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Abstract. This paper considers a discrete time optimal stopping problem with a finite planning

horizon. In addition to an offer that may appear randomly, at each point in time over the entire

planning horizon a quitting offer is assumed to be available. By accepting this, a decision maker

can terminate the process. This paper assumes that the probability that an offer will appear if a

search cost is paid is higher than if it is not paid. Thus, decisions must be made as to whether or

not to accept the quitting offer, to accept an appearing offer, and to conduct a search for an offer.

The main purpose of this paper is to clarify the properties of the optimal decision rules. One of

our main findings is that the quitting offer must either be accepted at the starting point of the

process or not be accepted prior to the end of the planning horizon, the deadline.

Keywords and phrases. Optimal stopping problem, dynamic programming, quitting offer.

1 Introduction

In everyday life, we often encounter situations which require us to choose the best from chances

subsequently appearing within a given planning horizon. Examples of these situations include finding

an apartment with the lowest rent, selling an asset at the highest price, accepting a business proposal

with the highest profit potential, and so on. In each of the above situations, at each point in time up

to the end of the planning horizon, the deadline, the decision maker has to decide whether to stop the

search process by accepting a currently available offer or to continue the process. The above problem

is usually called the optimal stopping problem [2] - [7] [11] [12] [15] - [17] where the decision maker is

usually referred to as the searcher.

Since the seminal works by Stigler [19] and McCall [12], over the years many models of the optimal

stopping problem have been proposed and examined. In the majority of these, for example, [1] [3] -

[8] [10]- [12] [15] [16], it is assumed that a search cost must be paid to find an offer. The search cost can

be represented by, for example, the advertising cost paid by businesses to attract more customers. The

adoption of the search cost necessitates the introduction of the search skipping option. This is because

with an excessively large search cost, it may become optimal to skip the search if the time period

remaining up to the deadline is sufficiently long. Although literature on the optimal stopping problem

with search cost is abundant, we found only one article [1] in which the search skipping option is taken

into consideration. In the articles on the optimal stopping problem with search cost such as those cited

above except [1], each search at a point in time is assumed to produce no more than one offer at the

∗Tel: +81-(0)80-5458-9040, E-mail: shan@sk.tsukuba.ac.jp
†Retired from the University of Tsukuba in April 2005.
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next point in time. Contrary to this, Assaf and Levikson [1] study the optimal stopping problem with

an infinite planning horizon where the effect of the search effort (advertising) may last more than one

period, implying that searching may be skipped if the effect of search effort is still effective in producing

offer at the next point in time. In addition to [1], two articles on the dynamic pricing problem [20] and

admission control problem [18], which are related to the optimal stopping problem, also take the search

skipping option into account.

In the conventional models with search cost, it has been implicitly assumed so far that an offer will

definitely appear when the search cost is paid. However, a scenario where an offer may not appear even

if a search cost is invested seems to be more natural from a practical viewpoint. In this scenario, a state

that no offer will appear up to the deadline may become a possibility. This leads to a violation of the

absolute requirement of the optimal stopping problem with finite planning horizon that an offer must

be necessarily accepted up to the deadline. To avoid the occurrence of this violation, in this paper,

we introduce a quitting offer at the deadline, which by accepting, the searcher can quit the process.

This quitting offer is similar to the salvaging offer which is normally assumed to exist at the deadline

in the newsboy problem [9] [13] [14]. The introduction of quitting offer is not needed in [1] because the

planning horizon is assumed to be infinite in their model.

The introduction of a quitting offer only at the deadline is rather restrictive since in reality we often

encounter situations where a quitting offer is also available at any point in time prior to the deadline.

Here, for explanatory convenience in the subsequent discussions, we shall provide the definitions of some

terms which will be referred to throughout this paper. First, let a randomly appearing offer be referred

to as the random offer, and one which is readily available at each point in time over the entire planning

horizon be the quitting offer. Next, the term stopping means the act of terminating the search process

by accepting a randomly appearing offer, and the term quitting is the act of terminating the search

process by accepting the quitting offer. Below let us provide three examples in which the above two

types of offer are available.

1. Consider a short term traveler to a foreign country who has bought a car with a buyback agreement

(quitting offer) from a dealer and he plans to sell it before returning to his home country. At any time

before his departure date, he can sell the car back to the dealer or search for other buyers (random

offer) who may offer a price higher than the one stated in the buyback agreement.

2. Consider a company which plans to divest itself from its wholly-owned trucking subsidiary by the

year end in an attempt to refocus on its core business. Before the year end, the company can close

down this subsidiary by selling the trucks to a salvage dealer (quitting offer) who has agreed to

purchase them at any time or find another firm which may make a buying offer (random offer) for

the subsidiary as a whole.

3. Consider a company which plans to launch a new product after say five years. The company can

invest money to find a new product idea with high profit potential (random offer) or undertake the

readily available product idea created by the previous product development project team (quitting

offer).

Furthermore, it is assumed in [18] and [20] that no offer will appear if the search is skipped. In reality,

however, even if a search is skipped, it is possible that an offer will appear with some probability, and
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this will be normally lower than one if a search is conducted. So far, this possibility has not been

considered in any model proposed on the optimal stopping problem with search cost. Below, let us

illustrate our viewpoint with an example. Consider a seller who has a piece of land for sale. Even if the

seller does not spend any money to advertise the sale except to put up a ‘for sale’ sign on the land, a

buyer who coincidentally passes by and becomes interested in buying may also approach the seller.

Taking the above into consideration, in this paper we propose a model of the optimal stopping

problem with the following four assumptions:

1. A quitting offer is available at every point in time throughout the entire planning horizon;

2. Searching for a random offer can be skipped if the searcher so wishes.

3. If the search is skipped, a random offer may appear with a probability lower than that when the

search is conducted.

4. If the search is conducted, a search cost must be paid. The search cost paid at the beginning of a

period produces no more than one offer at the next point in time, which implies that an offer may

not appear.

In this problem, the searcher has to made decisions as to whether or not to accept the quitting offer, to

accept an appearing offer, and to conduct a search for an offer. The objective of this paper is to clarify

the properties of the optimal decision rules, which consist of the three rules: The optimal quitting rule,

the optimal stopping rule, and the optimal search rule.

Based on our review of the previous research, a model which takes the above four assumptions into

consideration has never been proposed in the literature on the optimal stopping problem. However, we

notice that research on the inventory problem with salvage option [14] possesses a structure which is

related to ours in terms of the introduction of the quitting offers. In [14], Petruzzi and Monahan deal

with a problem of determining when a retailer should terminate the selling season in the primary market

by selling the remaining inventory in a secondary market. Our model differs from theirs in the following

three major respects. Firstly, they assume that it is the searcher who offers a price for the assets on sale

whereas in our model the searcher does not make an offer; he instead weighs the randomly appearing

offer against his reservation value in determining whether or not to accept it. Secondly, they assume

that a single fixed price is offered by the seller throughout the selling period so long as he does not

terminate the selling process while in our model the offer’s value is a random variable. Thirdly, they do

not take the search cost of finding an offer into consideration.

