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Abstract With many multi-party applications the order of the participating parties is fundamental. However atten-
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1. Introduction

In a muiti-party application one can easily envis-
age circumstances in which the order of the par-

ticipants is important. Typical examples are mil- -

itary and police operations where knowing the or-
der of a command is crucial. It is important to
know that the chain of command was followed. Take
for example the case of a controversial order issued
to a soldier by his commander. Fven if the or-
der by the commander may have been approved at
a higher level, it is sometimes important to know
whether the command was authorized before it was
given, or whether the commander ignored the chain
of command and went ahead giving a not yet ap-
proved order. Similar problems appear in the busi-
ness world. The bankruptcy of Bairings Bank was
a consequence of a subordinate bypassing the chain
of command. In some circumstances the one who
initiated an action is responsible, e.g. the one who
ordered the murder of a competing mafia boss. In
other cases the highest in rank is to blame when
things go wrong, provided the chain of command
has been followed. So, it may not be sufficient to
know that all parties that should have been involved
were involved, butf also one must know the order in
which they were involved.

Our work is related to tracing. We want to trace
the order of the parties involved in a distributed
computation. Today tracing is an important re-
search area in cryptography. Examples of such pa-
pers are [2], [7]. The topic we study in this paper
broadens the work already done. Qur work allows
to trace the order in which a multi-signature (or
threshold signature) was signed. In case of dispute
the evidence of the order may be used in court. It is
clear that for a scheme to be acceptable, the length
of the resulting multi-signature should be relatively
short, the security should be high (at least proven
secure}, and that the scheme should be flexible, i.e.,
dynamic as we shall explain further down.

A lot of research has been done on multi-party
protocols. We only list a few of a very long list
of publications, e.g.{8], [5],[13],[14], [18]. For most
of these multi-party protocols there is symmetry

among the parties involved. For example with

threshold signatures {in which a threshold number
of parties can sign in the name of an organization)
or with multi-signatures (in which several parties
can make a joint signature using their own public
key [18]), all the signing parties play the same role.
The asymmetry is only between the receiver and
those who signed the document. However there are
many circumstances in which we need the group of
signers to be ordered, i.e. the order of those involved
in the protocol should be evident to an outsider.

To motivate the need for order in a multi-party
protocol, we consider an example in the context of
multi-signatures. Suppose that a proposal is to be
submitted to a body, for example the board of direc-
tors of a company. Before submission, the proposal
must be endorsed by a sufficient number of mem-
bers of the organization. Often one wants to be
able to trace the initiator of the proposal and the
order in which the proposal is endorsed. One way to
achieve this is by including in the proposal the list of
endorsing parties. However this solution is not dy-
namic. It assumes that the list of parties is known
(in an appropriate order) before the signing takes
place. Many potential endorsers may not be will-
ing to be included unless there are sufficiently many
other parties who have already signed, in which case
they may want their names to be in specified places
(e.g. above or below others). An example of this is
a petition: some parties will only endorse a petition
if they are near the top of the list, and if sufficiently
many others (perhaps of high ranking) have already
endorsed it.

We note that there are different ways in which
the order of a multi-party cryptosystem can be es-
tablished. Consider for example a multi-signature
of parties Py, Po,P3. One way to assure this or-
der is by designing a multi-signature which can only
be verified sequentially by using the public keys of
Py, Py, P3, in this order. This does not necessarily
mean that Py, Py, P3 have signed in this order, only
that this is the order established by the verification
procedure. Even if the verification order reflects the
signing order, the manipulation of the signing order
may be feasible, and such a manipulation should be
proven to be infeasible. Another way is to use a
structured set of public keys which will assure the
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order. This is the approach that we shall use. We
note that whichever way the order is established,
what is important is that the parties are aware of
this and that the order is assured.

It is sometimes argued that ordered cryptogra-
phy cannot be convincingly implemented with pub-
lic keys because the parties can “easily” modify the
order by colluding. We claim that this argument is
flawed. Clearly if all the parties involved agree, then
they can generate another output with a different
ordering. We cannot prevent this. However we shall
show that there exist ordered cryptosystems for
which it is computationally /unconditionally hard to
modify the position of those parties who are not will-
ing to co-operate. Furthermore the output of such
systems uniquely determines the order of all parties
(including any parties of a conspiracy).

