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Abstract

Structural models for analyzing competitive markets characterized by homogeneous

products and services such as the public utility can be traced back to 1920’s. To

the authors’ best knowledge, the literature focuses on pure strategies and analysis for

mixed strategies are largely ignored. However, the peculiarity of the public utility often

allows only mixed strategies as a meaningful basis for analyzing the price competition.

The purpose of this paper is to fill this gap by developing a duopoly model with

two symmetric customers with mixed strategies. A necessary and sufficient condition

is given for the existence of Nash equilibrium when mixed strategies are defined on

a finite set of L discrete points spread in a finite interval. In addition, the Nash

equilibriums are constructed explicitly when L discrete points are chosen in such a

way that their reciprocals are equally distanced. The limiting strategies as L → ∞
are also derived explicitly.

Keywords: OR in energy, public utility, two person game, mixed strategy, limiting

strategy
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1 Introduction

While the price strategy plays a significant role in any business, it is of crucial impor-

tance to the public utility industry including electricity and gas because of several reasons.

Firstly the public utility industry provides homogeneous products across different suppliers.

Large-scale industrial customers are quite sensitive to prices of the public utility products.

Although service quality for energy consulting, security and the like would be quite impor-

tant for such industrial customers, because of the product homogeneity, the price strategy

of a supplier is the key to differentiate the company from the rest and to establish its com-

petitiveness in the market.

A second reason to emphasize the price strategy in the public utility industry can be

found in that the industry has been deregulated in many advanced countries since near the

end of the previous century, including the United States, EU countries and Japan. The

deregulation is intended to device a variety of ways to lower barrier for new entry and the

industry has been exposed to rapidly growing severe price competitions.

Lastly, it is important to realize that the public utility industry still faces certain

customs for price setting which come from the public nature of the industry. Before the

deregulation in Japan, for example, it is customary to offer a common price table, called

the universal price table, to all customers at their site, provided that the total demand, and

hourly and monthly load factors over a year are more or less the same. In addition, the

universal price table cannot be altered frequently, say at most once in a few years. Such

practices concerning the price strategy are still in effect to some extent even after the dereg-

ulation.

Structural models for analyzing competitive markets characterized by homogeneous

products and services such as the public utility can be traced back to 1920’s. The original

paper by Hotelling(1929) deals with the duopoly situation where two suppliers compete

over customers uniformly distributed on a finite line by choosing their locations and prices.

D’Aspremont et al.(1979) show non-existence of Nash equilibrium unless the two suppliers

are located relatively far apart. Economides(1986) extended the Hotelling model by intro-

ducing customers uniformly distributed on a plane. Anderson(1987) incorporates stackel-

berg leadership within the context of the Hotelling model. Other variations include Thisse

and Vives(1988), Zhang and Teraoka (1998) and Rath(1998). Gabszewicz and Thisse(1992)
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provides an excellent review of the literature. More recently, for a spatially duopoly model

with customers located at different nodes having separate demand functions, Matsubayashi

et al.(2004) establish a necessary and sufficient condition for the existence of Nash equilib-

rium and develop computational algorithms for finding the equilibrium point.

The literature dicussed above focuses on pure strategies and analysis for mixed strate-

gies has been largely ignored, to the best knowledge of the authors. Since the universal

price table is still in effect to some extent and cannot be altered easily once they are set for

a certain period even after the deregulation in Japan, it is of crucial importance to consider

mixed strategies by reading the price strategies of competitors at the time of bidding. This

means that the role of mixed strategies has been increasing its importance in analyzing the

public utility industry.

The purpose of this paper is to fill this gap by developing a duopoly model with two

symmetric customers and to establish a necessary and sufficient condition for the existence

of Nash equilibrium when mixed strategies are defined on a finite set of L discrete points

spread in a finite interval. In addition, the Nash equilibriums are constructed explicitly

when L discrete points are chosen in such a way that their reciprocals are equally distanced.

The limiting strategies as L → ∞ are also derived explicitly.

The structure of this paper is as follows. In Secion 2, a duopoly model with two

symmetric customers is introduced and a game-theoretic framework is described formally.

Section 3 establishes a necessary and sufficient condition under which a Nash equilibrium

within discrete mixed strategies exists. By choosing discrete pricing points in a peculiar

way, the Nash equilibriums are constructed explicitly in Section 4. Section 5 is devoted to

derive the limiting behavior of the strategies derived in Section 4 as L → ∞.

2 Model Description

We consider a market consisting of two suppliers and two customers, where each supplier

provides a homogeneous service such as city gas or electricity and each customer may rep-

resent one large industry or a group of residents in the same district. For convenience, the

near customer of supplier i is defined as customer i and the distant customer as customer

3 − i, i = 1, 2 as depicted in Figure 2.1. The market is assumed to be symmetric in that

a) both suppliers have the same costs cH and cL for providing service to the distant cus-
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Figure 2.1: Two Supplier Two Customer Model

tomer and the near customer respectively where cL < cH ; b) both customers have the same

demand D ; and c) each supplier has to offer a uniform price upon delivery to both of the

two customers despite the cost difference. Each supplier provides its service only when it

results in a positive return to do so and each customer chooses the supplier which offers

the lower price. When the two suppliers happen to offer the same price to a customer, the

demand of the customer is split evenly between the two suppliers. Since the service under

consideration is typically a public utility service, it is also natural to assume that there

exists a price upper bound. Accordingly, one has

πi ∈ I = [cH , U ], i = 1, 2 (2.1)

where πi is the uniform price offered by supplier i. It should be noted that, if cL < πi ≤ cH ,

supplier i monopolizes its near customer and the price can be increased to cH without losing

its monopoly of the near customer. In what follows, we describe a general game structure

defined on the strategy set I.

Let (Ω,F , P ) be a probability space, and let RV be a set of random variables defined on

(Ω,F , P ) with full support on I = [cH , U ]. More specifically, for AX(α) = {ω|X(ω) ≤ α},
we define

RV = {X|X : Ω → R, AX(α) ∈ F for ∀α ∈ R} (2.2)

where R is the set of real numbers. It should be noted that, for any A ⊂ R, we write

P [X ∈ A] =

∫
ω∈Ω

δ{X(ω)∈A}P (dω)

where δ{X(ω)∈A} = 1 if X(ω) ∈ A and 0 else. In particular, it should be noted that P [X ∈
I] = 1. A mixed strategy of supplier i then corresponds to a random variable Xi ∈ RV .
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Throughout the paper we assume that each supplier decides its strategy independently of

the other so that X1 and X2 are independent, and each supplier has enough production

capacity to meet customers’ demands.

Given π1 = X1(ω1) and π2 = X2(ω2) for some ω1, ω2 ∈ Ω, it can be readily seen that

the payoff function of supplier i is given by

hi(π1, π2) =




2
(
πi − cL + cH

2

)
D if πi < π3−i, πi, π3−i ∈ (cH , U ](

πi − cL + cH

2

)
D if πi = π3−i, πi, π3−i ∈ (cH , U ]

0 if πi > π3−i, πi, π3−i ∈ (cH , U ]

(cH − cL)D if πi = cH , π3−i ∈ (cH , U ]

(πi − cL)D if πi ∈ (cH , U ], π3−i = cH .

(2.3)

If cH < πi < π3−i ≤ U , supplier i can monopolize the entire market with demand 2D at the

average earning per unit of πi − (cL + cH)/2. When cH < πi = π3−i ≤ U , the demand D

of each customer is split evenly between the two suppliers and the average earning per unit

is again πi − (cL + cH)/2. For the case of cH = πi < π3−i ≤ U , supplier i can capture only

the near customer with average earning per unit of cH − cL. Finally, if cH = π3−i < πi ≤ u,

supplier i is forced to settle for the near customer with the average earning per unit of πi−cL.

