi. Thus, hξ0ii = ξ =
η = hη0ii, which implies w = v by the supposition. Thus, we have N2 for Πi.

We note that if the sequences hξii = hηii in (2) were allowed to be empty, we would
obtain N1, too.

Finally, we consider a sufficient condition for N3 whenDi = DUi (σ
o). It requires that

player i’s only decision piece in W o be the root piece wo. For player 1 in the protocol
of Fig.5.1, this condition is met, and thus his i.d.view will satisfy N3.

Theorem 5.4. (Sufficient Condition for N3 on DUi (σ
o)): Let Πi =

((W i, Ai,≺i),πi, hi) be the i.d.view from the memory kit TDi , and Di = D
U
i (σ

o). As-
sume that W oD

i = {wo}. Then (W i, Ai,≺i) satisfies N3.
Proof. Let hξ, wi be a position in Πi and a ∈ Aw. Then it follows from W oD

i = {wo}
that hξ, wi = hwoi. Since hwoi is also a position in Πo, by N3 for Πo, there is a position
h(wo, a), vi in Πo. This h(wo, a), vi is an initial segment of an endposition in hξ, ui in
DUi (σ

o) because W oD
i = {wo}. Also, since only w0 and u belong to player i by the

assumption, h(wo, a), ui is a position in Ξi.
Theorems 5.2 - 5.4 and the counterexamples given above show that the non-basic

axioms would be satisfied by the i.d.view for certain circumstances, but not typically.
Thus, these results mean that the correspondence theorems given in Sections 3 and 4
have substantive contents from the viewpoint of inductive game theory.

Finally, let us return to the absentminded-driver game. When player 1’s mo1 is the
EPR-memory function and the objective protocol is Πo given in Fig.1.2 the domain of
experiences DA1 ,D

U
1 and Ξ

o
1 turn out to be identical, and the i.d.view Π

1 coincides with
Πo. Since he does not forget anything, with the help of his memory function, he can
reconstruct the true protocol.

Consider the case where his memory function is the forgetful one given as mF1 of (5.5).
Then, we should be careful about the choice of domain. In particular, the domain Ξo1
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differs now from DA1 (σ
o) = DU1 (σ

o) even though it is a 1-player game. The reason
for this difference is that the player cannot get to the endpiece with 2 by any of his
strategies. However, one possibility is that he makes mistakes, in which case endpiece
2 could be experienced sometimes. With the domain Ξo1 and the memory function m

F
1 ,

player 1 would get the i.d.view of Fig.1.3 violating N2.
To obtain the i.d.view of Fig.1.4, we need to have a narrower domain of experiences.

In Kaneko-Kline [5] such a domain was given by introducing some limitations on actions.
Suppose that the driver has never tried the action to exit e so that the domain D1 is
a single path described by the set of positions ≺1= {hEi, h(E, c), Ei, h(E, c), (E, c), 1i}.
In this case, with the memory function mF1 he would derive the i.d.view of Fig.1.4. But
M1 still allows player 1 to find e is available at the exit E. In this case, AoE written on E
is {c, e}, while A1E defined by (2.5) from ≺1 consists of only one action c. This apparent
difference causes no confusion by the presumption that player 1 is aware of the action
e, but having never tried this action, he excludes it from consideration in his i.d.view.

6. Conclusions

We have developed the theory of information protocols in order to have simpler repre-
sentations of extensive game situations for inductive game theory than those provided
by the theory of extensive games. An information protocol is defined based on infor-
mation pieces and actions as its primitives as well as on a causality relation of histories
to new pieces. As in Kaneko-Kline [4] and [5], we formulated individual memory sepa-
rately using a memory function. We showed the equivalence and correspondence results
between the theory of information protocols and the theory of extensive games.

In particular, we showed that an information protocol with all the axioms is equiv-
alent to an extensive games of Kuhn [7] with the replacement of information sets by
information pieces. We use such a protocol to describe the objective description of the
game situation in question. Then, we showed the correspondences between the axioms
for protocols and the axioms for extensive games. The correspondence results help us
consider choices of weak forms of extensive games for the subjective descriptions of the
players.

Although the two theories are connected in a clear-cut manner by these correspon-
dences, we may have quite different theoretical practices in using them for inductive
game theory. First, the theory of information protocols is far simpler than the theory of
extensive games. As briefly mentioned in the very end of Section 5.2, one consideration
in terms of isomorphisms between extensive games disappears if we use information pro-
tocols. Some other considerations are also simplified by adopting information protocols.
For example, the inductive process of a player becomes clear-cut and straightforward.

The power of the theory of information protocols may manifest itself more when
we consider social situations with relatively large numbers of players and with coarse
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information pieces. In such a situation, if we follow the inductive game theory presented
in Section 5, we would find a large gap between the objective social situation and
subjective personal views: When information is coarse to a player, a personal view given
by accumulated experiences is extremely simple relative to the objective situation. In
this case, a player may be satisfied by his simplistic view on society, or he may try to
collect more information about society. Communication and/or education may function
for the latter purpose.

A problem of the above sort was discussed by Kaneko-Matsui [6]. It is about dis-
crimination and prejudices involved in the interactions of several ethnic groups. Each
player can observe only the ethnic differences of people. This is very coarse relative to
the objective situation. If a person constructs his view based on his observations of peo-
ple’s responses to such ethnic differences, the view is simple and understandable but far
from reality. The view contains a lot of prejudicial aspects. The theory of information
protocols gives clear-cut results on the gap between a personal view and the objective
social situation.

A final comment is: in spite of the advantages of information protocols, we do not
claim that the theory of extensive game should be eliminated from the future devel-
opment of inductive game theory. It suggests an alternative method to organize the
thoughts of people, which may not be so efficient. People sometimes follow inefficient
methods using hypothetical concepts to complete their descriptions. Without the help
of such hypothetical concepts, it might be difficult to think about social situations. The
use of hypothetical nodes may give a player a different perspective and/or may suggest
a hint of a more complicated society or environment. For these reasons we would like
to keep the theory of extensive games for the future research of inductive game theory.
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