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Abstract

In financial engineering, one often encounters barrier options in which an action

promised in the contract is taken if the underlying asset value becomes too high or

too low. In order to compute the corresponding prices, it is necessary to capture dy-

namic behavior of the associated stochastic process modified by boundaries. To the

best knowledge of the authors, there is no algorithmic approach available to compute

such prices repeatedly in a systematic manner. The purpose of this paper is to develop

computational algorithms to capture the dynamic behavior of Ornstein-Uhlenbeck pro-

cesses modified by various boundaries based on the Ehrenfest approximation approach

established in Sumita, Gotoh and Jin[4]. As an application, we evaluate the prices of

up-and-out call options maturing at time τM with strike price KS written on a dis-

count bond maturing at time T , demonstrating the usefulness, speed and accuracy of

the proposed computational algorithms.
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0 Introduction

The Ornstein-Uhlenbeck (O-U) process {XOU(t) : t ≥ 0} on IR is a Markov diffusion process

whose probability density function f(x, t) := d
dx

P {XOU(t) ≤ x} is governed by the forward

diffusion equation

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) +

∂

∂x
[x f(x, t)] . (0.1)

Since this process is of practical importance, it has been widely studied and applied to mod-

eling many real dynamics. Recently the usefulness of the O-U process has been reinforced in

the area of financial engineering, where spot interest rates are represented by O-U processes.

More specifically, let us consider a one factor term structure model {X̂OU(t) : t ≥ 0}
characterized by a stochastic differential equation of the form

dX̂OU(t) = (φ− αX̂OU(t))dt + σdW (t), (0.2)

where X̂OU(t) is a random short rate, W (t) is the standard Wiener process, φ is a mean

reversion level, α > 0 is a reversion speed and σ > 0 is a volatility factor. This model is

called the Vasicek model, see e.g., [5]. If we define {X̃OU(t) : t ≥ 0} by

X̃OU(t) :=
σ√
2α

XOU(αt), (0.3)

one finds, after a little algebra, that

X̂OU(t) = X̃OU(t) + θ(t), (0.4)

where X̃OU(0) = 0 and

θ(t)
def
=

φ

α
(1− e−αt) + X̂OU(0)e−αt. (0.5)

We now consider an up-and-out call option maturing at time τM with strike price KS,

where the option is written on a discount bond of maturity at time T with maturity value
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of one. This option is nullified and is of zero value if X̂OU(t) exceeds the prespecified upper

limit rB before τM. Otherwise, it has the value at τM determined in the following manner.

Let D(τ |x̂0, T ) be the price of the discount bond at time τ given X̂OU(0) = x̂0. Then the

price of the up-and-out call option at time τM, denoted by πKO(τM|x̂0, T ), can be expressed

in terms of the first passage time Tx̂0rB
= inf

{
t : X̂OU(t) > rB|X̂OU(0) = x̂0

}
as

πKO(τM|x̂0, T ) = E
[
{D(τM|x̂0, T )−KS}+1{Tx̂0rB

>τM}
]
, (0.6)

where {a}+ = max{a, 0} and

1{A} =

{
1, if A is true,
0, if A is false.

(0.7)

The strike price KS may be given by

KS = e−rS(T−τM), (0.8)

where the value of the discount bond is depreciated at time τM by a prespecified rate rS.

Evaluating πKO(τM|x̂0, T ) requires the joint distribution of P
[
X̂OU(t) ≤ x, Tx̂0rB

> τM|X̂OU(0) = x̂0

]
.

In addition, the joint distribution has to be computed repeatedly with speed and accuracy

for different values of the underlying parameters. To the authors’ best knowledge, there exist

no systematic algorithms to overcome this difficulty in the literature. The computational

algorithms proposed in this paper provide a powerful numerical vehicle for filling this gap.

The purpose of this paper is to develop computational algorithms for capturing the dy-

namic behavior of the O-U process {XOU(t) : t ≥ 0} modified by various boundaries. Despite

the underlying simplicity associated with the Gaussian transition structure, the dynamic be-

havior of the O-U process with such boundaries becomes analytically intractable. Typical

boundaries include absorbing boundaries, replacement boundaries, and reflection boundaries

which are special cases of replacement boundaries. The reader is referred to Feller [1] for fur-

ther details. Figure 0.1(a) depicts the modified O-U process with one absorbing boundary.

The modified O-U process with two absorbing boundaries is illustrated in Figure 0.1(b).

When the upper and lower boundaries are symmetric about 0, this process expresses the

first passage time of |XOU(t)|. Additional cases for replacement and reflection boundaries

are shown in Figures 0.1(c) and 0.1(d), respectively. These boundaries play an important
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role in dealing with a variety of financial derivatives. The value of up-and-out call option in

(0.6), for example, can be evaluated by dealing with an absorbing boundary combined with

appropriate shifting and scaling operations specified in (0.3) and (0.4).

[Figure 0.1]

In the previous paper by the authors [4], it is shown, through the spectral analysis of

a birth-death process, that a sequence of Ehrenfest processes with appropriate scaling and

shifting converges in law to the O-U process {XOU(t) : t ≥ 0}. The corresponding first pas-

sage times and the historical maximum also converge in law to those of {XOU(t) : t ≥ 0}.
It is worth noting that this approach approximates the O-U process by discretizing only

the state space, not the time axis. More specifically, a finite range of {XOU(t) : t ≥ 0} is

represented by 2V + 1 discrete states where V is a positive integer. Then the O-U process

{XOU(t) : t ≥ 0} is approximated by {XV (t) : t ≥ 0} which is constructed from the underly-

ing Ehrenfest process defined on NV = {0, 1, ..., 2V } with appropriate scaling and shifting.

The zero points of the orthogonal polynomials associated with the spectral representation of

the Ehrenfest process are then computed, enabling one to evaluate the distributions of the

first passage times and the historical maximum.