Our major finding is that in the optimal decision rules a quitting offer must either be accepted at

the starting point of the process or not be accepted prior to the deadline. However, it may be accepted

at the deadline. Besides, our model yields the result that there may exist a searching time threshold,

which implies that the searcher should skip the search from the starting point of the process up to this

time threshold. In other words, the time period between the searching time threshold and the deadline

can be called the searching period.

The rest of the paper is organized as follows. Section 2 provides a strict definition of our model.

Section 3 defines several functions and examines their properties, which will be used in the subsequent

analysis. In Section 4 we derive the optimality equations of the model, and in Section 5 we clarify
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the properties of the optimal decision rules. In Section 6 we extend the discussion to the case where

the planning horizon is infinite. In Section 7 we provide some numerical examples that ascertain the

properties of the optimal decision rules. In Section 8 we present the overall conclusions of our research

and suggest some further works.

2 Model

Consider the following discrete-time stochastic decision process where points in time are numbered

backward from the final point in time of the planning horizon, time 0 (the deadline) as 0, 1, · · · and so

on. Accordingly, if time t is a present point in time, the two adjacent times t + 1 and t − 1 are the

previous and next points in time, respectively. Let the time interval between times t and t− 1 be called

the period t. This is small enough that no more than one offer may appear.

It is assumed that the searcher must necessarily accept one of the offers subsequently appearing up

to the deadline. If a fixed cost s ∈ [0,∞) (search cost) is paid at the beginning of a period, an offer can

be found at the next point in time with a probability λ1 ∈ (0, 1] and if the search cost is not paid, an

offer may appear with a probability λ0 ∈ [0, 1) where λ1 > λ0; for convenience let us define λ = λ1− λ0

where 0 < λ ≤ 1. In the discussion that follows, the value w of an offer appearing randomly will be

referred to as a random offer w. Random offers appearing at successive points in time, w, w′, · · · , are

independent identically distributed random variables having a known continuous distribution function

F (w) with a finite expectation µ; let f(w) denote its probability density function, which is truncated

on both sides. More precisely, F (w) and f(w) are defined as follows. For certain given numbers a and

b such that 0 < a < b < ∞

F (w) = 0, w ≤ a, 0 < F (w) < 1, a < w < b, F (w) = 1, b ≤ w, (2.1)

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w, (2.2)

where clearly 0 < a < µ < b.

In addition to the random offer defined above, a fixed quitting offer ρ ∈ (−∞,∞) is assumed to be

also available at each point in time where ρ < 0 implies the disposal cost to discard the unsold asset if

the decision process is an asset selling process. Let us refer to the quitting offer at each point in time

except the deadline as the intervening quitting offer and to the one on the deadline as the terminal

quitting offer. By β ∈ (0, 1] let us denote the discount factor, implying that the monetary value of one

unit a period hence is equivalent to that of β units at the present point in time.

The decision rules of the model consist of the following three rules:

1. Quitting rule prescribing whether or not to quit the process by accepting the quitting offer ρ.

2. Stopping rule prescribing whether or not to stop the process by accepting a random offer w.

3. Search rule prescribing whether or not to search for a random offer at the beginning of every period.

The objective here is to find the optimal decision rules to maximize the total expected present

discounted net profit over the planning horizon, i.e., the expected present discounted revenue from

accepting an offer whether a random or quitting offer minus the total expected present discounted

search cost paid up to a time when the process terminates by accepting an offer.
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3 Preliminaries

This section defines the functions that will be used to describe the optimality equations of the model

in Section 4. The properties of the functions verified in this section will be applied to the analysis of

the model in the sections that follow. For any x let us define the following function

T (x) = E[max{w − x, 0}] (3.1)

where E represents the taking of expectation with respects to w. Then, using the function, let us define:

K0(x) = λ0βT (x)− (1− β)x, (3.2)

K1(x) = λ1βT (x)− (1− β)x− s, (3.3)

L(x) = λβT (x)− s (3.4)

where

L(x) + K0(x) = K1(x) (3.5)

due to the definition of λ = λ1 − λ0. By x
K0

, x
K1

, and x
L

let us denote the solutions of the equations

K0(x) = 0, K1(x) = 0, and L(x) = 0, respectively, if they exist, i.e.,

K0(xK0
) = 0, K1(xK1

) = 0, L(x
L
) = 0. (3.6)

If these equations have multiple solutions, then let us define the minimum of them by x
K0

, x
K1

, and

x
L
, respectively. In addition, for technical reason, if λ0 = 0, let us define

x
K0

= 0. (3.7)

Lemma 3.1 below will be used to examine the properties of the functions K0(x), K1(x), and L(x)

and their solutions x
K0

, x
K1

, and x
L

stated in the two lemmas that follows.

Lemma 3.1

(a) T (x) is continuous and nonincreasing on (−∞,∞).

(b) T (x) is strictly decreasing on (−∞, b].

(c) T (x) = 0 on [b,∞) and T (x) > 0 on (−∞, b).

Proof. See Appendix A.

Lemma 3.2

(a) K1(x) and K0(x) are continuous and strictly decreasing on (−∞,∞) if β < 1.

(b) K1(x) + x and K0(x) + x are nondecreasing on (−∞,∞).

(c) |K1(x) + x−K1(y)− y| ≤ β|x− y| and |K0(x) + x−K0(y)− y| ≤ β|x− y| for any x and y.

(d) Let (1− β)2 + s2 = 0. Then xK1
= b where x < (≥) xK1

⇔ K1(x) > (=) 0 ⇒ K1(x) > (≤) 0.

(e) Let (1 − β)2 + s2 6= 0. Then there uniquely exists x
K1

< b where x < (= (>)) x
K1

⇔ K1(x)

> (= (<)) 0.

(f) Let λ0 > 0.

1 Let β = 1. Then xK0
= b where x < (≥) xK0

⇔ K0(x) > (=) 0 ⇒ K0(x) > (≤) 0.

2 Let β < 1. Then x
K0

uniquely exists with 0 < x
K0

< b where x < (= (>)) x
K0

⇔ K0(x)

> (= (<)) 0.
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(g) If s > 0, there uniquely exists x
L

< b where x < (= (>)) x
L
⇔ L(x) > (= (<)) 0.

Proof. See Appendix B.

Next, let us examine the relationship among x
K0

, x
K1

, and x
L
. It will be seen later on that this

relationship plays a key role in determining whether or not to conduct the search for a random offer.

Lemma 3.3 Let s > 0. Then:

(a) Let λ0 = 0. Then:

1 If β = 1, then x
K1

= x
L
.

2 If β < 1, then x
K0

< (= (>)) x
K1

⇔ x
K1

< (= (>)) x
L
.

(b) Let λ0 > 0. Then:

1 If β = 1, then x
K1

> x
L
.

2 If β < 1, then x
K0

< (= (>)) x
K1

⇔ x
K1

< (= (>)) x
L
.

Proof. See Appendix C.

From Lemma 3.3 we immediately obtain the following corollary.

Corollary 3.1 Let s > 0. Then:

(a) Let β = 1. If λ0 = 0, then x
K1

= x
L
, or else x

K1
> x

L
.