Let Si be the strategy set of supplier i and define S = S1 × S2. In our model, one has

S1 = S2 = RV so that S = RV × RV . Given (X1, X2) ∈ S, let Vi(X1, X2) = E[hi(X1, X2)]

be the expected payoff function of supplier i. More specifically, we define

Vi(X1, X2) =

∫ ∫
ω1∈Ω ω2∈Ω

hi(X1(ω1), X2(ω2))P (dω1)P (dω2), i = 1, 2. (2.4)

The following conventional notion in game theory is employed.

Definition 2.1

a) For i = 1, 2, X∗
i is a best reply against X3−i if V1(X

∗
1 , X2) = maxX1∈RV [V1(X1, X2)] or

V2(X1, X
∗
2 ) = maxX2∈RV [V2(X1, X2)].

b) For i = 1, 2, Bi(X3−i) = {X∗
i : X∗

i is a best reply against X3−i} is called the set of best

replies of supplier i against X3−i.

c)The best reply correspondence B : S → S is defined as B(X1, X2) = B1(X2) × B2(X1).

d)(X∗
1 , X

∗
2 ) is a Nash equilibrium, denoted by (X∗

1 , X
∗
2 ) ∈ NE,

if and only if (X∗
1 , X

∗
2 ) ∈ B(X∗

1 , X
∗
2 ).

It is difficult to prove the existence of a Nash equilibrium and to construct it explicitly

for this model. In the following sections, we focus on discrete random variables in RV and
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establish a necessary and sufficient condition for the existence of a Nash equilibrium. In

addition, when the discrete support points are chosen in such a way that their reciprocals are

separated by equal distance, two types of Nash equilibriums can be constructed explicitly.

Furthermore, it is shown that a sequence of each type of Nash equilibriums converges in law

to a mixed strategy in S as the equal distance diminishes to 0.

3 Nash Equilibrium with Discrete Mixed Strategies

For a given v = [v1, · · · , vL] ∈ RL with v1 = cH < v2 < v3 < · · · vL−1 < vL = U , let DRV (v)

be a set of discrete random variables with full support on {v1, · · · , vL}, where X ∈ DRV (v)

is represented by a probability vector q with P [X = vm] = qm, m ∈ L = {1, 2, 3 · · · , L}, and

we write X ∈ DRV (v) or q ∈ DRV (v) interchangeably. In this section, we focus on discrete

mixed strategies in S(v) = DRV (v) × DRV (v), where Definition 2.1 should be rewritten

with RV replaced by DRV (v). Let H
i
= [hi(vm, vn)]m,n∈L, i = 1, 2 with hi(vm, vn) as given

in (2.3). From (2.4), one sees that

Vi(q1
, q

2
) = qT

1
H

i
q
2

, i = 1, 2 . (3.1)

From the symmetric structure of (2.3), it can be seen that h1(π1, π2) = h2(π2, π1) so that

H
2

= HT

1
. It then follows that V2(q1

, q
2
) = qT

1
H

2
q
2

= qT
2
HT

2
q
1

= qT
2
H

1
q
1

. Hence, it is

possible to define Vi(q1
, q

2
) in place of (3.1) as

Vi(q1
, q

2
) = qT

i
H q

3−i
, i = 1, 2 , (3.2)

where H
def
= [h1(vm, vn)]m,n∈L = H

1
. (3.3)

We next establish a necessary and sufficient condition under which a Nash equilibrium exists,

i.e. NE(v) �= ø. A preliminary lemma is needed.

Lemma 3.1

Let (q∗
1
, q∗

2
) ∈ NE(v). For i = 1, 2, if (q∗

3−i
)m̂ > 0, then (H q∗

i
)m̂ = maxm∈L[(H q∗

i
)m].

Proof We prove the lemma by contraposition. Without loss of generality, we assume

that i = 1. Suppose (q∗
2
)m̂ > 0 and (H q∗

1
)m̂ < maxm∈L[(H q∗

1
)m]. For m̃ ∈ L satisfying

(H q∗
1
)m̃ = maxm∈L[(H q∗

1
)m], let q̃∗

2
be defined by q̃∗

2
= q∗

2
+ (q∗

2
)m̂(em̃ − em̂) where em ∈ RL
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is the m-th unit vector in RL. It is clear that q̃∗
2
≥ 0 and q̃∗T

2
1 = 1 so that q̃∗

2
∈ DRV (v),

where 1 is a vector whose elements are all 1. It then follows from (3.2) that

V2(q
∗
1
, q̃∗

2
) = q̃∗T

2
H q∗

1
= q∗T

2
H q∗

1
+ (q∗

2
)m̂(eT

m̃ − eT
m̂)H q∗

1

= V2(q
∗
1
, q∗

2
) + (q∗

2
)m̂{(H q∗

1
)m̃ − (H q∗

1
)m̂} > V2(q

∗
1
, q∗

2
)

which contradicts to (q∗
1
, q∗

2
) ∈ NE(v), completing the proof. �

We are now in a position to prove the main theorem of this section.

Theorem 3.2 For q ∈ DRV (v), let ε(q) =
[
maxm∈L{(H q)m}

]
1−H q ≥ 0. Then (q∗

1
, q∗

2
) ∈

NE(v) if and only if q∗T
3−i

ε(q∗
i
) = 0 for i = 1, 2.

Proof Without loss of generality, we assume that i = 1. Suppose (q∗
1
, q∗

2
) ∈ NE(v). From

the definition of ε(q), one sees that

(ε(q∗
1
))n = max

m∈L
{(H q∗

1
)m} − (H q∗

1
)n ≥ 0 for n ∈ L . (3.4)

From Lemma 3.1, if (q∗
2
)n > 0, then maxm∈L{(H q∗

1
)m} = (H q∗

1
)n so that (ε(q∗

1
))n = 0 from

(3.4). Since q∗
2
≥ 0, one concludes that εT (q∗

1
)q∗

2
= 0. Conversely, suppose εT (q∗

1
)q∗

2
= 0. It

can be seen from (3.4) that, for ∀q
2
∈ DRV (v), one has H q∗

1
=
[
maxm∈L{(H q∗

1
)m}

]
1T −

εT (q∗
1
). Since q∗T

2
1 = qT

2
1 = 1 and 0 = q∗T

2
ε(q∗

1
) ≤ qT

2
ε(q∗

1
), it follows that

V2(q
∗
1
, q∗

2
) = q∗T

2
H q∗

1
= q∗T

2
[max
m∈L

{(H q∗
1
)m}1 − ε(q∗

1
)]

≥ qT

2
[max
m∈L

{(H q∗
1
)m}1 − ε(q∗

1
)] = qT

2
H q∗

1
= V2(q

∗
1
, q

2
) .

Similarly one has V1(q
∗
1
, q∗

2
) ≥ V1(q1

, q∗
2
) for all q

1
∈ DRV (v). Hence (q∗

1
, q∗

2
) ∈ NE(v),

completing the proof. �

While Theorem 3.2 allows one to test whether or not a given (q
1
, q

2
) ∈ S(v) is a Nash

equilibrium, it does not provide a means to construct (q∗
1
, q∗

2
) ∈ NE(v). In the next section,

a constructive proof is given for the existence of a Nash equilibrium by choosing v in a

specific manner.
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4 Nash Equilibriums with Specific Discrete Support

In this section, we provide a constructive proof for the existence of Nash equilibriums by

choosing v in a certain manner. More specifically, let a = [a1, · · · , aL]T be such that

a1 =
1

2
(cH − cL)D ; (4.1)

1

am
= (L − m)∆ +

1

aL
, m ∈ L \ {1} ; (4.2)

aL = (U − cL + cH

2
)D ; and

∆ =
1
a1

− 1
aL

L − 3
2

. (4.3)

It should be noted that a is constructed in such a way that

1

am

− 1

am+1

= ∆ , m ∈ L \ {1, L} ;
1

a1

− 1

a2

=
1

2
∆ . (4.4)

We now define v = v̂L in terms of a as

v̂L =
1

D
a +

cL + cH

2
1L , (4.5)

where 1m is the m-dimensional vector whose components are all 1. The decomposition of the

interval [cH , U ] by v̂L is rather peculiar as depicted in Figure 4.1. The following proposition

0

1

0 10 20 30

(cL+cH)

2

 v7=U

v1=cH

Δ

v6

v2

a7

 1

a1

 1

a6

 1

Figure 4.1: v̂L with L=7

is straightforward from (4.5) and proof is omitted.