Additional numerical experiments following the previous paper [4] have revealed that

some zero points tend to cluster near the ends of NV with diminishing distances among

themselves. Consequently, those clustering zeros cannot be computed with accuracy for

V > 100. For example, with V = 100, only three digit accuracy is assured for the survival

functions of the first passage times. In order to overcome this numerical difficulty, we propose

an alternative approach based on the uniformization procedure of Keilson [3]. As we will

see, the uniformization procedure is numerically stable with speed and accuracy, enabling

one to cope with V = 20, 000 or more where the computational burden increases only as a

linear function of V . Based on this approach, the modified Ehrenfest processes with different

boundaries are evaluated, which in turn captures the dynamic behavior of the modified O-U

processes with corresponding boundaries. The proposed approach enables one to evaluate

prices of a variety of barrier options as represented by (0.6) with speed and accuracy.
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The structure of this paper is as follows. In Section 1, the key results of [4] relevant to

this paper are reviewed succinctly. The uniformization procedure of Keilson [3] for tempo-

rally homogeneous Markov chains in continuous time is summarized in Section 2, together

with algorithms for evaluating the distributions of associated first passage times and the

historical maximum. Sections 3, 4, and 5 deal with the modified O-U process with one

absorbing boundary, two absorbing boundaries, and replacement and reflection boundaries,

respectively. Numerical results are also presented, demonstrating the convergence of the

modified Ehrenfest process as V → ∞ with speed and accuracy. In Section 6, the price of

the up-and-out call option of (0.6) is evaluated explicitly. For comparison purpose, we also

develop a modified Hull-White trinomial tree approach to deal with absorbing boundaries.

While the modified Hull-White trinomial tree approach cannot be employed for certain pa-

rameter values, the proposed Ehrenfest approach can cope with any parameter values with

speed and accuracy. Because of this, in mechanizing the entire computational procedures

for repeated evaluations under different parameter values, the proposed Ehrenfest approach

is much superior to the modified Hull-White trinomial tree approach.

For notational convenience, throughout the paper, we denote a vector by attaching single

underline as x, and a matrix by attaching double underlines as a. Moreover, 1 and 0 mean

vectors whose all elements are 1 and 0, respectively. The vector um means that its element

corresponding to state m is 1 and all other elements are 0. For an N × N matrix a, a

submatrix on G ⊂ {1, ..., N} for rows and on B ⊂ {1, ..., N} for columns is denoted by

a
GB

= [aij ]i∈G,j∈B.

1 Convergence of Ehrenfest Process to O-U Process

and Corresponding State Conversion

We consider a birth-death process {N2V (t) : t ≥ 0} on NV = { 0, 1, ..., 2V } governed by

upward and downward transition rates given respectively by

λm = V − m

2
and µm =

m

2
, m ∈ NV . (1.1)
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This Markov chain is called an Ehrenfest process in continuous time. From Eq.(1.1), one

sees that the local growth rate of the variance is given by

νm := λm + µm = V, m ∈ NV , (1.2)

which is independent of m, and the local velocity is given by

λm − µm = V −m. (1.3)

For the associated stationary chain {NV S(t) : t ≥ 0}, one has

cov [ NV S(t), NV S(t + τ) ] =
V

4
e−τ , (1.4)

and asymptotic normality. The O-U process is characterized by its Markov property, normal

distribution, and exponential covariance function. Because of the properties of the Ehrenfest

process specified in Eqs.(1.1) through (1.4) together with its asymptotic normality, one

expects that a sequence of processes {XV (t) : t ≥ 0}, V = 1, 2, 3, ..., defined by

XV (t) =

√
2

V
N2V (t)−

√
2V (1.5)

converges in law to the O-U process as V →∞. Indeed, this is formally proven in [4].

We note that {XV (t) : t ≥ 0 } has discrete support defined by

r(m) :=

√
2

V
m−

√
2V , m = 0, 1, ..., 2V. (1.6)

The correspondence between the states of NV (t) and those of XV (t) is summarized in Table

1.1, where

ηV (x) :=

⎡⎢⎢⎢
√

V

2
x

⎤⎥⎥⎥ . (1.7)

[Table 1.1]

The following two theorems of [4] are relevant to this paper. For the O-U process

{XOU(t) : t ≥ 0 }, its initial state is denoted by XOU(0) = x0.

Theorem 1.1 ([4]) For any x0, x ∈ IR, let m := V + ηV (x0) and n := V + ηV (x). Let

TV (m, n) := inf { t : XV (t) = r(n) |XV (0) = r(m) } and TOU(x0, x) := inf { t : XOU(t) = x|
XOU(0) = x0 }. Then, TV (m, n) converges in law to TOU(x0, x) as V →∞.

Theorem 1.2 ([4]) Let m be as in Theorem 1.1. Let MV (m, τ) := max
0≤t≤τ

{XV (t)|XV (0) = r(m)}
and MOU(x0, τ) := max

0≤t≤τ
{XOU(t) |XOU(0) = x0 }. Then, MV (m, τ) converges in law to

MOU(x0, τ) as V →∞.
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2 Uniformization Procedure of Keilson and First Pas-

sage Times and Historical Maximum of Markov Chains

Let N(t) be a temporally homogeneous Markov chain in continuous time defined on N :=

{ 0, 1, 2, ..., N }, N ≤ ∞. The process is governed by a set of hazard rates { νmn } where νmn

is the transition rate from state m ∈ N to state n ∈ N . Then, the infinitesimal generator

Q of N(t) is given by

Q := −ν
D

+ ν , (2.1)

where

ν := [ νmn ] ; ν
D

:= diag [ν1, ..., νN ] ; νm :=
∑
n∈N

νmn . (2.2)