(b) Let β < 1. Then λβT (xK0
) > (= (<)) s ⇔ xK1

< (= (>)) xL .

Proof. (a) Immediate from Lemmas 3.3(a1,b1).

(b) Since K0(xK0
) = 0 by definition, we have L(x

K0
) = K1(xK0

) from Eq. (3.5). Thus from Lem-

mas 3.3(a2,b2), 3.2(e) and Eq. (3.4) we see that xK1
< (= (>)) xL ⇔ xK0

< (= (>)) xK1
⇔K1(xK0

) > (= (<)) 0

⇔ L(xK0
) > (= (<)) 0 ⇔ λβT (xK0

) > (= (<)) s.

4 Optimality Equations

In this section, we provide the optimality equation that satisfies the objective function of the

model. Let ut and rt(w) be the maximum total expected present discounted profits, respectively, with

no random offer and with a random offer w. Then we have

u0 = ρ, (4.1)

ut = max{ρ, Ut}, t ≥ 1, (4.2)

r0(w) = max{w, ρ}, (4.3)

rt(w) = max{w, ρ, Ut} = max{w, ut}, t ≥ 1 (4.4)

where Ut is the maximum total expected present discounted profits from rejecting both random offer w

and intervening quitting offer ρ, expressed as follows.

Ut = max





K : β(λ0 E[rt−1(ξ)] + (1− λ0)ut−1),

C : β(λ1 E[rt−1(ξ)] + (1− λ1)ut−1)− s



 , t ≥ 1, (4.5)
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where ξ is the random offer appears at time t− 1, the next point in time and where the symbols K and

C represent, respectively, the decision to, respectively, skip and conduct the search for a random offer‡.

Thus the first and second terms inside the braces of the right-hand side of Eq. (4.5) are the maximum

total expected present discounted profits from, respectively, skipping and conducting the search for a

random offer. Now, for convenience, let

U0 = ρ. (4.6)

Then Eq. (4.2) holds for t ≥ 0 instead of t ≥ 1. Thus

ut = max{ρ, Ut}, t ≥ 0, with u0 = ρ. (4.7)

rt(w) = max{w, ut}, t ≥ 0. (4.8)

Since E[rt−1(ξ)] = E[max{ξ, ut−1}] = E[max{ξ − ut−1, 0}] + ut−1 = T (ut−1) + ut−1 for t ≥ 1, noting

Eqs. (3.2) and (3.3), we can rewrite Eq. (4.5) as follows.

Ut = max

{
K : λ0βT (ut−1) + βut−1,

C : λ1βT (ut−1) + βut−1 − s

}

= max{K0(ut−1) + ut−1,K1(ut−1) + ut−1} (4.9)

= max{K0(ut−1), K1(ut−1)}+ ut−1, t ≥ 1. (4.10)

Since λ = λ1 − λ0, from Eq. (3.4) we have

K1(ut−1) + ut−1 −K0(ut−1)− ut−1 = λβT (ut−1)− s = L(ut−1), t ≥ 1. (4.11)

Accordingly, Eq. (4.9) can be rewritten as

Ut = max{0, L(ut−1)}+ K0(ut−1) + ut−1, t ≥ 1. (4.12)

From all the above the optimal decision rule of the model can be prescribed as follows.

Optimal Decision Rule 4.1

(a) Let t = 0.

1 Suppose no random offer exists. Then quit the process by accepting the terminal quitting offer ρ

(see Eq. (4.1)).

2 Suppose a random offer w appears. Then, if w ≥ ρ, accept the offer w, or else accept the terminal

quitting offer ρ (see Eq. (4.3)).

(b) Let t ≥ 1.

1 Suppose no random offer exists.

i. If ρ ≥ (≤) Ut, quit the process by accepting the intervening quitting offer ρ (continue the

search process) (see Eq. (4.2)).

ii. Assume that the process continues. If L(ut) ≥ (≤) 0, conduct the search for a random offer

by paying the search cost s (skip the search for a random offer) (see Eq. (4.12)), and then the

process proceeds to time t− 1; go to (a) if t = 1 and to (b) if t ≥ 2.

2 Suppose a random offer w appears.
‡We use K instead of S as a symbol representing “skip the search” because the symbol S is normally used to represent

the decision of “stopping the process” in conventional optimal stopping problems.
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i. If w ≥ ut, accept the random offer w, or else do not (i.e., ut becomes the searcher’s optimal

reservation value) (see Eq. (4.8)).

ii. If the searcher rejects the random offer w, either quit the process by accepting the intervening

quitting offer ρ or continue the process (see Eq. (4.4)). Then the decision rule is the same as

in (b1i).

iii. Assume that the process continues. Then the decision rule is the same as in (b1ii).

5 Analysis

This section is devoted to examining the properties of the optimal quitting rule and optimal search

rule. The optimal stopping rule is prescribed by comparing the random offer w against ut for t ≥ 0 as

stated in Optimal Decision Rule 4.1(a2,b2i).

5.1 Optimal quitting rule

This subsection examines the searcher’s optimal quitting rule where he has to decide at each point in

time whether to accept the quitting offer or continue the process. Here, let u = limt→∞ ut if it exists.

Lemma 5.1

(a) ut is nondecreasing in t ≥ 0.

(b) Let ρ ≥ max{xK0
, xK1

}. Then Ut ≤ ρ and ut = ρ for t ≥ 0.

(c) Let ρ < max{x
K0

, x
K1
}. Then:

1 ρ ≤ Ut = ut ≤ b for t ≥ 0 where

ut = max{K0(ut−1) + ut−1,K1(ut−1) + ut−1}, (5.1)

= max{K0(ut−1), K1(ut−1)}+ ut−1, (5.2)

= max{0, L(ut−1)}+ K0(ut−1) + ut−1, t ≥ 1. (5.3)

2 ut converges to a finite u as t →∞ where max{K0(u),K1(u)} = 0.

Proof. Note that U1 − ρ = max{K0(ρ), K1(ρ)} · · · (1∗) from Eqs. (4.10) and (4.7), and that if λ0 = 0,

then xK0
= 0 by definition (Eq. (3.7)) and K0(x) = −(1− β)x · · · (2∗) from Eq. (3.2).

(a) From Eq. (4.7) with t = 1 we have u1 ≥ ρ = u0. Let ut−1 ≥ ut−2. Then from Eq. (4.9)

and Lemma 3.2(b) we obtain Ut ≥ max{K0(ut−2) + ut−2, K1(ut−2) + ut−2} = Ut−1, so that ut ≥
max{ρ, Ut−1} = ut−1 due to Eq. (4.7). Therefore, by induction we get ut ≥ ut−1 for t ≥ 1, implying

that ut is nondecreasing in t ≥ 0.