Proposition 4.1 vm+1 − vm is monotonically increasing for m ∈ L \ {L}.
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We next show in a constructive manner that there exist two types of Nash equilibriums

(q∗
1
, q∗

2
), (q∗∗

1
, q∗∗

2
) ∈ NE(v̂L) where the two suppliers offer the same price with the same

expected profit value in the former case, while they offer different prices but have the

same expected profit value in the latter case. The first step is to prove the existence of

(q∗
1
, q∗

2
) ∈ NE(v̂L). A few preliminary lemmas are needed and proofs are given in Appendix.

Lemma 4.2 Let ∆ be as in (4.3) and define q∗T = [α1, α21
T
L−1] ∈ RL where

α1 =
2a1

C1
(

2

aL
− ∆), α2 =

2a1

C1
∆, and C1 = 2(

a1

aL
+ 1) − a1∆ . (4.6)

If L > max(2, aL

2a1
+ 1), then q∗ > 0 and q∗T1L = 1.

Lemma 4.3 Let α1, α2 and C1 be as in Lemma 4.2. Then one has a) 2α2+a1(α1−2)∆ = 0

and b) α2 + a1(α1 − 2) 1
aL

+ α1 = 0 .

For notational convenience, the following matrices are introduced. We note that δ{ST} = 1

if the statement ST holds and δ{ST} = 0 else.

I = [δ{i=j}]i,j∈L\{L} ∈ R(L−1)×(L−1) (4.7)

A
D

= [δ{i=j}ai+1]i,j∈L\{L} ∈ R(L−1)×(L−1) (4.8)

L = [δ{i<j}]i,j∈L\{L} ∈ R(L−1)×(L−1) (4.9)

L
1

= [δ{i+1=j}]i,j∈L\{L} ∈ R(L−1)×(L−1) (4.10)

B = I + L ∈ R(L−1)×(L−1) (4.11)

C = I + 2L ∈ R(L−1)×(L−1) (4.12)

w(x, y) = x1L−1 + (y − x)eL−1 ∈ R(L−1), (4.13)

where em ∈ RL−1 is the m-th unit vector in RL−1.

Lemma 4.4 Let A
D

and B be as in (4.8) and (4.11). Then one has a) B−1A−1

D
1L−1 =

w(∆, 1
aL

) and b) B−1C 1L−1 = w(2, 1) .

Lemma 4.5 Let H be as in (3.3) and define v̂T
L = [v̂1, · · · , v̂L] as in (4.5). Then the
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following statements hold true.

a) [H]1,m = 2a1 for m ∈ L
b) [H ]n,1 = a1 + an for n ∈ L \ {1}
c) [H]m,n = [A

D
C]m−1,n−1 for m,n ∈ L \ {1}

d) H =

[
2a1 2a11

T
L−1

(a1I + A
D
)1L−1 A

D
C

]

e) H

[
x

y1L−1

]
=

[
2a1

(yA
D
C + xa1I + xA

D
)1L−1

]
where 0 < x < 1, and y = (1 − x)/(L − 1)

The main theorem of this section can now be proven.

Theorem 4.6 Let αi(i = 1, 2) be as in (4.6) and define q∗
1

= q∗
2

= q∗ where q∗T =

[α1, α21
T
L−1]. If L > max{2, aL

2a1
+ 1}, then (q∗

1
, q∗

2
) ∈ NE(v̂L). Furthermore, the payoff

values of the two suppliers are equal with V1(q
∗
1
, q∗

2
) = V2(q

∗
1
, q∗

2
) = D(cH − cL).

Proof From Lemma 4.2, one sees that q∗ ∈ DRV (v̂L). Let ε(q) be as in Theorem 3.2.

We will show that ε(q∗) = 0 so that ε(q∗)T q∗ = 0. The theorem then follows from Theorem

3.2. From (4.13), one sees that w(x, y) is linear in (x, y). Lemma 4.3 then implies that

α2w(2, 1)+a1(α1−2)w(∆, 1
aL

)+α1w(0, 1) = w
[
2α2 +a1(α1−2)∆, α2 +a1(α1−2) 1

aL
+α1

]
=

w(0, 0) = 0. With w(2, 1) and w(∆, 1
aL

) in the above equation substituted by Lemma 4.4

a) and b) respectively, one sees that α2B
−1C 1L−1 + a1(α1 − 2)B−1A−1

D
1L−1 + α1w(0, 1) = 0

Multiplying A
D
B from left, this then leads to

α2AD
B B−1C 1L−1 + a1(α1 − 2)1L−1 + α1AD

B w(0, 1) = 0 ,

i.e. [
α2AD

C + a1α1I + α1AD

]
1L−1 = 2a11L−1 , (4.14)

where B w(0, 1) = 1L−1 is employed to yield (4.14). On the other hand, from Lemma 4.5

d), one sees that H q∗ =

[
2a1

(α2AD
C + α1a1I + α1AD

)1L−1

]
. It then follows from this and

(4.14) that H q∗ = 2a11L. This in turn implies that ε(q∗) = [maxm∈L{(H q∗)m}]1L −H q∗ =

2a11L − 2a11L = 0 , completing the proof. �

The above theorem states that a Nash equilibrium can be achieved when the two

suppliers offer the same mixed strategy q∗T = [α1, α21
T ] ∈ DRV (v̂L). As can be seen from
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(4.3), ∆ decreases as L increases. One then sees from (4.6) that α1 is much larger than α2

for large values of L. In this case, the two suppliers tend to protect the near customer by

assigning a higher probability of α1 to v̂1 = cH . At the same time, it is crucial to allocate a

small but positive probability α2 to all other price alternatives so that (q∗, q∗) ∈ NE(v̂L) can

be assured. Somewhat surprisingly, we next show that there exists a different type of Nash

equilibrium (q∗∗
1

, q∗∗
2

) ∈ NE(v̂L), where the two suppliers take different mixed strategies but

share the same expected payoff which is the same as that of Theorem 4.6. As before, a few

preliminary lemmas are needed and proofs are given in Appendix.

Lemma 4.7 Let α3 and α4 be defined by

α3 =
2

aL

1
a1

+ 1
aL

, and α4 =
2∆

1
a1

+ 1
aL

. (4.15)

Then one has a)α3 = a1(2 − α3)
1

aL
and b)α4 = a1(2 − α3)∆ .

In what follows, the matrices in (4.7) through (4.12) are employed.

Lemma 4.8 Let H be as in (3.3) and define v̂L as in (4.5). We also define f ∈ RL−1

as (f)m = {1 + (−1)m}/2, m ∈ L \ {L}. If L is even, then for any 0 < x < 1 and

y = 2(1 − x)/(L − 2), one has

H

[
x

yf

]
=

[
2a1

yA
D
C f + xa11 + xA

D
1

]
. (4.16)

Lemma 4.9 Let H, v̂L and w(x, y) be as in (3.3),(4.5) and (4.13) respectively. Then for

any 0 < y < 1 and x = (1 − y)/(L − 2), one has

H

[
0

w(x, y)

]
=

[
2a1

A
D
C w(x, y)

]
.

Lemma 4.10 Let f be as in Lemma 4.8. If L is even, then one has a) B−1C f = w(1, 0)

and b) B−11 = w(0, 1).

We are now in a position to prove the following theorem.

Theorem 4.11 Let α3 and α4 be as in Lemma 4.7. For f ∈ RL−1 given in Lemma 4.8, we

define (q∗∗1 , q∗∗2 ) as q∗∗
i

T = 4
4−α4

[α3, α4f
T ] , q∗∗

3−i

T = [0, wT (α5, α6)]

where α5 = a1∆ and α6 = a1(
1

aL
+

∆

2
) . (4.17)

If L is even and L > max(2, aL

2a1
+ 1), then (q∗∗1 , q∗∗2 ) ∈ NE(v̂L). The payoff values of the

two suppliers at this equilibrium are equal with V1(q
∗∗
1 , q∗∗2 ) = V2(q

∗∗
1 , q∗∗2 ) = D(cH − cL).