The transition probability matrix P (t) := [ pmn(t) ], where pmn(t) := P{N(t) = n |N(0) =

m }, satisfies the Kolmogorov’s matrix differential equation given by

d

dt
P (t) = Q P (t). (2.3)

It then follows that

P (t) = e
t Q

. (2.4)

The process is said to be uniformizable if its hazard rates { νmn } are bounded in the

sense that νm ≤ ν for all m ∈ N for some 0 < ν < ∞, see Keilson [3]. For a uniformizable

chain with a constant ν, let a
ν

be a matrix defined by

a
ν

:= I − 1

ν
ν

D
+

1

ν
ν . (2.5)

It is clear that the matrix a
ν

is stochastic, i.e., a
ν
≥ 0, a

ν
1 = 1. From Eqs.(2.1) and (2.5),

one has Q = −ν
(
I − a

ν

)
. Substituting this into Eq.(2.4), it then follows that

P (t) = exp
{
−ν t

(
I − a

ν

) }
=

∞∑
k=0

e−ν t (ν t)k

k!
a k

ν
. (2.6)

It should be noted that P (t) can be computed via Eq.(2.6) independently of ν satisfying

ν ≥ sup
m

νm. Furthermore, since the expression involves only nonnegative numbers, the

computational procedure is very stable, enabling one to deal with a fairly large state space,
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say, in the order of 10,000. In what follows, we describe computational algorithms for

evaluating distributions of first passage times and the historical maximum of the underlying

Markov chain based on Eq.(2.6).

Let G ⊂ N be a set of “G”ood states and define a set of “B”ad states by B := N \ G.

Of interest is the first passage time from a good state m ∈ G to the bad set B defined by

Tm,B := inf { t |N(t) ∈ B, N(0) = m} . (2.7)

For computing the distributions of such first passage times, we introduce the lossy process

N∗(t) obtained from the original process N(t) by making all the states in B absorbing. More

specifically, the transition probability matrix P ∗(t) of the lossy process is given by

P ∗(t) :=

(
P

GG
(t) P

GB
(t)

O I

)
. (2.8)

It is clear that the first passage time Tm,B is greater than τ if and only if N(t) does not

reach B during the period [0, τ ] starting with N(0) = m ∈ G. From the definition of the

lossy process, the latter probability can be expressed as

P {N(t) ∈ G for all t ∈ [0, τ ] |N(0) = m ∈ G } = P {N∗(τ) ∈ G |N∗(0) = m ∈ G } .(2.9)

Consequently, the survival function of the first passage time TmB for m ∈ G is given by

Sm,B(τ) := P {Tm,B > τ } = P {N∗(τ) ∈ G |N∗(0) = m ∈ G } = u�
mP

GG
(τ)1, (2.10)

and the distribution function Sm,B(t) by

Sm,B(t) := 1− Sm,B(t). (2.11)

Applying Eqs.(2.6) and (2.8), one can see that

P
GG

(t) =
∞∑

k=0

e−ν t (ν t)k

k!
a k

ν:GG
. (2.12)

From Eqs.(2.10) and (2.12), it then follows that

Sm,B(t) =
∞∑

k=0

e−ν t (ν t)k

k!
u�

ma k
ν:GG

1. (2.13)

Hence, Sm,B(t) and Sm,B(t) can be readily computed via Eq.(2.13) through repeated vector-

matrix multiplications.
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When the underlying Markov chain N(t) is a birth-death process, all the states are readily

ordered and the historical maximum process may be of interest. Let upward and downward

transition rates be defined by

νmn =

⎧⎪⎨⎪⎩
λm if n = m + 1, m ≥ 0
µm if n = m− 1, m ≥ 1
0 otherwise

. (2.14)

Let M(m, τ) be the historical maximum of the birth-death process N(t) in the time interval

[0, τ ] given that N(0) = m, i.e.,

M(m, τ) := max
0≤t≤τ

{N(t) |N(0) = m } . (2.15)

From the dual relationship between the first passage time and the historical maximum, one

sees that

Fm,τ (n) := P {M(m, τ) ≤ n} = P {Tm,n+1 > τ} = Sm,n+1(τ). (2.16)

Consequently, the distribution function of the historical maximum is given by

Fm,τ (n) =

{
0 if n < m
Sm,n+1(τ) if n ≥ m

, (2.17)

where Sm,n+1(τ) is the survival function of the first passage time from m to n + 1, which is

actually the first passage time from m to B = {n + 1, n + 2, ..., N} in Eq.(2.10).

3 O-U Process with One Absorbing Boundary

In this section, by using the convergence results and the uniformization procedure reviewed

in the preceding sections, a numerical algorithm is given for evaluating the survival (or

equivalently, distribution) function of the first passage times of the modified O-U process with

one absorbing boundary. While the uniformization procedure based on Eq.(2.13) involves

repeated vector-matrix multiplications, the algorithm developed in this section requires only

vector computations since the Ehrenfest process defined in Eq.(1.1) is a birth-death process.

Let {N2V (t) : t ≥ 0} be the Ehrenfest process on NV = {0, ..., 2V } governed by the

upward and downward transition rates specified in Eq.(1.1). Since the Ehrenfest process

is defined on a finite state space, it is automatically uniformizable. For m < n, let G =

{0, ..., n− 1} and consider the lossy process N∗
2V (t) obtained from N2V (t) by making all the
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states in B = {n, ...2V } absorbing. Since N2V (t) is a birth-death process and hence is lattice

continuous, it is sufficient to consider N∗
2V (t) only on {0, ..., n} by making state n absorbing,

provided that the process starts with N∗
2V (0) = m ∈ G. Since the good set G is on a lower

side, we denote the corresponding stochastic matrix on {0, ..., n} by a∗
V (L)

. This matrix can

be obtained via the uniformization procedure as specified in Eq.(2.5) and is given by

a∗
V (L)

:=

0 ... n−1 n⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

a
V (L):GG

...