(b) Let ρ ≥ max{xK0
, xK1

}. Then ρ ≥ xK0
and ρ ≥ xK1

. If λ0 = 0, then ρ ≥ xK0
= 0, hence

K0(ρ) = −(1− β)ρ ≤ 0 from (2∗), and if λ0 > 0, then K0(ρ) ≤ 0 from Lemma 3.2(f). Hence K0(ρ) ≤ 0

whether λ0 = 0 or λ0 > 0. Since ρ ≥ x
K1

, we have K1(ρ) ≤ 0 from Lemma 3.2(d,e). Thus U1 − ρ ≤ 0,

i.e., U1 ≤ ρ from (1∗), so u1 = ρ due to Eq. (4.7). Suppose Ut−1 ≤ ρ. Then since ut−1 = ρ from

Eq. (4.7), we have Ut = max{K0(ρ) + ρ,K1(ρ) + ρ} = U1 ≤ ρ from Eq. (4.9), so ut = ρ due to Eq. (4.7)

for t ≥ 1. Accordingly, by induction it follows that Ut ≤ ρ = ut for t ≥ 1. From this result and the fact

that U0 = ρ and u0 = ρ due to, respectively, Eqs. (4.6) and (4.7) we see that the assertion holds.

(c) Let ρ < max{x
K0

, x
K1
}.
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(c1) Note that u0 = U0 = ρ due to Eqs. (4.6) and (4.7), so u0 = U0 ≥ ρ. Let x
K1

> x
K0

. Then

since ρ < x
K1

, we have K1(ρ) > 0 Lemma 3.2(d,e), so K1(ρ) ≥ 0. Hence U1 − ρ ≥ K1(ρ) ≥ 0 from

(1∗), so U1 ≥ ρ. Let x
K1
≤ x

K0
. Then ρ < x

K0
, hence it follows that λ0 = 0 leads to ρ < x

K0
= 0 by

the definition of xK0
, so K0(ρ) = −(1 − β)ρ ≥ 0 from (2∗) and that λ0 > 0 leads to K0(ρ) > 0 from

Lemma 3.2(f), hence K0(ρ) ≥ 0. Thus U1 − ρ ≥ K0(ρ) ≥ 0 from (1∗), so U1 ≥ ρ. Accordingly, we have

U1 ≥ ρ whether x
K1

> x
K0

or x
K1

≤ x
K0

. Assume Ut−1 ≥ ρ, hence ut−1 = Ut−1 due to Eq. (4.7), so

ut−1 ≥ ρ. Then from Eq. (4.9) and Lemma 3.2(b) we get Ut ≥ max{K0(ρ) + ρ,K1(ρ) + ρ} = U1 ≥ ρ,

so ut = Ut for t ≥ 1 due to Eq. (4.7). Hence, by induction it follows that ut = Ut ≥ ρ · · · (3∗) for

t ≥ 0. Therefore, from Eq. (4.9), (4.10), and (4.12) we have, respectively, Eqs. (5.1), (5.2), and (5.3).

Here note that if λ0 > 0, then x
K0

≤ b due to Lemma 3.2(f) and if λ0 = 0, then x
K0

= 0 < b by the

definition of x
K0

, so x
K0

≤ b. Accordingly, x
K0

≤ b whether λ0 > 0 or λ0 = 0. In addition, since

x
K1

≤ b due to Lemma 3.2(d,e), it eventually follows that ρ < max{x
K0

, x
K1
} ≤ b, hence u0 = ρ < b

from Eq. (4.7). Suppose ut−1 ≤ b. Then from Eq. (5.1), Lemma 3.2(b), Eqs. (3.2), (3.3), Lemma 3.1(c),

and the assumption of s ≥ 0 we have

ut ≤ max{K0(b) + b,K1(b) + b}
= max{β(λ0T (b) + b), β(λ1T (b) + b)− s} = max{βb, βb− s} = βb ≤ b.

Accordingly, by induction ut ≤ b for t ≥ 0. Therefore, from (3∗) it follows that ρ ≤ Ut = ut ≤ b for

t ≥ 0.

(c2) Since ut is upper bounded in t ≥ 0 from (c1), it follows from (a) that ut converges to a finite

u as t →∞. Then, noting Eq. (5.1) and Lemma 3.2(c) we have

|ut −max{K0(u) + u, K1(u) + u}|
= |max{K0(ut−1) + ut−1,K1(ut−1) + ut−1} −max{K0(u) + u,K1(u) + u}|
≤ max{|K0(ut−1) + ut−1 −K0(u)− u|, |K1(ut−1) + ut−1 −K1(u)− u|}
≤ max{β|ut−1 − u|, β|ut−1 − u|} = β|ut−1 − u|,

which converges to 0 as t → ∞. Accordingly, ut converges to max{K0(u) + u,K1(u) + u}, hence

u = max{K0(u) + u,K1(u) + u} or equivalently max{K0(u),K1(u)} = 0.

Here we shall discuss the practical implications of Lemma 5.1. Let t ≥ 1. First, the assertion (b)

implies that when ρ is large enough to be greater than or equal to max{xK0
, xK1

}, since Ut ≤ ρ = ut for

t ≥ 0, if no random offer w exists at that time, it is optimal to quit the process by accepting the quitting

offer ρ for t ≥ 1 (Optimal Decision Rule 4.1(b1i)), whereas, if a random offer w appears at the any t ≥ 1,

the searcher must decide to quit the process by accepting either the quitting offer ρ or random offer w

(Optimal Decision Rule 4.1(b2i)). In other words, it follows that the search process starts and ends at

the same time.

On the other hand, the assertion (c) implies that when ρ is small enough to be less than max{x
K0

, x
K1
},

since Ut ≥ ρ for t ≥ 0, it is optimal to continue the process by rejecting the intervening quitting offer for

t ≥ 1 if a random offer does not appears or appears but is rejected (Optimal Decision Rule 4.1(b1i,b2ii)).

Thus from the above result, Eqs. (4.1), and (4.3) we see that the quitting offer is never accepted prior
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to the deadline; however, it may be accepted at the deadline. This implies that the process is reduced

to the one with only the terminal quitting offer. Under this condition, at all points in time except the

deadline, the searcher will make a decision only between accepting a current random offer or continue

the process. Furthermore, since ρ is assumed to be small enough to be less than max{x
K0

, x
K1
}, a

searcher, in order to avoid being forced to accept ρ at the deadline, would be more motivated to accept

the random offer. Consequently, he will tend to lower his optimal reservation value ut as the remaining

time periods up to the deadline t decreases. Therefore, it can be conjectured that ut is nondecreasing

in t. Lemma 5.1(a) affirms this conjecture.

5.2 Optimal search rule

In this subsection, we will discuss the optimal search rule on whether or not to invest a search cost

to find a random offer. From Optimal Decision Rule 4.1(b1ii), we see that the sign of L(ut) determines

whether or not the search should be conducted.

Lemma 5.2 Let ρ < max{x
K0

, x
K1
}.

(a) Let s = 0. Then conduct the search for t ≥ 1.

(b) Let s > 0.

1 For any given t ≥ 1, if ut−1 ≤ (≥) xL , then conduct (skip) the search.

2 Let ρ ≥ x
L
. Then skip the search for t ≥ 1.

3 Let ρ < xL .
i Let λ0 = 0.

1. Let β = 1 or let β < 1 and λβT (x
K0

) ≥ s. Then conduct the search for t ≥ 1.