11



Proof Without loss of generality we assume i = 1. First we show that q∗∗
1

, q∗∗
2

∈ DRV (v̂L).

It can be seen from (4.15) that α3 + L−2
2

α4 = (α3 +
L− 3

2

2
α4) − 1

4
α4 = 1 − 1

4
α4, so that

q∗∗T
1

1 = 4
4−α4

(α3 + α4f
T 1L−1) = 1

1− 1
4
α4

(α3 + L−2
2

α4) = 1. From (4.13) and the definition of

q∗∗2 , one sees that q∗∗T2 1 = wT (α5, α6)1L−1 = (L − 1)α5 + (α6 − α5) = (L − 2)α5 + α6 . It

then follows from (4.3) and (4.17) that q∗∗T2 1 = (L − 3
2
)a1∆ + a1

aL
= ( 1

a1
− 1

aL
)a1 + a1

aL
= 1 .

One sees from (4.3), (4.15) and the condition L > max{2, aL

2a1
+ 1} that

α4 =
2∆

1
a1

+ 1
aL

=
2

L − 3
2

aL − a1

aL + a1
<

2
aL

2a1
+ 1 − 3

2

aL − a1

aL + a1

=
4a1

aL − a1

aL − a1

aL + a1
= 4

1

1 + aL

a1

< 4 .

Hence q∗∗
i

≥ 0, i = 1, 2 and q∗∗1 , q∗∗2 ∈ DRV (v̂L). We next show that εT (q∗∗
1

)q∗∗
2

= 0.

From Lemma 4.10 together with (4.13), one easily sees that α4B
−1C f + α3B

−11L−1 =

α4w(1, 0) + α3w(0, 1) = w(α4, α3) . By Lemma 4.7 this then leads to

α4B
−1C f + α3B

−11L−1 = a1(2 − α3)w(∆,
1

aL
) = a1(2 − α3)B

−1A−1

D
1L−1 ,

where Lemma 4.4 a) is employed to yield the last equality. By multiplying A
D
B from left

to the above equation, it follows that α4AD
C f + α3AD

1L−1 = a1(2−α3)1L−1, and one has

α4AD
C f + α3AD

1L−1 + α3a11L−1 = 2a11L−1 . (4.18)

Let x = 4α3

4−α4
and y = 4α4

4−α4
. One sees that (L − 2)(4 − α4)y = (L − 3

2
− 1

2
)4 2∆

1
a1

+ 1
aL

=

8
1

a1
− 1

aL
1

a1
+ 1

aL

−2 2∆
1

a1
+ 1

aL

= 8−8
2

aL
1

a1
+ 1

aL

−2α4 = 8−8α3−2α4 = 2(4−α4)(1−x), so that y = 2(1−x)
L−2

.

Since qT∗∗
1

∈ DRV (v̂L) and the first component of qT∗∗
1

is x, one has 0 < x < 1. Applying

these x and y to Lemma 4.8 and using (4.18), one sees that H q∗∗
1

=

[
2a1

4
4−α4

2a11L−1

]
.

Substituting this into the definition of ε(q∗∗
1

) yields ε(q∗∗
1

)T = maxm(H q∗∗
1

)m1T − (H q∗∗
1

)T =

4
4−α4

2a11
T
L − [2a1,

4
4−α4

2a11
T
L−1] = [ α4

4−α4
2a1, 0

T
L−1] . This in turn implies that ε(q∗∗

1
)T q∗∗

2
=

( α4

4−α4
2a1, 0

T
L−1)[0, w(α5, α6)]

T = 0. We also need to show ε(q∗∗
2

)T q∗∗
1

= 0. From (4.17)

together with (4.13), one sees that

α5w(2, 1) + w(0, 2(α6 − α5)) = w(2α5, 2α6 − α5) = 2a1w(∆,
1

aL
) . (4.19)

Since B−1(C + I) = (I + L)−1(I + 2L + I) = 2I , using Lemma 4.4 a) b), (4.19) leads to

α5B
−1C 1L−1 + B−1 (C + I)w(0, α6 − α5) = 2a1B

−1A−1

D
1L−1 . (4.20)
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Multiplying A
D
B from left in (4.20), one obtains α5 A

D
C 1L−1 +A

D
(C +I) w(0, α6−α5) =

2a11L−1 . From the linearity of w(x, y) in (4.13) and (4.8), this then leads to

A
D

C w(α5, α6) + w(0, aL(α6 − α5))

= A
D

C w(α5, α5) + A
D

C w(0, α6 − α5) + w(0, aL(α6 − α5))

= A
D

C w(α5, α5) + A
D

C w(0, α6 − α5) + A
D

w(0, (α6 − α5))

= α5 A
D
C 1L−1 + A

D
(C + I) w(0, α6 − α5) = 2a11L−1 ,

that is,

A
D

C w(α5, α6) = 2a11L−1 − w(0, aL(α6 − α5)) . (4.21)

Let x = α5 and y = α6, then one has x(L − 2) = a1∆(L − 2) = a1∆(L − 3
2
− 1

2
) =

(1 − a1

aL
) − a1

∆
2

= 1 − α6 = 1 − y, so that x = (1 − y)/(L − 2). From (4.17) with (4.3) and

the condition L > 2, one has

y = α6 = a1(
1

aL
+

∆

2
) =

a1

aL
+

a1

2

1
a1

− 1
aL

L − 3
2

<
a1

aL
+

1 − a1

aL

2(2 − 3
2
)

= 1 .

Hence with x and y above, Lemma 4.9 can be applied, yielding

H q∗∗
2

= H

[
0

w(α5, α6)

]
=

[
2a1

A
D
C w(α5, α6)

]
=

[
2a1

2a11L−1 − w(0, aL(α6 − α5))

]
.

It should be noted that from the condition L >
aL

2a1

+ 1, one has α6 − α5 = a1

aL
− a1∆

2
=

a1

aL
− 1− a1

aL

2(L− 3
2
)

> a1

aL
− 1− a1

aL

2(
aL
2a1

+1− 3
2
)

= a1

aL
− 1− a1

aL
aL
a1

−1
= 0, so that maxm{(H q∗∗

2
)m} = 2a1. Thus we

obtain

q∗∗T
1

ε(q∗∗
2

) = q∗∗T
1

[
max

m
{(H q∗∗

2
)m}1L − H q∗∗

2

]

= q∗∗T
1

[
2a11L −

[
2a1

2a11L−1 − w(0, aL(α6 − α5))

]]

=
4

4 − α4

[α3, α4f
T ]

[
0

w(0, aL(α6 − α5))

]
.

Since w(0, aL(α6 − α5)) = [0, · · · , 0, aL(α6 − α5)]
T from (4.13), and the last component of

fT as defined in Lemma 4.8 is 0 when L is even, one then concludes that εT (q∗∗
2

)q∗∗
1

= 0.

The theorem now follows from Theorem 3.2. �

It should be noted that the strategies of the two suppliers at Nash equilibrium in Theorem

4.11 can be written as q∗∗T
1

= 4
4−α4

[
α3, α4f

T
]

and q∗∗T
2

= [0, α5, · · · , α5, α6] while those in

13



Theorem 4.6 are q∗T
1

= q∗T
2

=
[
α1, α21

T
L−1

]
. As we will see, one has limL→∞ q∗

1
= limL→∞ q∗∗

1
,

while limL→∞ q∗∗
2

is quite different. The supplier with q∗∗
1

is risk-aversive with tendency

to protect the near customer by offering lower prices with higher probabilities, while the

supplier with q∗∗
2

is risk-taking, by offering higher prices with higher probabilities.