Ag far as we know, the first to have observed the
need for an ordering in cryptographic systems were
Doi-Okamoto-Mambo-Uyematsu [10] in the context
of multi-signatures. Some earlier schemes, as e.g.
Okamoto’s [18] multi-signature, also have properties
that are order dependent. Recently, Mitomi-Miyaji
proposed two multi-signatures that are “order flex-
ible” and “order verifiable” (and “message flexi-
ble”)[17]. Also Tada proposed an order-specified
one-cycle multisignature scheme [22] which is secure
against active attacks. The goal of our paper is to
present a formal model of ordered multi-party cryp-
tographic systems and to present practical examples
whose order is proven.

Contribution: In the following section we consider
an appropriate model for ordered multi-party pro-
tocols. Then, in Section 3. we present an uncon-
ditionally ordered multi-authentication scheme and
a provably ordered multi-signature, which is rather
inefficient. In Section 4. we consider efficient sys-
tems. We show how to make a provably ordered
undeniable two-party signature scheme,

The main advantage of our efficient schemes (Sec-
tions 3.1 and 4.4) over the trivial scheme in Sec-
tion 3.2 is that the size of the final multi-signature
{multi-authenticator) is independent of the number
of parties involved.

2. Model

In this section we introduce our model for ordered
multi-party protocols.

2.1 Security model

We shall first describe our model informally. Let
(P,V) be a two-party crypto-system and let E be
the adversary (we do not exclude the possibility that
E = V). We can think of P as the party that exe-
cutes the protocol and V as the party that verifies
the protocol. We shall assume that (P, V) satisfies
the completeness conditions C involving P and V,
and the security conditions & involving P, V and
E. These conditions are determined by the require-
ments of the system.

Let P be a set of parties P, P,..., P, and = an
ordering of P. Suppose that P in (P, V) is replaced
by x, with the action of P replaced by the joint ac-
tion of the parties in z (which use their secret key
or their secret share). We denote the transcript of
the execution of the distributed protocol (z,V) on
input m by T{z,vy(m), and the output by Oy, vy (m).
If no output is provided (to an outsider), then we
take the transcript as output.

Let P! C P be a set of dishonest parties who
want to change the agreed order . Obviously P’
can change their own order. We say that the or-
der of z in (z,V) is secure if it is hard for the
dishonest parties to change the order of the hon-
est parties, given the transcript T, vy(m) and the
output O(a,vy(m). For example if P = { Py, P, P3},
P' = {P, 3} and z = (P, P2, P4}, then it should
be hard for the parties in P’ to change the order
in (z,V) to 2’ = (P, P, P3), given the transcript
Tiz,vy(m) and the output Oz vy(m).

[Definition 1]
party cryptosystems

(Sketch) - Secure ordered multi-

The ordered multi-party cryptosystem (z, V) is se-
eure if, on input (any) m, if the parties in & agree
on this order, and if: .

(1) (z,V) satisfies the completeness conditions
C and the security conditions 8 of (P, V).

(2) It is computationally (unconditionally)
hard for any subset P' ¢ P of dishonest parties
to generate an output Oy yy(m) for an ordering =’

—3—



of P in which the order of the honest parties P\P’
is different, by using the transcript T(; vy(m) (after
observing the execution of (z,V)) and the output
Oz,vy(m).

The dishonest parties in P’ may deviate from pro-
tocol and are under the control of the adversary.
The honest parties in P\P’ adhere to the protocol
(=, V).

There are several possible scenarios for the selec-
tion of the order z. For example this may be done
by an Initiator. Alternatively it may be done in a
distributed way by the parties in . Thus P;, may
select x, or just its successor Pj,, or P;, and some
of the other parties in z, and so on. For simplicity,
we focus on the case when the input (message) m
is selected by an Initiator I who will give it to the
first party P, of z (we may have I = F;,). How-
ever, this in general is not needed: the order can be
established by using a multi-party protocol.-