2. Let β < 1 and λβT (xK0
) < s. Then there exists a t∗ ≥ 1 such that conduct the search if

1 ≤ t ≤ t∗ and skip the search if t∗ < t.

ii Let λ0 > 0.

1. Let β < 1 and λβT (x
K0

) ≥ s. Then conduct the search for t ≥ 1 where ut ≤ x
L

for t ≥ 0.

2. Let β = 1 or let β < 1 and λβT (xK0
) < s. Then there exists a t∗ ≥ 1 such that conduct

the search if 1 ≤ t ≤ t∗ and skip the search if t∗ < t.

Proof. Let ρ < max{xK0
, xK1

}. Then u1 − u0 = max{K0(ρ),K1(ρ)} from Eqs. (5.2) and (4.7).

(a) Let s = 0. Since λ1 > λ0 by assumption and T (ut−1) ≥ 0 for t ≥ 1 due to Lemma 3.1(c),

we have K1(ut−1) + ut−1 ≥ K0(ut−1) + ut−1 for t ≥ 1, hence L(ut−1) ≥ 0 for t ≥ 1 from Eq. (4.11).

Consequently, the assertion holds due to Optimal Decision Rule 4.1(b1ii).

(b) Let s > 0. Then (1− β)2 + s2 6= 0.

(b1) If ut−1 ≤ (≥) x
L
, then L(ut−1) ≥ (≤) 0 from Lemma 3.2(g), hence the assertion holds due to

Optimal Decision Rule 4.1(b1ii).

(b2) Let ρ ≥ xL . Then since u0 = ρ ≥ xL due to Eq. (4.7), we have ut−1 ≥ xL for t ≥ 1 from

Lemma 5.1(a), hence skipping the search for t ≥ 1 is optimal from (b1).

(b3) Let ρ < x
L
. Then u0 = ρ < x

L
· · · (1∗) from Eq. (4.7).

(b3i) Let λ0 = 0. Then x
K0

= 0 by definition (Eq. (3.7)) and K0(x) = −(1− β)x from Eq. (3.2).

(b3i1) Let β = 1. Then x
K1

= x
L

due to Corollary 3.1(a), hence x
K1

≤ x
L
. Let β < 1 and

λβT (x
K0

) ≥ s. Then x
K1

≤ x
L

due to Corollary 3.1(b). Accordingly, whether β = 1 or “β < 1 and
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λβT (x
K0

) ≥ s”, we have x
K1

≤ x
L
, so that K1(xL

) ≤ 0 from Lemma 3.2(e). Suppose ut−1 ≤ x
L
.

Then, since L(ut−1) ≥ 0 due to Lemma 3.2(g), it follows from Eqs. (5.3), (3.5), and Lemma 3.2(b) that

ut = L(ut−1) + K0(ut−1) + ut−1 = K1(ut−1) + ut−1 ≤ K1(xL
) + x

L
≤ x

L
. Accordingly, by induction

ut ≤ xL for t ≥ 0, so that ut−1 ≤ xL for t ≥ 1. Hence, the assertion holds from (b1).

(b3i2) Let β < 1 and λβT (x
K0

) < s. Then x
L

< x
K1

due to Corollary 3.1(b). Furthermore,

from Lemma 5.1(c2) we get max{K0(u), K1(u)} = 0, implying that K1(u) ≤ 0, so u ≥ x
K1

due to

Lemma 3.2(e). From (1∗) and the above we have ρ = u0 < x
L

< x
K1
≤ u. Accordingly, as t →∞, the

ut starts from u0 = ρ < x
L
, continues to increase, crosses through x

L
, and converges to u > x

L
due to

Lemma 5.1(a,c2), it follows that there exists a t∗ ≥ 1 such that ut−1 < x
L

for 1 ≤ t ≤ t∗ and x
L
≤ ut−1

for t∗ < t, implying that conduct the search if 1 ≤ t ≤ t∗ and skip the search if t∗ < t due to (b1).

(b3ii) Let λ0 > 0.

(b3ii1) Let β < 1 and λβT (x
K0

) ≥ s. Then, since x
K1

≤ x
L

due to Corollary 3.1(b), we have

K1(xL) ≤ 0 due to Lemma 3.2(e). Suppose ut−1 ≤ xL . Then in the same way as in the proof of (b3i1)

we have ut ≤ xL for t ≥ 0. Accordingly, the assertion holds for the same reason as in the proof of (b3i1).

(b3ii2) Let β = 1 or let β < 1 and λβT (x
K0

) < s. Then x
K1

> x
L

due to Corollary 3.1(a,b).

Furthermore, since max{K0(u),K1(u)} = 0 from Lemma 5.1(c2), we have K1(u) ≤ 0, so u ≥ x
K1

due

to Lemma 3.2(e). From (1∗) and the above we have ρ = u0 < x
L

< x
K1
≤ u. Accordingly, the assertion

holds for the same reason as in the proof of (b3i2).

Suppose ρ < max{x
K0

, x
K1
} holds. Then the search process is reduced to the one with only the

terminal quitting offer (see Lemma 5.1(c1)). Therefore, intuitively we might expect that if the terminal

quitting offer ρ is sufficiently small or negative, the searcher would conduct the search to find a random

offer w greater than ρ in order to avoid having to accept ρ at the deadline. This is particularly true for

the case of ρ < 0 because accepting a negative terminal quitting offer will incur a cost for the searcher

at the deadline. Now, with reference to Lemma 5.2, we can observe the followings.

1. Let s = 0. Clearly conducting the search for a random offer is optimal since no search cost is

incurred.

2. Let s > 0, implying that a search cost is incurred if a search is conducted.

i. Let ρ ≥ xL . Then it is optimal to skip the search for all t ≥ 1. This result implies that instead of

actively conducting the search, the searcher would wait passively for the random offer to appear.

ii. Let ρ < xL .

1) Let λ0 = 0 and β = 1 or let β < 1 and λβT (xK0
) ≥ s. Then it is optimal to conduct

the search for all t ≥ 1. Note that if λ0 = 0 and β = 1, we have ρ < x
K1

= x
L

from

Corollary 3.1(a), and if β < 1 and λβT (x
K0

) ≥ s, we have ρ < x
K1
≤ x

L
from the fact that

xK1
≤ xL due to Corollary 3.1(b) and that xK0

≤ xK1
due to Lemma 3.3(a2,b2). Thus in

these two cases, we get ρ < xK1
≤ xL . Therefore, this result agrees with the above stated

conjecture since ρ is sufficiently small.

2) Let λ0 > 0 and β = 1 or let β < 1 and λβT (xK0
) < s. Then there exists the searching time

threshold t∗ ≥ 1 such that it is optimal to conduct the search if 1 ≤ t ≤ t∗ and skip the search

if t∗ < t. This implies that the searching period exists. The occurrence of this phenomenon
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is plausible since a search cost s > 0 is incurred for every period if the searcher decides to

conduct the search. Hence in order to save on the search cost, it becomes optimal to skip the

search if the planning horizon is sufficiently long.

In Lemma 5.2 we show that under certain conditions, the searching time threshold t∗ exists. Below,

we shall investigate the monotonicity of t∗ in ρ if it exists.