0
λn−1

V

0� 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
(3.1)

where

0 1 2 · · · n−2 n−1

a
V (L):GG

=
1

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ0 0 · · · 0 0
µ1 0 λ1 · · · 0 0

0 µ2 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn−2

0 0 0 · · · µn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

1

2

...
n−2

n−1

.
(3.2)

When G is on an upper side, i.e., G = {n + 1, ..., 2V }, the corresponding stochastic matrix

denoted by a∗
V (U)

is obtained similarly as

a∗
V (U)

:=

n n+1 ... 2V⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0�
µn+1

V

0
... a

V (U):GG

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
(3.3)

where

n+1 n+2 n+3 · · · 2V −1 2V

a
V (U):GG

=
1

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn+1 0 · · · 0 0
µn+2 0 λn+2 · · · 0 0

0 µn+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λ2V −1

0 0 0 · · · µ2V 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n+1

n+2

n+3

...
2V −1

2V

.
(3.4)
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In either case, one sees from Eq.(2.12) that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ∗

V (L):GG
(t) =

∞∑
k=0

e−V t (V t)k

k!

(
a

V (L):GG

)k ∈ IR|G|×|G|

P ∗
V (U):GG

(t) =
∞∑

k=0

e−V t (V t)k

k!

(
a

V (U):GG

)k ∈ IR|G|×|G|
. (3.5)

The survival function Sx0,x(τ) of the first passage time of XOU(t) from x0 to x is then

approximated by the survival function SV :m,n(t) of the first passage time of NV (t) from m

to n where m = ηV (x0) + V and n = ηV (x) + V , which is obtained from Eq.(3.5) as

SV :m,n(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
k=0

e−V t (V t)k

k!
u�

m

(
a

V (L):GG

)k
1, for m ∈ G = {0, 1, ..., n− 1}

∞∑
k=0

e−V t (V t)k

k!
u�

m

(
a

V (U):GG

)k
1, for m ∈ G = {n + 1, ..., 2V }.

(3.6)

For the historical maximum MV (m, τ) := max
0≤t≤τ

{XV (t) |XV (0) = r(m) }, the distribution

function FV :m,τ (n) satisfies the following dual relation as Eq.(2.16):

FV :m,τ(n) = P {MV (m, τ) ≤ r(n)} = P {TV :m,n+1 > τ} = SV :m,n+1(τ). (3.7)

The distribution function FV :m,τ (n) of the historical maximum of the O-U process can be

computed from Eqs.(2.17) and (3.6).

By exploiting the structure of any birth-death process, the computation for Eq.(3.6) can

be simplified. Let b be a matrix of the form

0 1 2 · · · n−2 n−1

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 η0 0 · · · 0 0
ξ1 0 η1 · · · 0 0

0 ξ2 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 ηn−2

0 0 0 · · · ξn−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

1

2

...
n−2

n−1

∈ IRn×n.
(3.8)

For any n-dimensional real vector z := (z0, z1, ..., zn−1)
� ∈ IRn, let z0 and z1 ∈ IRn−1 be

defined by z0 := (z0, z1, ..., zn−2) and z1 := (z1, z2, ..., zn−1), respectively. We also define

an operator ⊗ by w ⊗ y = (w1y1, w2y2, ..., wnyn). Then, for η := (η0, η1, ..., ηn−2), and

ξ := (ξ1, ξ2, ..., ξn−1), one has

z�b = (0, z0 ⊗ η) + (z1 ⊗ ξ, 0) ∈ IRn. (3.9)

We are now in a position to describe an algorithm for computing the survival function

SV :m,n(t) in Eq.(3.6), where a generic symbol a
V :GG

is employed for a
V (L):GG

and a
V (U):GG

.
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Algorithm 3.1 (Survival Function of the First Passage Time of the O-U Process from x0

to x)

Input :

� V : parameter to describe the range [xL, xU] of the O-U process by 2V + 1 points

� n ∈ NV : the absorbing state with B = {n} where n = ηV (x) + V

� G : the good set consisting of all the states on either the lower side or the upper side

of n

� m ∈ G : the state from which N(t) starts where m = ηV (x0) + V

� τ : future time as the argument of the survival function

� εmax, εmin : parameters for stopping criteria for the series expansion of Eq.(3.6)

1) Set sm,n ← 0, k ← 0 and x← um.

2) Set K = max
{
k : e−V τ (V τ)k

k!
< εmax

}
and k0 = min

{
k : e−V τ (V τ)k

k!
> εmin

}
3) LOOP1: x� ← x�a

V :GG
.

4) If k < k0, set k ← k + 1 and go to LOOP1.

5) LOOP2: sm,n ← sm,n + e−V τ (V τ)k

k!
x�1.

6) If k < K, set x� ← x�a
V :GG

, k ← k + 1, and go to LOOP2.

7) Stop.

Remark 3.2: For computational stability in evaluating the sequence
{
e−V τ (V τ)k

k!

}
k=1,2,...

,

we used the following recurrence formula of b(V, k, τ) := ln e−V τ (V τ)k

k!
:

b(V, k, τ) = b(V, k − 1, τ) + ln
V τ

k
.

Figure 3.1(a) shows the survival function of the first passage time TV (m, n) of XV (t) from

m = ηV (0) + V = V to n = ηV (1) + V for V = 200. A sequence of such survival functions

converges in law to that of the first passage time TOU(0, 1) of XOU(t) from 0 to 1 as V →
∞. In Figure 3.1(b), this convergence is demonstrated by plotting

∥∥∥SV :m,n − S800:m,n

∥∥∥∞ =

sup
{∣∣∣SV :m,n(τ)− S800:m,n(τ)

∣∣∣ ∣∣∣ τ ∈ [0, 10]
}

from V = 200 to V = 800 with step size of 50,
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and the supremum is taken with step size of ∆t = 0.1. One observes that almost 4-digit

accuracy is attained with speed at V = 800. The convergence is not monotone because the

relative location of x = 1 within a discretized interval of the width ∆x =
√

2
V

does not

change monotonically as V increases.