There are also several possible scenarios for the
way in which the multi-party computation is exe-
cuted by the authorized set #. This may involve a
reliable Combiner C. This is the case when the pro-
tocol is executed in parallel. In this scenario, the
Initiator I gives the message m to each party P; of
the set z. The parties P; then execute their part of
the multi-party protocol and send their output to
the Combiner, which in turn computes the output
of the protocol by combining appropriately the re-
sults it gets from the parties in z. The Combiner
does not possess any secret keys, and its purpose is
simply to compute its output from the (public) data
output by the parties in z. Alternatively the multi-
party computation may only involve the parties in
z. This is the case when the protocol is executed
serially. In this scenario, the first party P, in & on
input m from I executes its part of the multi-party
protocol and then forwards its output to F;,. Then
F;, executes its part of the protocol and forwards
its output to Fj;. And so on. Finally we can also
have a combination of these scenarios (parallel and
serial).

2.2 Reliability and robustness

In our definition we have not addressed the issue
of reliability and robustness. The problem is that

—f—

it may not be possible for the parties in P to agree
on an ordering = for the multi-party protocol (z, V'),
given the input m. In the honest case (all parties in
z adhere to the protocol) a dispute on a particular
place in an ordering must be settled. However the
dishonest parties may not agree to any such settle-
ment (and insist on taking the place of an honest
party). This would make it impossible to execute a
valid ordered multi-party computation. Moreover,
the dishonest parties may change their mind while
the protocol is being executed.

If agreement on an order is possible then it is al-
ways possible to initiate a distributed multi-party
computation by following the agreed order and by-
passing those parties which do not adhere to the
It is not too difficult to see that
the complexity of an ordered multi-party protocol,

agreed order.

in particular an ordered multi-signature, with ac-
tive adversaries, is the same as Byzantine agree-
ment [11].

[Theorem 1] An ordered multi-party crypto-
graphic system with active adversaries requires at
least a protocol as complex as Byzantine agreement
(and the same threshold of honest parties).

Proof. Due to space limitation, proof is omitted. 1

We shall not discuss the agreement problem any
further, In the rest of this paper we shall as-
sume that for our multi-party protocols, on input
m, agreement has been reached for a specific order
z, and that the ordered system (z,V) is properly
executed. Then, if (z,V} is secure, by Definition 1
it should be hard for dishonest parties to change
the order of honest parties and produce an output

O(wl ,V) (m) .

3. Examples of ordered multi-
party cryptosystems

3.1 An unconditionally ordered multi-
authentication scheme
The notion of unconditionally secure (message)
authentication (which is similar in many respects
to unconditionally secure encryption using one-time
keys) was originally introduced by Simmons in
1984 [21] Since then, several schemes and variants of
these have been proposed. The main feature of these
schemes is that, unlike digital signature schemes,



the ability to authenticate messages is restricted to
“insiders”, that is to parties which possess some in-
formation not known to other parties.

As an illustration let us consider a well known
unconditionally secure authentication scheme for
which the message space is GF(g), the finite field
with ¢ elements. Let S be the sender and R the
receiver (both “insiders”). The parties 5, R share
the one-time secret key pair (a,b), a,b € GF(g). To
authenticate a message m € GF(g), the sender §
sends R the pair (m, A), where A = am + b is the
authenticator of m. The receiver R checks the au-
thenticity of m by using the secret key pair (a,b) to
verify that A L am +b. It is easy to see that this
scheme is unconditionally secure.

We now will show how to extend this basic scheme
to get an ordered multi-authentication scheme. For
simplicity we focus on linear access structures. Let
Py, B, ..., P be the authenticating parties and let
R be the receiver. Each party P, shares with the
receiver R a triple (a, bi, i) with i, b;, ¢; € GF(q),
g sufficiently large, ¢ > £ Suppose that the or-
der in which the parties will authenticate a message
m € GF(q) is Pj,, Pj,,..., Pj,, where ji,72,...,Je is
a permutation of 1,2,...,£. Each party F; com-
putes the authenticator A; = a; + bym + ¢k in
GF(g), where k € {1,2,...,£} is the position of B
in Py, P;,,...P;,. That is, k is such that ¢ = j.
The authenticator for message mis A = F | A;
computed in GF(g), which is sent to the receiver
together with m and the authenticating order.
[Theorem 2] The probability that a dishonest
party, say P;‘ can claim successfully to be at lo-
cation ji ji ¥+ Js in the authentication sequence
(without the help of P;,)} is at most 1/¢.