Lemma 5.3 The searching time threshold t∗ in (b3i2) and (b3ii2) of Lemma 5.2 is nonincreasing in ρ.

Proof. Assume that ρ < ρ′. Then, by u′t let us denote ut for ρ′. First from Eq. (4.7) we have u0−u′0 =

ρ − ρ′ < 0, hence u0 < u′0. Suppose ut−1 ≤ u′t−1. Then from Eq. (5.1) and Lemma 3.2(b) we obtain

ut ≤ max{K0(u′t−1) + u′t−1,K1(u′t−1) + u′t−1} = u′t. Accordingly, by induction we obtain ut ≤ u′t for

t ≥ 0. Hence ut is nondecreasing in ρ for t ≥ 0. Furthermore, since the function L(x) is independent of

ρ (see Eq. (3.4)), it follows that x
L

is also independent of ρ. From the above result and the fact that ut

is nondecreasing in t ≥ 0 due to Lemma 5.1(a) it can be immediately seen that the assertion holds (see

Figure 5.1).

-

6
ut

ρ3 > ρ2 > ρ1

0

xL

t∗(3) t∗(2) t∗(1)

¾ ¾ t

Figure 5.1: ut in t ≥ 0 for three different values of ρ.

In Lemma 5.3 we can successfully verify the monotonicity of the searching time threshold t∗ in ρ

because the functions K0(x), K1(x), and L(x) are independent of ρ. However, since K0(x), K1(x), and

L(x) are dependent on the model’s other parameters s, β, λ0, and λ1, it is very difficult to mathematically

examine the monotonicity of t∗ in these parameters. In Section 7.2 we will numerically investigate the

monotonicities in s, β, λ0, and λ1.

6 Infinite Planning Horizon

Let us now extend the discussion into an infinite planning horizon. First, we need the following corollary

which is obtained directly from Lemma 5.2, Eqs. (5.1), and (4.9).

Corollary 6.1

(a) In (a), (b3i1), and (b3ii1) of Lemma 5.2 we have ut = K1(ut−1) + ut−1 for t ≥ 1 with u0 = ρ.

(b) In (b2) of Lemma 5.2 we have ut = K0(ut−1) + ut−1 for t ≥ 1 with u0 = ρ.
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(c) In (b3i2) and (b3ii2) of Lemma 5.2 we have ut = K1(ut−1) + ut−1 for 1 ≤ t ≤ t∗ and ut =

K0(ut−1) + ut−1 for t∗ < t.

When the planning horizon is sufficiently long, the maximum total expected present discounted profit

can be approximated by the u derived in Lemma 6.1 below.

Lemma 6.1

(a) In (a) of Corollary 6.1, if (1− β)2 + s2 = 0, then u = b, or else u = x
K1

.

(b) Let λ0 > 0. Then u = b for β = 1 and u = x
K0

for β < 1 in (b) and (c) of Corollary 6.1.

(c) Let λ0 = 0. Then u = 0 for β < 1 and u = ρ for β = 1 in (b) of Corollary 6.1 and u = 0 for β < 1

and u = ut∗ for β = 1 in (c) of Corollary 6.1.

Proof. (a) In this case we have K1(u) = 0 · · · (1∗) from Lemma 5.1(c2). Let (1− β)2 + s2 = 0, hence

β = 1 and s = 0. Then λ1T (u) = 0 from (1∗) and Eq. (3.3), so T (u) = 0 due to the fact that λ1 > 0.

Thus from Lemma 3.1(c) we have u ≥ b. Since u ≤ b from Lemma 5.1(c1), we get u = b, hence the

former half of the assertion holds. The latter half is true due to Lemma 3.2(e), Eq. (3.6), and (1∗).

(b) Let λ0 > 0. Then we have K0(u) = 0 · · · (2∗) from Lemma 5.1(c2). Suppose β = 1. Then

λ0T (u) = 0 from (2∗) and Eq. (3.2), so T (u) = 0 due to the fact that λ0 > 0. Thus we obtain u = b

in almost the similar way as in the proof of (a). Suppose β < 1. Then u = xK0
due to Lemma 3.2(f2),

Eq. (3.6), and (2∗).

(c) Let λ0 = 0. Then K0(x) = −(1− β)x · · · (3∗) from Eq. (3.2). Assume that (b) of Corollary 6.1

holds, so ut = K0(ut−1) + ut−1 = βut−1 for t ≥ 1 due to (3∗). Since u0 = ρ from Eq. (4.7), we get

ut = βtρ for t ≥ 1. Thus u = 0 if β < 1, or else ut = ρ, so u = ρ. Assume that (c) of Corollary 6.1 holds.

Since t∗ ≥ 1 exists, we obtain ut = K0(ut−1)+ut−1 = βut−1 for t∗ < t due to Corollary 6.1(c) and (3∗).

Thus ut = βt−t∗ut∗ for t∗ < t. Accordingly, we get u = 0 if β < 1, or else ut = ut∗ , so u = ut∗ .

7 Numerical Examples

In this section, through numerical experiments let us exemplify the properties of the optimal decision

rules and the monotonicity of the searching time threshold t∗ in four of the model’s parameters s, λ0,

λ1, and β.

7.1 Properties of optimal decision rules

Let β = 0.99, λ0 = 0.2, λ1 = 0.8, s = 0.07, ρ = 1.0. Then (1 − β)2 + s2 6= 0. Also, let F (w) be

the uniform distribution on [1.5, 2.5], i.e., a = 1.5 and b = 2.5. Using Eqs. (3.2) to (3.4), we obtain

x
K0

≈ 2.0455, x
K1

≈ 2.0227, and x
L
≈ 2.0145, so x

L
< x

K1
< x

K0
. In this case, since 1.0 = ρ <

max{x
K0

, x
K1
} = x

K0
= 2.0455 (Lemma 5.1(c)), the search process reduces to the one with only the

terminal quitting offer. Figure 7.2 depicts the monotonicity of ut in t, in which ut is nondecreasing

in t (Lemma 5.1(a)). In addition, since 1.0 = ρ < x
L

= 2.0145 and since β < 1 and λβT (x
K0

) =

(0.8− 0.2)× 0.99× 0.1033 = 0.0614, i.e., λβT (x
K0

) < s, the conditions in Lemma 5.2(b3,b3ii2) are also

satisfied. Figure 7.2 demonstrates that the searching time threshold t∗ = 8 exists, implying that it is

optimal to conduct the search if 1 ≤ t ≤ t∗ and to skip the search if t∗ < t.
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C: Conduct the

search
K: Skip the search

Figure 7.2: Time threshold t∗ for conducting search

7.2 Monotonicity of t∗ in s, λ0, λ1, and β

The monotonicity of t∗ in ρ is successfully proven in Lemma 5.3; however, its monotonicity in other

model’s parameters s, λ0, λ1, and β are difficult to verify for the reason stated in the paragraph below

the proof of Lemma 5.3. Accordingly, we shall numerically investigate the monotonicity in s, λ0, λ1,

and β where F (w) is the same as the one in Section 7.1.