5 Limit Theorems of Nash Equilibriums with Specific

Discrete Support

In the previous section, two Nash equilibriums (q∗1, q
∗
2) and (q∗∗1 , q∗∗2 ) are constructed explic-

itly, when the strategy set consists of L discrete supporting points for pricing with v̂L =

[v̂L:1, · · · , v̂L:L] as given in (4.5). While v̂L partitions the strategy set I = [cH , U ] of the origi-

nal problem in a rather peculiar way as shown in Figure 4.1, the set {v̂L : L = L0, L0+1, · · · }
with L0 > 2 becomes dense in I = [cH , U ] as we will see. It is then of interest to see whether

or not (X∗
1 (L), X∗

2 (L)) and (X∗∗
1 (L), X∗∗

2 (L)) in S(v̂L) = DRV (v̂L)×DRV (v̂L) converge to

any mixed strategies (X∗
1 , X

∗
2 ) and (X∗∗

1 , X∗∗
2 ) in S = RV × RV of the original problem as

L → ∞, where X∗
i (L) and X∗∗

i (L) are discrete random variables associated with q∗i and q∗∗i

respectively, i = 1, 2.

In order to understand such limiting behaviors, we first define the partition of I =

[cH , U ] based on v̂L = [v̂L:1, · · · , v̂L:L] as PT (v̂L) = {[v̂L:m, v̂L:m+1) : m = 1, 2, · · · , L − 1}.
The partition of I = [cH , U ] with N intervals of equal distance is defined similarly as

PT (uN) = {[uN ;r, uN :r+1) : r = 1, 2, · · · , N − 1}, where uN = [uN :1, · · · , uN :N ]; uN :r =

cH + (r−1)(U−cH )
N−1

, 1 ≤ r ≤ N. For later use, we also define

τN = [τN :1, · · · , τN :N ] = D
(
uN − cL + cH

2
1N

)
. (5.1)

From (4.5) and (5.1), it should be noted that

uN =
1

D
τN +

cL + cH

2
1N ; and v̂L =

1

D
a +

cL + cH

2
1L . (5.2)

Hence the basic question to be answered is how many components of v̂L are contained in

each interval of PT (uN), and the limit of the result as L → ∞. For describing this problem

more precisely, the following notation and definitions are introduced.

Definition 5.1 Let aL = [aL:1, · · · , aL:L]T be as in (4.1) through (4.3) where the index L is

attached to emphasize aL ∈ RL. Then we define a)K = 1
aL:1

− 1
aL:L

and b)∆(L) = 1
L− 3

2

K.

14



From (4.2), one sees that 1
aL:m

= (L − m)∆(L) + 1
aL:L

for m ∈ L \ {1}. This then implies

aL:m =
aL:L

(L − m)∆(L)aL:L + 1
for m ∈ L \ {1} . (5.3)

We also note from (4.4) that

1

aL:1
− 1

aL:2
=

1

2
∆(L),

1

aL:m
− 1

aL:m+1
= ∆(L) for m ∈ L \ {1, L} . (5.4)

It can be readily seen from Definition 5.1 b) that

lim
L→∞

L∆(L) = K . (5.5)

Definition 5.2 For 1 ≤ r ≤ N − 1, we define:

J(r, L,N) = {m : v̂L:m ∈ [uN :r, uN :r+1)}; (5.6)

Z(r, L,N) = |J(r, L,N)|; (5.7)

mmin(r, L,N) = min{m : m ∈ J(r, L,N)}; (5.8)

mmax(r, L,N) = max{m : m ∈ J(r, L,N)}; (5.9)

εmin(r, L,N) = v̂L:mmin(r,L,N) − uN :r ; and (5.10)

εmax(r, L,N) = uN :r+1 − v̂L:mmax(r,L,N) . (5.11)

 

ε min(r,L,N) ε max(r,L,N) 

ur ur+1 min(r,L,N) v max(r,L,N) v 

Figure 5.1: The r-th Interval Generated by PT (uN)

As can be seen in Figure 5.1, given PT (v̂L) and PT (uL), J(r, L,N) is the index set for

the components of v̂L contained in the r-th interval generated by PT (uL), and Z(r, L,N)

is the cardinality of J(r, L,N). Since each interval generated by PT (uL) is defined as a

left-closed and right-open interval, the last point v̂L = U = uN :N never belongs to any

interval. Accordingly, the qustion to be answered is to find Z(r, L,N)/(L − 1) and its

limiting behavior as L → ∞. Before proving this, we first show that, given PT (uN), one
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can make each interval in PT (uN) contain an arbitrary number of components of v̂L by

taking L sufficiently large.

Proposition 5.3 Let N0 and N be any positive intergers greater than or equal to 2. Then

there exists a positive integer L(N0, N) such that for any L > L(N0, N), one has Z(r, L,N) ≥
N0 for all r = 1, · · · , N − 1.

Proof From (5.2) and (5.4) together with Proposition 4.1, one sees that max1≤m<L{v̂L:m+1−
v̂L:m} = v̂L:L− v̂L:L−1 = aL:LaL:L−1

D

(
1

aL:L−1
− 1

aL:L

)
<

a2
L:L

D
∆(L) = D

(
U − cL+cH

2

)2

∆(L) . Since

∆(L) → 0 as L → ∞ from Definition 5.1 b), this then implies that

max
1≤m<L

{v̂L:m+1 − v̂L:m} = v̂L:L − v̂L:L−1 → 0 as L → ∞ . (5.12)

Consequently, for any ε > 0, there exists a positive integer L(ε) such that, for any L > L(ε),

one has |v̂L:m+1 − v̂L:m| < ε for all m = 1, · · · , L − 1. For given N0 and N , choose ε(N0, N)

so that 0 < ε(N0, N) < (U − cH)/(N0(N − 1)). Then for any L > L(N0, N) = L(ε(N0, N)),

one has Z(r, L,N) ≥ N0, completing the proof. �

In what follows, we assume that L > L(N0, N) for some N0 ≥ 2. Three more lemmas

are needed before proving the first main theorem of this section and proofs are given in

Appendix.

Lemma 5.4 For 1 ≤ r ≤ N − 1, one has

lim
L→∞

εmax(r, L,N) = 0 and lim
L→∞

εmin(r, L,N) = 0 .

In what follows, the arguments r, L and N are omitted whenever there is no ambiguity.

Lemma 5.5 Let L(N0, N) be as in Proposition 5.3. Then the following equations hold for

all L > L(N0, N).

a) mmin(1, L,N) = 1; and (5.13)

mmin(r, L,N) = L − 1

∆(L)

(
1

τN :r + Dεmin(r, L,N)
− 1

aL:L

)
for 2 ≤ r ≤ N − 1 (5.14)

b) mmax(r, L,N) = L − 1

∆(L)

(
1

τN :r+1 − Dεmax(r, L,N)
− 1

aL:L

)
for 1 ≤ r ≤ N − 1 (5.15)
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Lemma 5.6 Let L(N0, N) be as in Proposition 5.3. Then for all L > L(N0, N), one has:

Z(1, L,N) = L − 1

∆(L)

(
1

τN :2 − Dεmax(1, L,N)
− 1

aL:L

)
and (5.16)

Z(r, L,N) =
1

∆(L)

(
1

τN :r − Dεmax(r − 1, L,N)
− 1

τN :r+1 − Dεmax(r, L,N)

)
, 2 ≤ r ≤ N − 1 .

(5.17)

We are now in a position to prove the first main theorem of this section.

Theorem 5.7 Let g(r, L,N) be defined by

g(r, L,N) =
Z(r, L,N)

L − 1
for all 1 ≤ r ≤ N − 1 . (5.18)

One then has, for 1 ≤ r ≤ N − 1,

g(r, N)
def
= lim

L→∞
g(r, L,N) =

1

K

(
1

τN :r
− 1

τN :r+1

)
, (5.19)

where τN :r and K are as given in (5.1) and Definition 5.1 a) respectively.