Proof. (Sketch) For simplicity, assume all
parties except Pj, conspire with P;, in the attack.
Then we get a set of equations with unknowns a;,,

R T . T T . T e
for which the walues of aj,...,¢ 1,85,
bj1v":bj¢-11bj:+1:"'1 le,...,le_l,Cle,..., and

Aj;, are given (the other A;’s are linear combina-
tions of the given values).

Suppose now that the dishonest parties could cre-
ate from these secret keys and the observed A;,, an

authenticator A} = aj, +b;m + ¢;,t' with ji = jy
and t' &= t, for the desired permuted order. Then
they could find c¢;, uniquely. However, the afore-
mentioned equations give no information about ¢;,.
So they must have guessed the correct c;, (with prob-
ability 1/q). 1
The proof can easily be extended to the case when
dishonest parties claim more honest locations, and
to the case when m is replaced at the same time.

3.2 A provably ordered multi-signatures

— a trivial solution

Any cryptographic system can be trivially trans-
formed into an ordered cryptosystem whose order
is proven secure. Consider for example a signa-
ture scheme such as the DSS[9] {or El Gamal([12],
RSA[20], etc.) Let the message space be M, let
P, B,. .., P, be the authenticating parties, and let
R be the receiver. Suppose that each party F; has a
public/private key pair (PK;, SK;), i = 1,2,...,4,
and let the order in which the parties sign the
message m € M be F; Pj,..-F,. Each party P
computes the signature signsg,(m, k), where k €
{1,2,...,£} is the position of P; in P, Pj, -+ F;,.
The multi-signature consists of all £ signatures.

It is straightforward to see that this scheme is as
secure as the underlying primitive signature scheme,
and that the same applies for its order, Further-
more, the scheme is not limited to signatures. Any
primitive cryptosystem can be used to get a prov-
ably ordered mulfi-party variant. However this
scheme is very inefficient. Indeed its communication
and computational complexity grows proportionally
to the number of parties involved, and is prohibitive
for large groups of users,

In the following sections we will consider efficient
solutions for provably ordered multi-party cryp-
tosystems.

4. An efficient provably ordered
undeniable multi-signature

4,1 Discussion

To start with suppose that there are only two par-
ties P; and P who are going to generate a joint un-
deniable multi-signature[6] and let = = P Py, Veri-
fier V should be able to check that P initiated the
undeniable multi-signature when checking its valid-



ity. There are two natural cases.
Ordered undeniable multi-signatures,
both parties have their own public key. In this case
the receiver V should be able to verify who was the
first to generate the undeniable signature scheme.
Ordered undeniable threshold signatures, in
which the parties share a private key. In this case
there is one public key and each party has a share
of it. We require that only when the parties execute
the multi-signature in the correct order will the out-
put of the scheme be valid. We omit explaining this
case in this paper.
We will generalize these schemes for more than two
parties in Section 4.4. We first discuss our goals in
greater detail.

4,2 An ordered undeniable two-party sig-

nature

For simplicity we explain our approach from the
first viewpoint, and aveid discussing the details of
the mathematics involved™®,

The set up

We use a discrete logarithm setting. As in[4], (6]
we assume that p is an appropriate large prime, that
g € Zy has order a large prime ¢ and that p, ¢ and
g are public. The private key of P, is the ordered
pair (1’311,2:1-2), T11,T12 €R Z"; and the public key is
(111, 112), where Y1 = g™, 12 = g™2, both evalu-
ated in {g) (the subgroup generated by g}. Similarly
Py’s private key is (x21,%22), Z21, T22 €R Z;, and the
public key is (y21,y22) with ya1 = g™, yaa = ¢"2.

All operations are evaluated in the subgroup (g)
of Zz: when there is no ambiguity we will not state
this explicitly.

Generating a two-party signature

Consider the case when the authorized sequence is
PPy, Note that it is easy to check that ord{m) = ¢
by testing that m & 1 mod p and m? = 1 mod p.
Let m € (g) be the input (message).

Step 1 Fach party F;, i = 1,2, checks that
ord(m) = ¢. If so, P; computes the par-
tial signature s;(m) = m%i, Then B
sends s;(m) to a Combiner C.