1. Let the value of all the parameters be the same as those in Section 7.1 except s. Then t∗ is

nonincreasing in s (Figure 7.3(I)).

2. Let β and λ1 be the same as those in Section 7.1, and let s = 0.58 and ρ = −1.0. Then t∗ is

nonincreasing in λ0 (Figure 7.3(II)).

3. Let β be the same as that in Section 7.1 and let s = 0.17, ρ = −1.0, and λ0 = 0.1. Then t∗ is

not always monotone in λ1 (Figure 7.3(III)). From the graph we observe that t∗ is nondecreasing on

λ1 ∈ [0.16, 0.4242], nonincreasing on λ1 ∈ [0.4242, 0.8697], and nondecreasing on λ1 ∈ [0.8697, 1.0].

4. Let λ0 and λ1 be the same as those in Section 7.1, and let s = 0.58 and ρ = 0.01. Then t∗ is

not always monotone in β (Figure 7.3(IV)). From the graph we observe that t∗ is nondecreasing on

β ∈ [0.5, 0.7404] and nonincreasing on β ∈ [0.7404, 1.0].

Through the numerical experiments, we notice that the t∗ is nonincreasing in s and λ0. These results

are not surprising. In order to maximize profit, a searcher will try his best to save on the search cost as

much as possible. Thus, with all else being the same, a higher search cost will decrease the searcher’s

incentive to search, thereby leading to a shorter searching period. Besides, a higher offer appearing

probability λ0 when searching is skipped will also decrease the searcher’s incentive to search because

a higher λ0 reduces the need to search, thereby resulting in a shorter search period. Although we are

able to interpret the implication of the above numerical results for the monotonicities in s and λ0, we

cannot provide a convincing explanation for the non-monotonicities of t∗ in λ1 and β. This type of

non-monotonic property sometimes appears in the optimal stopping problem [3] [6].
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Figure 7.3: Monotonicity of t∗ in the model’s parameters.

8 Conclusions and Suggested Future Studies

In this paper we have proposed a model of the optimal stopping problem where quitting offer is

available at every point in time throughout the planning horizon and where a search cost is incurred to

find a random offer. Below, we shall summarize some distinctive results derived from our analysis.

C1. Let ρ ≥ max{x
K0

, x
K1
}. Then it is optimal to quit the process by accepting either the intervening

quitting offer ρ or the random offer w at the start of the process (Lemma 5.1(b)). In other words,

the process starts and ends at the same time.

C2. Let ρ < max{xK0
, xK1

}. Then:

1. It is not optimal to accept the intervening quitting offer at any point in time prior to the

deadline; however, it may be accepted at the deadline. In other words, in this case the process

reduces to one with only a terminal quitting offer (Lemma 5.1(c1)).

2. We obtained the conditions in which conducting the search is optimal for t ≥ 1 (Lemma 5.2(a,

b3i1, b3ii1)) and those on which a searching time threshold t∗ exists (Lemma 5.2(b3i2, b3ii2)).

3. Let s > 0, ρ < xL , and β = 1. Then if λ0 = 0, it is always optimal to conduct the search for

t ≥ 1 (Lemma 5.2(b3i1)). However, if λ0 > 0, a searching time threshold t∗ exists.

4. It was verified that the searching time threshold t∗ is nonincreasing in ρ. In addition, from

the numerical examples, we observe that t∗ is nonincreasing in s and λ0 while it is not always

monotone in λ1 and β.
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Now, we conclude with a discussion of some directions in which our model could be extended to

make it more practical. Suppose the optimal stopping problem is restricted to an asset selling problem.

Then our model can be extended to deal with the sale of multiple homogeneous assets. In addition,

an extension where ρ is t-dependent provides a useful generalization of our model. For example, ρ

may be nondecreasing, nonincreasing, or may change in a cyclical fashion in time periods remaining up

to the deadline. Moreover, another possible extension would be to consider the future availability of

the offer once rejected; Representative articles include [3], [6], [7] [8], [10], and [15]. Finally, a model

where a limited amount of budget [4] allocated to search for an offer at each point in time is also worth

discussing.

Appendix : Proofs

A. Lemma 3.1

(a) Immediate from the fact that max{w− x, 0} is continuous and nonincreasing in x ∈ (−∞,∞)

for any given w.

(b) Since T (x) = E[(w − x)I(w > x)] ≥ E[(w − x)I(w > y)] § for any x and y, we have

T (x)−T (y) ≥ E[(w−x)I(w > y)]−E[(w−y)I(w > y)] = −(x−y)E[I(w > y)] = −(x−y)E[1−I(w ≤
y)] = −(x− y)(1− F (y)). Similarly we get T (x)− T (y) ≤ −(x− y)(1− F (x)). Hence

−(x− y)(1− F (y)) ≤ T (x)− T (y) ≤ −(x− y)(1− F (x)). (A.1)

Let y < x < b, hence F (x) < 1 due to Eq. (2.1). Then −(x − y)(1 − F (x)) < 0, so T (x) < T (y) from

Eq. (A.1), i.e., T (x) is strictly decreasing on (−∞, b). Now, assume that T (b) = T (x) for a certain x < b.

Then T (x′) < T (x) = T (b) for x < x′ < b or equivalently T (x′) < T (b) for x′ < b, which contradicts

(a), thus it must be that T (b) < T (x), implying that T (x) is strictly decreasing on (−∞, b].

(c) Let b ≤ x. If w ≤ b, then w ≤ x, hence max{w− x, 0} = 0, and if b < w, then f(w) = 0 due to

Eq. (2.2). Accordingly, T (x) = E[max{w − x, 0}I(w ≤ b)] + E[max{w − x, 0}I(b < w)] = 0, hence the

former half is true. If x < b, then T (x) > T (b) = 0 from (b), hence the latter half is true.

B. Lemma 3.2

Let x ≤ a. If a ≤ w, then x ≤ w, hence max{w − x, 0} = w − x, and if w < a, then f(w) = 0 from

Eq. (2.2). Thus

T (x) = E[max{w − x, 0}I(a ≤ w)] + E[max{w − x, 0}I(w < a)]

= E[(w − x)I(a ≤ w)] + 0

= E[(w − x)I(a ≤ w)] + E[(w − x)I(w < a)] = E[w − x] = µ− x.

Therefore, limx→−∞ T (x) = ∞. From this result and the fact that −(1 − β)x is nonincreasing on

(−∞,∞), we immediately see that limx→−∞K0(x) = ∞ · · · (1∗) if λ0 > 0 or β < 1, limx→−∞K1(x) =

∞ · · · (2∗), and limx→−∞ L(x) = ∞ · · · (3∗).

(a) Evident from Eqs. (3.3), (3.2), Lemma 3.1(a), and the fact that −(1−β)x is strictly decreasing

§If a statement S is true, then I(S) = 1, or else I(S) = 0.

16



on (−∞,∞) if β < 1.