[Figure 3.1]

To examine the convergence behavior from a different angle, the median value of the

first passage time is computed as a function of V . Formally, this is defined as τ ∗(x0, x) :=

S
−1
V :m,n(0.5), where m = ηV (x0) + V and n = ηV (x) + V . We call τ ∗(x0, x) the median time.

Table 3.1 shows the computed median time τ ∗(x0, x) of the approximating process XV (t)

from x0 to a boundary point x for x0 = 0, 0.5 and x = 1, 2. Only the results for V satisfying

x0 =
√

2
V

ηV (x0) are shown. From this table, we see that the median time can be computed

with 3-digit accuracy.

[Table 3.1]

We next turn our attention to the historical maximum of XV (t), which approximates

that of XOU(t). Figure 3.2(a) displays the convergence of the distribution functions of the

historical maximum of the process with x0 = 0 by varying V from 200 to 800. The enlarged

view is provided in Figure 3.2(b). One sees that the speed of convergence is slower for the

historical maximum than the first passage time.

[Figure 3.2]

Table 3.2 shows the median point x∗(x0, τ) := F−1
x0,τ (0.5) of the historical maximum distri-

bution until time τ when starting from a given point x0 for x0 = 0, 0.5 and τ = 1, 10. From

this table, we see that the median point can be computed with 4-digit accuracy.

[Table 3.2]

4 O-U Process with Two Absorbing Boundaries

In this section, modified O-U processes with two absorbing boundaries are considered. Let

x1 and x2 be the down and the upper boundaries respectively and define Sx0,(x1,x2)(t) =

P
{
Tx0,(x1,x2) > t

}
where Tx0,(x1,x2) is the first passage time of the modified O-U process

from x0 ∈ (x1, x2) to either x1 or x2. The corresponding approximation SV :m,(n1,n2)(t) with

13



m = ηV (x0)+V , n1 = ηV (x1)+V and n2 = ηV (x2)+V can be evaluated via the uniformization

procedure as for the case of one absorbing boundary. The stochastic matrix a∗
V

of interest

becomes

a∗
V

:=

n1 n1+1 .... n2−1 n2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0� 0
µn1+1

V
0

0 0
... a

V :GG

...
0 0

0
λn2−1

V

0 0� 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.1)

where

n1+1 n1+2 n1+3 · · · n2−2 n2−1

a
V :GG

=
1

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn1+1 0 · · · 0 0
µn1+2 0 λn1+2 · · · 0 0

0 µn1+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn2−2

0 0 0 · · · µn2−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1+1

n1+2

n1+3

...
n2−2

n2−1

.
(4.2)

From (2.13), it then follows that

SV :m,(n1,n2)(τ) =
∞∑

k=0

e−V τ (V τ)k

k!
u�

m

(
a

V :GG

)k
1, for m ∈ G = {n1+1, ..., n2−1}.(4.3)

For the historical maximum M+
V (m, τ) := max

0≤t≤τ
{ |XV (t)| |XV (0) = r(m) }, the distribu-

tion function F+
V :m,τ(n1, n2) satisfies the following dual relation as before:

F+
V :m,τ(n1, n2) = P { r(n1) ≤MV (m, τ) ≤ r(n2) }

= P
{
Tm,(n1−1,n2+1) > τ

}
(4.4)

= SV :m,(n1−1,n2+1)(τ),

where n2 = 2V − n1 ≥ V . Consequently, corresponding to Eq.(2.16), it follows that

F+
V :m,τ (n1, n2) =

⎧⎪⎨⎪⎩
SV :m,(n1,n2)(τ) for m ∈ {n1 + 1, ..., n2 − 1}

0 for m ∈ {0, ..., n1 − 1} or m ∈ {n2 + 1, ..., 2V }
1 for m = n1 or n2

. (4.5)

Both SV :m,(n1,n2)(τ) and F+
V :m,τ (n1, n2) can be readily computed by an algorithm similar

to Algorithm 3.1. Because of this similarity, the description of the algorithm is omitted here.
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It should be noted that the first passage time of the absolute value process |XOU(t)| is a

special case with x1 = −x and x2 = x for x > 0. Let T+
OU(x0, x) be the first passage time

of |XOU(t)| defined by T+
OU(x0, x) := inf { t : |XOU(t)| = x |XOU(0) = x0 } for x ≥ 0. The

corresponding survival function is denoted by S
+
OU:x0,x(τ) := P

{
T+

OU(x0, x) > τ
}
. Figure

4.1(a) shows S
+
OU:x0,x(τ) with V = 200 for x0 = 0 and x = 1, and Figure 4.1(b) demonstrates

the speed of convergence of such survival functions as V varies from 200 to 800 with step

size of 50. Almost 4-digit accuracy is attained with speed at V = 800. As for Figure 3.1(b),

the convergence is not monotone.

[Figure 4.1]

Corresponding to Table 3.1, the median times of |XV (t)| are exhibited in Table 4.1 for

x0 = 0, x1 = −1,−2 and x2 = 1, 2. One observes that the median time can be computed

with 3-digit accuracy.

[Table 4.1]

Figure 4.2(a) shows the distribution functions of the historical maximum of the absolute

value process for V from 200 to 800 with step size of 50. These graphs are enlarged in Figure

4.2(b) so as to see the convergence speed better. Table 4.2 shows the median value of the

historical maximum of the absolute value process with 3-digit accuracy.