Proof Form Lemma 5.6, one sees that Z(1,L,N)
L−1

= L
L−1

{
1 − 1

L∆(L)

(
1

τN:2−Dεmax(1,L,N)
− 1

aL:L

)}
.

By letting L → ∞, it then follows from Lemma 5.4 and (5.5) that g(1, N) = 1
K

(
K − 1

τN:2
+ 1

aL:L

)
.

From Definition 5.1 a) and noting τN :1 = aL:1, this then leads to g(1, N) = 1
K

(
1

τN:1
− 1

τN:2

)
.

For 2 ≤ r ≤ N − 1, the theorem follows similarly. �

From Theorem 5.7, one realizes that
∑N−1

r=1 g(r, N) = 1
K

( 1
τN:1

− 1
τN:2

+ 1
τN:2

− 1
τN:3

+

· · · + 1
τN:N−1

− 1
τN:N

) = 1
K

( 1
τN:1

− 1
τN:N

) = 1
K

( 1
aL:1

− 1
aL:L

) = K
K

= 1. Since g(r, N) > 0 for

1 ≤ r ≤ N − 1, one can associate {g(r, N)}N−1
r=1 with a random variable in the following

manner. Let X(L) ∈ DRV (v̂L) having a probability vector q
L

= [qL:1, · · · , qL:L] given by

qT

L
=

1

(L − 1)
[0, 1T

L−1] ∈ RL . (5.20)

Since qL:m = P [X(L) = v̂m] = 1/(L − 1) for 2 ≤ m ≤ L, one sees from (5.18) that

g(1, L,N) = P [uN :1 ≤ X(L) < uN :2] + 1
L−1

, and for 2 ≤ r ≤ L − 1 g(r, L,N) = P [uN :r ≤
X(L) < uN :r+1]. Consequently, it follows for 1 ≤ r ≤ L − 1 that

g(r, N) = lim
L→∞

P [uN :r ≤ X(L) < ur+1] . (5.21)

Based on (5.21), it is possible to identify the limiting distribution of X(L). More specif-

ically, let X(∞) be a random variable satisfying X(L)
d→ X(∞) where “

d→” denotes the

convergence in law, i.e. , if one defines

FL(x) = P [X(L) ≤ x]; F∞(x) = P [X(∞) ≤ x], x ∈ R , (5.22)
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then limL→∞ FL(x) = F∞(x) for all continuity points x ∈ R of F∞(x). Of interest is then

to find F∞(x). A preliminary lemma is needed.

Lemma 5.8 For I = [cH , U ] in (2.1), let S = U − cH . Then, for any ε > 0, there exists a

positive integer N(ε) such that one has, for all N > N(ε),∣∣∣∣g(r, N)
S

N−1

− D

Kτ 2
N :r+1

∣∣∣∣ < ε , r ∈ N \ {N} . (5.23)

Proof It should be noted from (5.1) that τN :r+1 − τN :r = D(uN :r+1 − uN :r) = DS/(N −
1), r ∈ N \ {N}. Using this and (5.19), one sees that∣∣∣∣g(r, N)

S
N−1

− D

Kτ 2
N :r+1

∣∣∣∣ =
1

K

∣∣∣∣N − 1

S

(
1

τN :r
− 1

τN :r+1

)
− D

τ 2
N :r+1

∣∣∣∣
=

1

K

∣∣∣∣ D

τN :rτN :r+1
− D

τ 2
N :r+1

∣∣∣∣ =
D

K

∣∣∣∣τN :r+1 − τN :r

τN :rτ 2
N :r+1

∣∣∣∣ ≤ D

K

D S

(N − 1)

1

τ 3
N :1

. (5.24)

where τN :r ≥ τN :1, r ∈ N is employed to yield the last inequality. The right most side of

(5.24) does not depend on r. With [z] being the smallest integer which is greater than or

equal to z, let

N(ε) =

[
D2S

Kετ3
N :1

]
+ 1 , (5.25)

which is independent of r. Inequality (5.23) then holds for all r ∈ N \ {N}, completing the

proof. �

Now we give the proof of the main theorem of this section.

Theorem 5.9 Let X(L) and X(∞) be as given in (5.22). Then X(∞) is absolutely con-

tinuous with probability density function f∞(x) = d
dx

F∞(x) given by

f∞(x) =

{
1

KD

(
x − cL+cH

2

)−2
, x ∈ I = [cH , U ]

0 , else
. (5.26)

Proof Let r̃(x,N) = arg min1≤r≤N−1{x < uN :r+1}, so that x ∈ [uN :r̃(x,N), uN :r̃(x,N)+1).

It then follows that

Pr{X(L) < x} ≤ Pr{X(L) < uN :r̃(x,N)+1} =

r̃(x,N)∑
r=1

Pr{uN :r ≤ X(L) < uN :r+1} (5.27)

and, for r̃(x,N) ≥ 2,

Pr{X(L) < x} ≥ Pr{X(L) < uN :r̃(x,N)} =

r̃(x,N)−1∑
r=1

Pr{uN :r ≤ X(L) < uN :r+1} . (5.28)
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For sufficiently large N , one has r̃(x,N) ≥ 2. Combining (5.27) and (5.28) with (5.21), one

has

r̃(x,N)−1∑
r=1

g(r, N) ≤ lim
L→∞

r̃(x,N)−1∑
r=1

Pr{uN :r ≤ X(L) < uN :r+1} ≤ lim
L→∞

Pr{X(L) < x}

≤ lim
L→∞

r̃(x,N)∑
r=1

Pr{uN :r ≤ X(L) < uN :r+1} ≤
r̃(x,N)∑
r=1

g(r, N) .(5.29)

From (5.19), one sees that limN→∞ g(r, N) = 0 for 1 ≤ r ≤ N − 1 and this convergence is

uniform in terms of r. This then leads to limN→∞ g(r̃(x,N), N) = 0 for cH ≤ x ≤ U . Hence

one has

lim
N→∞

r̃(x,N)∑
r=1

g(r, N) = lim
N→∞

r̃(x,N)∑
r=1

g(r, N) − lim
N→∞

g(r̃(x,N), N) = lim
N→∞

r̃(x,N)−1∑
r=1

g(r, N) .(5.30)

From (5.29), this then implies that

lim
N→∞

r̃(x,N)∑
r=1

g(r, N) = lim
L→∞

Pr{X(L) < x} . (5.31)

Let f∞(x) be as in (5.26). Then it should be noted that, for all x ∈ [cH , U ],

r̃(x,N)∑
r=1

g(r, N)

can be expressed as

r̃(x,N)∑
r=1

g(r, N) =
S

N − 1

r̃(x,N)∑
r=1

[
g(r, N)

S
N−1

− f∞(uN :r+1)

]

+

[r̃(x,N)∑
r=1

f∞(uN :r+1)
S

N − 1
−
∫ x

cH

f∞(y)dy

]
+

∫ x

cH

f∞(y)dy . (5.32)

From (5.1) and (5.26) one sees that

f∞(uN :r+1) =
D

KD2

(
uN :r+1 − cL + cL

2

)−2

=
D

Kτ 2
N :r+1

. (5.33)

For any ε > 0, let N(ε) be as in (5.25). From Lemma 5.8, it follows that, for all N > N(ε),

S

N − 1

r̃(x,N)∑
r=1

∣∣∣∣g(r, N)
S

N−1

− f∞(uN :r+1)

∣∣∣∣ ≤ S

N − 1

r̃(x,N)∑
r=1

ε =
Sr̃(x,N)

N − 1
ε ≤ Sε . (5.34)

Hence the first term of (5.32) goes to 0 as N → ∞. Since f∞(x) in (5.26) is absolutely con-

tinuos on [cH , U ], the second term of (5.32) also goes to 0 as N → ∞. Combining these ob-

servations with (5.32), one finally concludes that limN→∞
∑r̃(x,N)

r=1 g(r, N) =
∫ x

cH f∞(y)dy ,

and the theorem follows from (5.31). �
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Theorem 5.9 states that X(L) specified by probability vector q
L

in (5.20) converges in

law to X(∞) as L → ∞ where X(∞) is absolutely continuous with probability density func-

tion f∞(x) given in (5.26). Using this theorem, we next show that both (X∗
1 (L), X∗

2 (L)) ∈
NE(v̂L) of Theorem 4.6 and (X∗∗

1 (L), X∗∗
2 (L)) ∈ NE(v̂L) of Theorem 4.11 defined on

S(v̂L) = DRV (v̂L) × DRV (v̂L) converge in law to (X∗
1 , X

∗
2 ) and (X∗∗

1 , X∗∗
2 ) defined on

S = RV × RV respectively as L → ∞.