(b) From Eq. (A.1) we get

(x− y)F (y) ≤ T (x) + x− T (y)− y ≤ (x− y)F (x). (B.1)

Let y < x. Then (x − y)F (y) ≥ 0, thus T (y) + y ≤ T (x) + x from Eq. (B.1), hence T (x) + x is

nondecreasing on (−∞,∞). From this result and the fact that K1(x) + x = β(λ1T (x) + x) − s =

β(λ1(T (x) + x) + (1− λ1)x)− s, it follows that K1(x) + x is nondecreasing on (−∞,∞) since (1− λ1)x

is nondecreasing on (−∞,∞). Similarly we can show that K0(x) + x is nondecreasing on (−∞,∞).

(c) From Eqs. (A.1) and (3.3), for any x and y we immediately get

−(x− y)
(
1− β(1− λ1(1− F (y)))

)≤ K1(x)−K1(y) ≤ −(x− y)
(
1− β(1− λ1(1− F (x)))

)
,

from which

β(x− y)(1− λ1(1− F (y))) ≤ K1(x) + x−K1(y)− y ≤ β(x− y)(1− λ1(1− F (x))).

Since λ1 ≤ 1 by assumption and since 0 ≤ 1− F (y) ≤ 1 and 0 ≤ 1− F (x) ≤ 1, the assertion for K1(x)

clearly holds. Similarly we can obtain |K0(x) + x−K0(y)− y| ≤ β|x− y| for any x and y.

(d) Let (1 − β)2 + s2 = 0, so β = 1 and s = 0. Then K1(x) = λ1T (x). Noting the assumption of

λ1 > 0, we see that K1(x) = 0 for x ≥ b and K1(x) > 0 for x < b from Lemma 3.1(c), so that x
K1

= b

by the definition of xK1
, hence x < (≥) xK1

⇒ K1(x) > (=) 0. The inverse is true by contraposition.

(e) Let (1−β)2+s2 6= 0. First, let β < 1. Then limx→∞K1(x) = −∞ · · · (4∗) since limx→∞ T (x) =

0 from Lemma 3.1(c) and since −(1−β)x diverges to −∞ as x →∞. Accordingly, there uniquely exists

x
K1

from (a), (2∗), and (4∗). Since K1(b) = −(1 − β)b − s < 0 due to Lemma 3.1(c), we have x
K1

< b

from (a). Next, let β = 1, hence s > 0. Then K1(x) = λ1T (x)− s for any x ∈ (−∞,∞) from Eq. (3.3),

which is nonincreasing on (−∞,∞) due to Lemma 3.1(a) and strictly decreasing on (−∞, b] due to

Lemma 3.1(b). In addition, we have K1(b) = λ1T (b) − s = −s < 0 due to Lemma 3.1(c) and the

assumption of λ1 > 0. Consequently, from (2∗) it follows that xK1
uniquely exists with xK1

< b. Thus,

whether β < 1 or β = 1, there uniquely exists xK1
< b; accordingly, the former half of the assertion holds.

Since K1(x) is strictly decreasing on the neighborhood of x = x
K1

< b due to Lemma 3.1(b) and the fact

that −(1 − β)x is nonincreasing on (−∞,∞), it follows that x < (= (>)) x
K1

⇒ K1(x) > (= (<)) 0.

The inverse is true by contraposition.

(f) Let λ0 > 0.

(f1) Let β = 1. Then K0(x) = λ0T (x) = 0 for x ≥ b and K0(x) = λ0T (x) > 0 for x < b from

Eq. (3.2) and Lemma 3.1(c), hence x
K0

= b by the definition of x
K0

, so x < (≥) x
K0
⇒ K0(x) > (=) 0.

The inverse is true by contraposition.

(f2) Let β < 1. Then limx→∞K0(x) = −∞ · · · (5∗) due to the fact that limx→∞ T (x) = 0 from

Lemma 3.1(c) and that −(1− β)x diverges to −∞ as x →∞. Therefore, xK0
uniquely exists from (a),

(1∗), and (5∗). Since β > 0, µ > 0, and b > 0 by assumptions, we have K0(0) = λ0βT (0) = λ0βµ > 0

and K0(b) = λ0βT (b) − (1 − β)b = −(1 − β)b < 0 due to Lemma 3.1(c), hence 0 < x
K0

< b from (a).

In addition, we have x < (= (>)) xK0
⇒ K0(x) > (= (<)) 0 from the definition of xK0

and (a). The

inverse is true by contraposition.

(g) First, note that L(x) is continuous, nonincreasing on (−∞,∞), and strictly decreasing on
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(−∞, b] due to Eq. (3.4) and Lemma 3.1(a,b). Let s > 0. Then, since L(b) = λβT (b) − s = −s < 0

from Lemma 3.1(c) and since L(x) > 0 for a certain sufficiently small x < 0 from (3∗), it follows

from the monotonicity of L(x) that x
L

uniquely exists. The inequality x
L

< b is immediate from the

monotonicity of L(x) and the inequality L(b) < 0. The latter half is evident from the fact that L(x) is

strictly decreasing in the neighborhood of x = x
L

(< b) .

C. Lemma 3.3

Let s > 0, hence (1− β)2 + s2 6= 0. Then, since K0(xK0
) = 0 and K1(xK1

) = 0 by the definitions of

xK0
and xK1

, noting Eq. (3.5), we have

L(x
K0

) = K1(xK0
), (C.1)

L(x
K1

) = −K0(xK1
). (C.2)

(a) Let λ0 = 0, hence x
K0

= 0 by definition (Eq. (3.7)). Then K0(xK1
) = −(1 − β)x

K1
· · · (1∗)

from Eq. (3.2).

(a1) Let β = 1. Then K0(xK1
) = 0 from (1∗), hence L(x

K1
) = 0 from Eq. (C.2), so x

L
= x

K1
from

Lemma 3.2(g). Thus the assertion holds.

(a2) Let β < 1. If x
K0

< (= (>)) x
K1

or equivalently 0 < (= (>)) x
K1

, then K0(xK1
) < (= (>)) 0

from (1∗), hence L(xK1
) > (= (<)) 0 from Eq. (C.2), so xK1

< (= (>)) xL due to Lemma 3.2(g). Thus

x
K0

< (= (>)) x
K1
⇒ x

K1
< (= (>)) x

L
. The inverse is true by contraposition.

(b) Let λ0 > 0.

(b1) Let β = 1. Then x
K0

= b from Lemma 3.2(f1). Since L(x
K0

) = L(b) = λβT (b)− s = −s < 0

from Lemma 3.1(c) and the assumption of s > 0, it follows that K1(xK0
) < 0 due to Eq. (C.1). Thus

we get xK0
> xK1

from Lemma 3.2(e). Hence K0(xK1
) > 0 from Lemma 3.2(f1), thus L(xK1

) < 0 from

Eq. (C.2), so x
K1

> x
L

from Lemma 3.2(g).

(b2) Let β < 1. Then, if x
K0

< (= (>)) x
K1

, we have K0(xK1
) < (= (>)) 0 from Lemma 3.2(f2),

hence L(x
K1

) > (= (<)) 0 from Eq. (C.2), so x
K1

< (= (>)) x
L

from Lemma 3.2(g). Thus x
K0

< (= (>)) x
K1

⇒ xK1
< (= (>)) xL . The inverse is true by contraposition.
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