[Figure 4.2]

[Table 4.2]

5 O-U Process with Two Replacement and Reflection

Boundaries

In contrast with absorbing boundaries discussed in the previous two sections, a replacement

boundary moves the process to a state in G according to a certain probability law as soon as

the process reaches B. The purpose of this section is to establish a numerical algorithm to

capture the dynamic behavior of modified O-U processes with such replacement boundaries.

The relationship between a modified O-U process with one replacement boundary and that

with two replacement boundaries is similar to the relationship for absorbing boundaries.

Because of this, only the cases of two replacement boundaries are discussed here.
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We say that {XRP
OU(t) : t ≥ 0} has two replacement boundaries at xL and xU with

replacement probability density functions rL(x) and rU(x) respectively if an instantaneous

replacement to state x ∈ (xL, xU) occurs according to rL(x) or rU(x) as soon as the process

reaches xL or xU, respectively. Figure 5.1(a) illustrates the movement of a modified O-U

process with two replacement boundaries. The movement of the approximating process

{XRP
V (t) : t ≥ 0} is depicted in Figure 5.1(b), where the replacement probability vectors rL

and rU are employed instead of rL(x) and rU(x).

[Figure 5.1]

It should be noted that replacements for XRP
V (t) occur as soon as the process reaches

either r(n1) or r(n2) starting from r(m) where m = ηV (x0) + V , n1 := ηV (xL) + V , and

n2 := ηV (xU) + V . As in Eq.(1.5), the relationship between XRP
V (t) and the associated

Ehrenfest process NRP
2V (t) is given by

XRP
V (t) =

√
2

V
NRP

2V (t)−
√

2V . (5.1)

It can be readily seen that NRP
2V (t) has the transition probability matrix PRP(t) given via

the uniformization procedure as

PRP(t) =
∞∑

k=0

e−V t (V t)k

k!
aRP

V

k
, (5.2)

where

aRP
V

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 r�L 0
µn1+1

V
0

0 a
V (n1+1:n2−1)

0

0
λn2−1

V

0 r�U 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (5.3)

and

n1+1 n1+2 n1+3 · · · n2−2 n2−1

a
V (n1+1:n2−1)

=
1

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn1+1 0 · · · 0 0
µn1+2 0 λn1+2 · · · 0 0

0 µn1+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn2−2

0 0 0 · · · µn2−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1+1

n1+2

n1+3

...
n2−2

n2−1

.
(5.4)
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Clearly, aRP
V

is ergodic and so is NRP
2V (t) and XRP

V (t). Hence, of interest is to compute

the time dependent tail state probability defined as

G
RP
V (t, x) := P

{
XRP

V (t) > x = r(n)
}

= P
{
NRP

2V (t) > n
}

=
n2∑

k=n+1

pRP
mk(t), (5.5)

where pRP
m

(t) :=
(
pRP

mn1
(t), ..., pRP

mn2
(t)
)�

is computed from Eq.(5.2) by pRP
m

(t)
�

= u�
mPRP(t).

As V →∞, G
RP
V (t, x) converges to G

RP
OU(t, x) := P

{
XRP

OU(t) > x = r(n)
}
.

Figure 5.2 shows G
RP
V (t, x) with V = 800, xL = −2, xU = 2, and t = 0.1, 0.2, ..., 0.6, as

well as the ergodic distribution

G
RP
V (∞, x) =

n2∑
k=n+1

eRP
k , (5.6)

where the ergodic vector eRP :=
(
eRP

n1
, ..., eRP

n2

)�
is obtained from Eq.(5.3) by solving eRP� =

eRP�aRP
V

with eRP�1 = 1. The two replacement probability vectors are taken to be a binomial

distribution rLk = rUk =
(

n
k

)
0.5k 0.5n−k, k = 0, 1, ..., n = n2 − n1 − 1. One can see that

G
RP
V (t, x) converges to the ergodic distribution G

RP
V (∞, x) as t increases.

[Figure 5.2]

A modified O-U process with two reflection boundaries at xL and xU, denoted by {XRF
OU(t) :

t ≥ 0}, is a special case of {XRP
OU(t) : t ≥ 0} with two replacement boundaries at xL and xU.

More specifically, the approximating process {NRF
V (t) : t ≥ 0} has the transition probability

matrix PRP(t), which is obtained as

PRF(t) =
∞∑

k=0

e−V t (V t)k

k!
aRF

V

k
, (5.7)

where

aRF
V

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 r�L 0
µn1+1

V
0

0 a
V (n1+1:n2−1)

0

0
λn2−1

V

0 r�U 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (5.8)

with rL = (1, 0, ..., 0)�, rU = (0, ..., 0, 1)�, and a
V (n1+1:n2−1)

given by Eq.(5.4). Figure 5.3(a)

illustrates the movement of XRF
OU(t) and the movement of the approximating process XRF

V (t)

is depicted in Figure 5.3(b).

[Figure 5.3]
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Similarly to Eqs.(5.5) and (5.6), one has

G
RF
V (t, x) := P

{
XRF

V (t) > x = r(n)
}

= P
{
NRF

2V (t) > n
}

=
n2∑

k=n+1

pRF
mk(t), (5.9)

and

G
RF
V (∞, x) =

n2∑
k=n+1

eRF
k , (5.10)

where pRF
m

(t) :=
(
pRF

mn1
(t), ..., pRF

mn2
(t)
)�

and eRF :=
(
eRF

n1
, ..., eRF

n2

)�
are computed from pRF

m
(t)

�
=

u�
mPRF(t) and eRF� = eRF�aRF

V
with eRF�1 = 1, respectively. As before, G

RF
V (t, x) converges

to G
RF
OU(t, x) := P

{
XRF

OU(t) > x = r(n)
}

as V →∞.

Figure 5.4 shows G
RF
V (t, x) and G

RF
V (∞, x) with V = 800, xL = −2, xU = 2, and t =

0.1, 0.2, ..., 1.0. One can see that G
RF
V (t, x) converges to the ergodic distribution G

RF
V (∞, x)

as t increases.