Theorem 5.10 Let X∗(L) = X∗
1 (L) = X∗

2 (L) ∈ DRV (v̂L) be associated with q∗ = q∗
1

= q∗
2

as in Theorem 4.6 and define B(p) as a Bernoulli random variable with P [B(p) = 1] = p

for 0 < p < 1. Then, one has

X∗(L)
d→ B

( 2a1

a1 + aL

)
cH +

(
1 − B

( 2a1

a1 + aL

))
X(∞) ∈ RV (5.35)

as L → ∞, where X(∞) is as in Theorem 5.9, and B( 2a1

a1+aL
) is independent of X(∞).

Proof From Lemma 4.2, one has (L − 1)α2 + α1 = 1, so that q∗T = [α1, α21
T
L−1] =

α1[1, o
T
L−1] + (1 − α1)[0,

1
L−1

1T
L−1]. This then implies that X∗(L) can be written as

X∗(L) = B(α1)c
H + (1 − B(α1))X(L) , (5.36)

where B(α1) is independent of X(L). The theorem then follows sinc α1 → 2a1

a1+aL
as L → ∞

from (4.3) and (4.6). �

Next we prove the limit thoerem of the equilibrium (X∗∗
1 (L), X∗∗

2 (L)) given by Theorem

4.11 as L → ∞.

Theorem 5.11 Let B(p) be as in Theorem 5.10 and let X ′(L) be the random variable

represented by probability vector q
′T
L

def
= 2

L−2
[0, fT ] where f is as in Lemma 4.8. For i = 1, 2,

let X∗∗
1 (L) and X∗∗

2 (L) be the random variables associated with q∗∗
1

and q∗∗
2

given in Theorem

4.11 respectively. Then, for i = 1, 2, one has

X∗∗
i (L)

d→ B
( 2a1

a1 + aL

)
cH +

(
1 − B

( 2a1

a1 + aL

))
X(∞) ∈ RV ; and (5.37)

X∗∗
3−i(L)

d→ B
( a1

aL

)
U +

(
1 − B

( a1

aL

))
X(∞) ∈ RV (5.38)

as L → ∞, where X(∞) is as in Theorem 5.9, and B( 2a1

a1+aL
) and B( a1

aL
) are independent of

X(∞) respectively.
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Proof Without loss of generality we assume i = 1. Since q∗∗T
1

1L = 1, one has 4α3

4−α4
+

4(L−2)α4

4−α4
= 1, so that q∗∗T

1
= 4

4−α4
[α3, α4f

T ] = 4α3

4−α4
[1, 0T

L−1] + 4α4

4−α4
[0, fT ] = 4α3

4−α4
[1, 0T

L−1] +

(1 − 4α3

4−α4
)[0, 1

L−2
fT ]. This then implies that X∗∗

1 (L) can be written as

X∗∗
1 (L) = B

( 4α3

4 − α4

)
cH+

(
1 − B

( 4α3

4 − α4

))
X ′(L) , (5.39)

where B( 4α3

4−α4
) is independent of X ′(L). Similarly, since q∗∗T

2
1L = 1 one has (L − 2)α5 +

α6 = 1, so that q∗∗T
2

= [0, wT (α5, α6)] = [0, wT (α5, α5)] + [0, wT (0, α6 − α5)] = {1 − (α6 −
α5)}[0, 1

L−1
1L−1] + (α6 − α5)[0, w

T (0, 1)]. Hence X∗∗
2 (L) can be written as

X∗∗
2 (L) = (1 − B(α6 − α5))X(L) + B(α6 − α5) U , (5.40)

where B(α6 − α5) are also independent of X(L). Since ‖q′
L
− q

L
‖2 → 0 as L → ∞, one has

X ′(L)
d→ X(∞) as L → ∞. The theorem then follows since 4α3

4−α4
and α6 − α5 go to 2a1

a1+aL

and a1

aL
as L → ∞ respectively from (4.4), (4.15) and (4.17). �

It is worth noting that the limit of X∗(L) in Theorem 5.10 has the mass m(cH) =

2a1/(a1 + aL) at cH . Let U = cH + d. From (4.1) and (4.2), one then sees that

m(cH) =
cH − cL

cH − cL + d
. (5.41)

Adopting the lowest possible price at cH is the risk aversive strategy in that the supplier

secures the near customer while giving up the distant customer. Equation (5.41) states that

the mass assigned to this strategy at the limit is the ratio of the unit profit expected from

the near customer under this strategy against that obtained by offering the highest possible

price U = cH + d. Clearly, the mass m(cH) vanishes as U → ∞ and the associated lim-

iting distribution becomes absolutely continuous on [cH ,∞) having the probability density

function given by

f∞:U=∞(x) =
cH − cL

2

(
x − cL + cH

2

)−2

. (5.42)

The interpretation for Theorem 5.11 can be stated as supplier i takes the risk aversive

strategy by placing the mass mi(c
H) as given in (5.41), while supplier 3 − i adopts the risk

taking strategy by placing the mass m3−i(U) at the highest possible price U where

m3−i(U) =
cH − cL

cH − cL + 2d
. (5.43)

Both mi(c
H) and m3−i(U) diminish to zero as U → ∞ and one observes again that both

suppliers have the same associated limiting strategy specified by (5.42). One may then
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expect that there exists the unique Nash equilibrium specified by (5.42) with the strategy

space S = RV × RV where RV is the set of all random variables defined on [cH ,∞). This

conjecture is currently under study and will be reported elsewhere.
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Appendix

Proof of Lemma 4.2: Since L > 2, one has 0 < 2
aL

(L− 1) + 2
a1

(L− 2) = 2( 1
aL

+ 1
a1

)(L−
3
2
) −

(
1
a1

− 1
aL

)
=

L− 3
2

a1

[
2( a1

aL
+ 1) − a1∆

]
=

L− 3
2

a1
C1, so that C1 > 0. Similarly, since

L >
aL

2a1
+ 1, it can be seen that 2

aL
− ∆ = 2

aL
−

1
a1

− 1
aL

(L− 3
2
)

= 1
L− 3

2

{
1

aL
(2L − 3) − 1

a1
+ 1

aL

}
=

1
L− 3

2

{
2

aL
(L − 1) − 1

a1

}
= 2

aL(L− 3
2
)

(
L − 1 − aL

2a1

)
> 0. It then follows that α1 > 0 and

α2 > 0. Furthermore, one has q∗T1L = α1 + (L − 1)α2 = 2a1

C1

{
2

aL
− ∆ + (L − 1)∆

}
=

2a1

C1

{
2

aL
− ∆

2
+ (L − 3

2
)∆
}

= 2a1

C1

{
2

aL
− ∆

2
+ 1

a1
− 1

aL

}
= 1

C1

(
2a1

aL
+ 2 − a1∆

)
= 1.

Proof of Lemma 4.3: From the definition of ∆, α1, α2 and C1, one sees that 2α2+a1(α1−
2)∆ = 2a1

C1

[
2∆ + C1

2

{
2a1

C1

(
2

aL
− ∆

)
− 2

}
∆
]

= 2a1

C1
∆
(
2 + 2a1

aL
− a1∆ − C1

)
. Substituting

−a1∆ = C1 − 2a1

aL
− 2 into the last term then yields 2a1

C1
∆
(
2 + 2a1

aL
+ C1 − 2a1

aL
− 2−C1

)
= 0 ,

proving a). For part b), we first note from a) and the definition of α2 that a1(α1 − 2) =

−2α2

∆
= −4α1

C1
. We also note that α1 + α2 = 2a1

C1
( 2

aL
− ∆ + ∆) = 4a1

C1

1
aL

. It then follows that

α2 + a1(α1 − 2) 1
aL

+ α1 = −4α1

C1

1
aL

+ 4α1

C1

1
aL

= 0 , completing the proof.

Proof of Lemma 4.4: We first note that L − L
1

= L
1
L so that (I − L

1
)B = I − L

1
+

L − L
1
L = I, and hence B−1 = I − L

1
. From (4.4)(4.8) and (4.10), one then sees that

B−1A−1

D
1L−1 = (I − L

1
)A−1

D
1L−1 = A−1

D
1L−1 − L

1
A−1

D
1L−1

=




1
a2

1
a3

. . .

0

0
1

aL−1
1

aL







1

1

1
...

1


−




0

0

0

0

1
a3

1
a4

. . .
1

aL

0 0 0 . . . 0







1

1

1
...

1




=




1
a2
1
a3
...
1

aL−1
1

aL



−




1
a3
1
a4
...
1

aL

0


 =




∆

∆
...

∆
1

aL


 = ∆1L−1 +

(
1

aL
− ∆

)
eL−1 ,

where ∆ is as in (4.3), proving a). For part b), since B−1 = I − L
1

and (I − L
1
)L = L

1
,

it can be seen that B−1C 1L−1 = (I − L
1
)(I + 2L)1L−1 = {(I − L

1
) + (2L − 2L

1
L)}1L−1 =

I 1L−1 + L
1
1L−1 = w(1, 1) + w(1, 0) = w(2, 1) where I 1L−1 = w(1, 1) and L

1
1L−1 = w(1, 0)

are employed to yield the last eauality, proving the lemma.

Proof of Lemma 4.5: In what follows, since H = H
1

as in (3.3), any reference to (2.3)

assumes i = 1. We first note from (4.1) and (4.5) that v̂1 = a1

D
+ cL+cH

2
= cH−cL

2
+ cL+cH

2
= cH .
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Hence from (2.3) and (4.1), one has [H]1,m = h1(v̂1, v̂m) = h1(c
H , v̂m) = (cH − cL)D = 2a1,

proving a). For part b), one sees from (2.3) that [H ]n,1 = h1(v̂n, v̂1) = h1(v̂n, cH) = (v̂n −
cL)D. Substituting v̂n = an

D
+ cL+cH

2
from (4.5) into the last term and using (4.1), we obtain

(v̂n − cL)D = an + cH−cL

2
D = an + a1. In order to prove part c), we consider the following

three cases:

Case:1 1 < m < n ≤ L

For this case, one has v̂m < v̂n from (4.4) and (4.5) so that it follows from (2.3) that

[H ]m,n = h(v̂m, v̂n) = 2(v̂m − cL+cH

2
)D = 2(am

D
+ cL+cH

2
− cL+cH

2
)D = 2am .

Case:2 m = n ≤ L

Similarly, for m = n, one has [H]m,n = h(v̂m, v̂n) = (v̂m − cL+cH

2
)D = am for m ∈ L \ {1}.

Case:3 L ≥ m > n > 1

In this case, one has v̂m > v̂n and from (2.3) [H ]m,n = 0.

We note from (4.8) and (4.12) that

A
D
C =




a2 2a2 2a2 · · · 2a2

a3 2a3 · · · 2a3

a4 · · · 2a4

0
. . .

...

aL




and part c) follows. Part d) is immediate from a), b), and c). Finally we prove part e).

Using the result of d), one sees that

H

[
x

y1L−1

]
=

[
2a1 2a11

T
L−1

(a1I + A
D
)1L−1 A

D
C

] [
x

y1L−1

]

=

[
2a1{x + y(L − 1)}

{a1xI + xA
D

+ yA
D
C}1L−1

]
=

[
2a1

{yA
D
C + xa1I + xA

D
}1L−1

]
.

Proof of Lemma 4.7: By the definition of α3 in (4.15), one sees that α3(1 + a1

aL
) = 2 a1

aL
,

so that α3 = 2 a1

aL
− a1

aL
α3 = a1(2 − α3)

1
aL

, proving a). For part b), we first note that

2 − α3 = 2 − 2
a1
aL

1+
a1
aL

= 2
1+

a1
aL

. Hence from the definition of α4 in (4.15), one sees that

α4 = a1
2

1+
a1
aL

∆ = a1(2 − α3)∆ , completing the proof.

Proof of Lemma 4.8: From Lemma 4.5 d), one sees that

H

[
x

yf

]
=

[
2a1 2a11

T
L−1

(a1I + A
D
)1L−1 A

D
C

] [
x

yf

]
=

[
2a1(x + y L−2

2
)

a1xI 1L−1 + xA
D
1L−1 + yA

D
C f

]

=

[
2a1

yA
D
C f + a1x1L−1 + xA

D
1L−1

]
, completing the proof.
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Proof of Lemma 4.9: From Lemma 4.5 d), one sees that H

[
0

w(x, y)

]

=

[
2a1 2a11

T
L−1

(a1I + A
D
)1L−1 A

D
C

] [
0

w(x, y)

]
=

[
2a11

T
L−1w(x, y)

A
D
C w(x, y)

]
=

[
2a1

A
D
C w(x, y)

]
where 1T

L−1w(x, y) = (L − 2)x + y = 1 is employed to yield the last equality.

Proof of Lemma 4.10: We first note that (I − L
1
)L = L

1
and B−1 = I − L

1
so that

B−1C f = (I −L
1
)(I +2L)f = (I −L

1
+ 2L

1
)f = (I + L

1
)f = w(1, 0), proving part a). For

part b), one sees that B−11L−1 = (I − L
1
)1L−1 = 1L−1 − w(1, 0) = w(0, 1), completing the

proof.

Proof of Lemma 5.4: For r = 1, we first note from (5.8) that mmin(1, L,N) = 1 and

hence from (5.10) εmin(1, L,N) = vL:1 − uN :1 = cH − cH = 0. For r = N − 1, it should be

noted from Proposition 5.3 that mmax(N − 1, L,N) = L − 1 for any L > L(2, N). It then

follows from (5.11) that εmax(N − 1, L,N) = uN :N − v̂L:L−1 = v̂L:L − v̂L:L−1 which goes to 0

as L → ∞ from (5.12). In general, for 2 ≤ r ≤ N − 1, one sees from Proposition 4.1 that

|v̂L:L− v̂L:L−1| > |v̂L:mmin(r,L,N)− v̂L:mmax(r−1,L,N)| = |{εmin(r, L,N)+uN :r}−{uN :r−εmax(r−
1, L,N)}| = |εmin(r, L,N) + εmax(r− 1, L,N)| , and the first term goes to 0 as L → ∞ from

(5.12), proving the lemma.

Proof of Lemma 5.5: Since v̂L:1 = uN :1, one has mmin(1, L,N) = 1. From (5.10), one

sees for 2 ≤ r ≤ N − 1 that εmin(r, L,N) = v̂L:mmin(r,L,N) − uN :r . Substituting (5.2) into

this, one has

εmin(r, L,N) =
1

D
(aL:mmin(r,L,N) − τN :r) . (A.1)

From (5.3), one sees that aL:mmin(r,L,N) − τN :r =
aL:L

(L − mmin(r, L,N))∆(L)aL:L + 1
− τN :r .

Part a) now follows by substituting this into (A.1) and solving for mmin(r, L,N). The proof

for part b) is similar to that for (5.14), completing the proof.

Proof of Lemma 5.6: We note that Z(1, L,N) = mmax(1, L,N)−mmin(1, L,N)+1 and

for 2 ≤ r ≤ N−1, Z(r, L,N) = mmax(r, L,N)−mmax(r−1, L,N). The lemma then follows

from Lemma 5.5.
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