[Figure 5.4]

6 Evaluation of Prices of Up-and-Out Call Options

Barrier options are path-dependent options with payoff dependent on the realized path of

the underlying asset value and its prespecified level(s). Normally, an action promised in the

contract is taken if the asset value becomes too high or too low, see e.g. [6]. In this section,

we consider an up-and-out call option maturing at time τM with strike price KS written on a

discount bond of maturity at time T . As discussed in Section 0, with X̂OU(0) = x̂0, its price

πKO(τM|x̂0, T ) is given by (0.6). Our purpose here is to develop computational procedures

for evaluating this price based on the results of the previous sections.

From (0.4) and the proposed Ehrenfest approximation, one sees that

X̂OU(t) ≈ X̃V (t) + θ(t), (6.1)

where ⎧⎨⎩ X̃V (t) = σ√
αV

Ñ2V (t)− σ
√

V
α
,

θ(t) = φ
α
(1− e−αt) + X̂OU(0)e−αt

(6.2)

with Ñ2V (t) := N2V (αt). For T = K∆t and 0 ≤ k ≤ K, let D(k, m|K) be the discount bond

price at time τ = k ∆t at a state corresponding to state m ∈ NV of the underlying Ehrenfest
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process. Starting with D(K, m|K) = 1 for all m ∈ NV , these values can be computed via

the following backward recursive formula:

D(k, m|K) = e−r(k,m)∆t
∑

n∈NV

p̃2V :mn(∆t)D(k + 1, n|K), (6.3)

where P̃
2V

(∆t) = [p̃2V :mn(∆t)] is the transition probability matrix of {Ñ2V (t) : t ≥ 0} with

time duration of ∆t, and

r(k, m) = x̃V (m) + θ(k∆t) (6.4)

with X̃OU(k∆t) = x̃V (m).

The barrier condition X̂OU(t) ≤ rB can be written as

X̃V (t) ≤ rB − θ(t), 0 ≤ t ≤ τM. (6.5)

By the state conversion between {X̃V (t) : t ≥ 0} and {Ñ2V (t) : t ≥ 0} via (6.2), the condition

(6.5) can be rewritten as

Ñ2V (t) ≤ nB(t); nB(t) = η̃V (rB − θ(t)) + V, 0 ≤ t ≤ τM, (6.6)

where η̃V (x) =
⌈√

αV
σ

x
⌉
. For notational convenience, we denote the set of states satisfying

(6.6) by

G(t) := {m : 0 ≤ m ≤ nB(t)} , 0 ≤ t ≤ τM. (6.7)

In order to evaluate the joint probability of Ñ2V (t) at state m ∈ G(t) and Ñ2V (t′) ∈ G(t′)

for all t′ ∈ [0, t], we adopt the one absorbing boundary approach of Section 3 with discretized

time axis in the following manner. Given G(k∆t), one can construct a lossy process by

making the state nB(t) + 1 absorbing. Using (3.1) and (2.6), the transition probability

matrix P ∗(∆t) of this lossy process with time duration of ∆t can be obtained. The desired

joint probability at time t = k∆t, starting at a state Ñ2V (0) = n0 ∈ G(0), can then be given

by

k∏
j=1

P ∗
G((j−1)∆t)G(j∆t)

(∆t). (6.8)
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It should be noted that the matrix P ∗(∆t) has to be computed for each t = k∆t because of

the moving boundary nB(t), which can be dealt with by connecting submatrices of variable

size specified by G(j∆t).

For the option under consideration with maturity at τM = M∆t, let πKO(k, m|M) be the

option price at time τ = k∆t at state m ∈ G(τ). One then sees from (0.6) that the desired

price πKO(τM|x̂0, T ) can be expressed as

πKO(τM|x̂0, T ) ≈ πKO(0, n0|M), (6.9)

where Ñ2V (0) = n0. The payoff function hc(D) at time τM = M∆t and state m ∈ G(τM) is

given by

hc(D(M, m|K)) = [D(M, m|K)−KS]
+, (6.10)

with KS as in (0.8). Then the price of the up-and-out call option at node (k, m) with

m ∈ G(k∆t) can be evaluated by the following backward scheme:

πKO(k, m|M) = e−r(k,m)∆t
∑

n∈G((k+1)∆t)

p∗2V :mn(∆t)πKO(k + 1, n|M), (6.11)

starting with πKO(M, m|M) = hc(D(M, m|K)), where r(k, m) is as given in (6.4). The

desired price πKO(τM|x̂0, T ) can then be obtained from (6.9) by repeating (6.11) until k = 0

and m = n0.

The above discussion is now summarized below. It should be noted that the time axis

should be discretized satisfying T = K∆t and τM = M∆t.

Algorithm 6.1 (Up-And-Out Call Option Pricing)

Input :

� V : size of the state space of {Ñ2V (t) : t ≥ 0}

� T : maturity time of the discount bond

� τM : maturity time of the option

� ∆t : discretized time interval satisfying T = K∆t and τM = M∆t for some positive

integers K and M
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� x̂0 : initial interest rate

� rB : prespecified upper limit of the interest rate

� rS : prespecified rate which determines the strike price of the option

� α : reversion factor

� σ : volatility factor

� φ : mean reversion level

1) Determine G(M∆t) and compute πKO(M, m|M) = [D(M, m|K) −KS]
+ for all m ∈

G(M∆t), where KS = e−rS(T−τM).

2) Set k = M − 1.

3) LOOP: Evaluate P ∗(∆t) = [p∗2V :mn(∆t)] of size (nB(k∆t) + 2)× (nB(k∆t) + 2).

4) Find G(k∆t) and compute

πKO(k, m|M) = e−r(k,m)∆t
∑

n∈G((k+1)∆t)

p∗2V :mn(∆t)πKO(k + 1, n|M)

for all m ∈ G(k∆t).

5) If k = 0, stop. Otherwise set k = k − 1 and goto LOOP.

For comparison purpose, the Hull-White trinomial tree approach is modified to deal with

the same up-and-out call option discussed above. We note that, for the Hull-White trinomial

tree approach, the maximum positive integer mk corresponding to the highest node at time

k∆t should satisfy⌈
3−√6

3α∆t

⌉
≤ mk ≤

⌊ √
6

3α∆t

⌋
, (6.12)

where �a� denotes the minimum integer which is greater than or equal to a, and 
a� the

maximum integer which is smaller than or equal to a. Let ml =
⌈

3−√
6

3α∆t

⌉
. For certain low

values of rB’s, when ∆t is fixed, it is possible that rB− θ(k∆t) < ml∆x̃ where ∆x̃ = σ
√

3∆t

(see Hull [2]). If this happened, the trinomial tree can not be constructed. In order to see

this point, we consider the following examples with φ = 0.05, α = 0.2, σ = 0.01, x̂0 = 0.05,
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T = 5, τM = 4, rS = 0.2 and rB = 0.25. In Tables 6.1(a) and (b) and Figures 6.1(a) and (b),

“Ehrenfest” or “Ehrenfest approach”indicates that the results are calculated by the Ehrenfest

approach, and “HW tree” or “HW trinomial tree”by the Hull-White trinomial tree approach.

For 50 ≤M ≤ 120, the relative errors of the price values computed by the two approaches are

bounded by 0.2%. However, it is found that the trinomial tree approach cannot be employed

for M > 122. Indeed, when choosing M = 123, rB − θ(M∆t) = 0.0905 < ml∆x̃ = 0.0906

and the Hull-White trinomial tree approach collapses. The Ehrenfest approach does not

suffer from this limitation, as demonstrated in Table (6.1)(b) and Figure 6.1(b) where the

price values between M = 120 and 250 with the same parameters are exhibited.

[Table 6.1(a)]

[Table 6.1(b)]

[Figure 6.1(a)] [Figure 6.1(b)]
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Table 1.1: State Conversions

State Conversion

Process x ∈ IR→ m ∈ N m ∈ N → x ∈ IR State Space

NV (t) ηV (x) + V m N = {0, 1, ..., 2V }
XV (t)

√
2
V

ηV (x) r(m)
{
−√2V , ...,

√
2V

}

Table 3.1: Median Time of First Passage Time of XOU (∆t = 0.1)

V ∆x =
√

2
V

τ ∗(0, 1) τ ∗(0, 2) τ ∗(0.5, 1) τ ∗(0.5, 2)

200 0.1 1.18772 7.24733 0.38715 6.38354

800 0.05 1.18912 7.25101 0.38748 6.38650

3,200 0.025 1.18947 7.25192 0.38757 6.38723

5,000 0.02 1.18951 7.25203 0.37882 6.38732

20,000 0.01 1.18956 7.25218 0.37889 6.38737

Table 3.2: Median Point of Historical Maximum M(x0, τ) of XOU(t)

V ∆x =
√

2
V

x∗(0, 1) x∗(0, 10) x∗(0.5, 1) x∗(0.5, 10)

200 0.1 0.92412 2.17776 1.24186 2.22067

800 0.05 0.92337 2.17765 1.24095 2.22057

3,200 0.025 0.92315 2.17759 1.24081 2.22052

5,000 0.02 0.92313 2.17758 1.24076 2.22052

20,000 0.01 0.92311 2.17758 1.24076 2.22052
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Table 4.1: Median Time of First Passage Time of |XV (t)|
V ∆x =

√
2
V

τ ∗
0,(−1,1) τ ∗

0,(−2,2) τ ∗
0.5,(−1,1) τ ∗

0.5,(−2,2)

200 0.1 0.44659 3.24198 0.30079 3.11018

800 0.05 0.44721 3.24366 0.30142 3.11172

3,200 0.025 0.44736 3.24408 0.30158 3.11211

5,000 0.02 0.44738 3.24413 0.30160 3.11215

20,000 0.01 0.44740 3.24419 0.30162 3.11218

Table 4.2: Median Point of Historical Maximum of |XV (t)|
V ∆x =

√
2
V

x∗
0,1 x∗

0,10 x∗
0.5,1 x∗

0.5,10

200 0.1 1.38328 2.54814 1.44852 2.55399

800 0.05 1.38239 2.54823 1.44707 2.55409

3,200 0.025 1.38207 2.54837 1.44691 2.55422

5,000 0.02 1.38201 2.54840 1.44690 2.55424

20,000 0.01 1.38201 2.54840 1.44690 2.55424

Table 6.1: Up-and-Out Option Prices via Different Time Steps
(a) M = 50 to 120

M 50 60 70 80 90 100 110 120

Ehrenfest 0.017404 0.017341 0.017287 0.017252 0.017219 0.017196 0.017173 0.017156

HW Tree 0.017373 0.017308 0.017254 0.017218 0.017187 0.017165 0.017145 0.017129

Relative Errors 0.1772% 0.1888% 0.1919% 0.1971% 0.1866% 0.1815% 0.1659% 0.1554%

(b) M = 120 to 250

M 130 150 170 190 210 230 240 250

Ehrenfest 0.017138 0.017110 0.017087 0.017067 0.017050 0.017034 0.017027 0.017020
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Figure 3.1: Survival Function of the First Passage Time of XV (t)
(m = ηV (0) + V = V and n = ηV (1) + V )

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 

H
is
to
ric
al
 M
ax
im
um

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

x 

H
is
to
ric
al
 M
ax
im
um

(a) Overview (b) Enlarged View
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Figure 4.1: Survival Function of the First Passage Time of |XV (t)|
(m = ηV (0) + V = V and n = ηV (1) + V )
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