Step 2 C checks that ord(s;(m)) = g for i =

{1}: Our scheme corresponds to an almost medule with two
external operators, which do not form a bi-module [15].

in which

1,2. If so, C computes s1a{m) = s;1(m)-
sp(m) = m*3 %22, This is the multisig-
nature of m by z. C sends sj2(m) to
the Verifier V.

This is a parallel implementation. For a sequen-
tial implementation the Combiner is not needed.
Party P, sends the partial signature s;(m) = m®*1
to P, who, after checking the correctness of s1(m),
computes s12(m), and sends this to V. Observe
that if P would have been first and P; second,
then the resulting undeniable signature would be
So3 (m) = mFat+iia,

Confirmation of a two-party signature

The goal of the confirmation protocol is to prove
that a two-party signature is valid, This is based on
Chaum’s confirmation protocol [4).

To confirm that gj3(m) is the correct two-party
signature of m by P\ Py, the parties V, C, P, P; pro-
ceed as follows.

Step 1 The Verifier V checks that ord(s12(m)) =
ord{m) = g. 1f so, V selects a,b € Z,
and computes u = m%g®. V sends u
to the Combiner C' who forwards it to

P, P,.

Step 2 Fach B, ¢ = 1,2, chooses r; €Eg Zy,
computes w; = u% . gM, and sends it
to C.

Step 3 C computes w = w; - wy and sends this
to V.

Step 4 V sends a,b to C who forwards these to
Py, Pa.

Step 5 FEach P;, ¢ = 1,2, checks that u was cor-
rectly constructed. If so, F; sends r; to
C.

Step 6 C computes r = r)+7r9 mod ¢ and sends
this to V.

Step 7 V computes v = g" and then w/v, and

checks that this is the same as sjg(m)® -
(y11902)%. If s0, V accepts s12(m) as cor-
rect. '

This is a parallel implementation. For a sequential
implementation, P» acts as a Combiner.



Disavowal of an invalid two-party signature

The goal of the disavowal protocol is to show that
a forged two-party signature z is invalid, Our pro-
tocol is based on Chaum’s disavowal protocol [4).

Let k& be a sufficiently small number, let
status(z) € {0,valid, forged, unknown} and let t €
Zy. To confirm that z is not a valid multi-signature
of mm by P P,, the parties V,C, Py, Py proceed as
follows.

Step 1 The Verifier V checks that ord(z) =
ord{m) = ord(yn) = ord(ya) = g. If
so, V selects o €p Z; and s € Z;
and computes u = mg? and v = 2%y%,
where y = ynyo.
P, B,
Fort=1,2,...,k-1:
Py chooses ri;,7}; €r Zp and computes
A¢ = r{ ™ mod p, By = r{m®1* mod
p and sends these to Pp.
rot € Jp and computes:

V' sends u,v to

Step 2

P, chooses

we = ror[(Au™22") /(Bym®2*)] mod p

)s—t

= ryrae (M%/2)*™" mod p,

where ryy = ri,/rf,modp and =z =
T13 + 299 mod gq.

Step 3 P, computes Dy = ¢g"™ modp, t =
1L,2,...,k - 1, commits to {D;}, and
sends the commitments to ¢ and V.,
Py computes wy; = w,/ry mod p and
E = g¥*modp, t = 1,2,,..,k—1,
and then commits to {£,}, and sends
the commitments to C' and V.

Step 4 V sends a,s to P; and P;.

Step 5 Py, P check that v and v are properly
constructed. If so, they open their com-

mitments to ¢ and V.

C checks that ord(D;) = ord(E;) = g,
t=1,2,...,k— 1. Set status(z) := 0,
ti=0.

Case D; = By If status(z) = 0,
set status(z) := unknown and t :=
t + 1; if status(z}) = unknouwn, set
status(z) := valid, and output ¢ €Eg Zy;

Step 6

if status(z) = forged, output s = 1.

Case Dy + Eg If status(z) =
unknown, set status(z) 1= forged, and
output ¢ = 0 ; else set status(z) :=
forged, t :==1t+1,

Step 7 V accepts that z is not valid if the

opened value of s is correct.

Py, Pp can cheat with probability 1/k. To reduce
this, the protocol is repeated a few times (indepen-
dently).

The subtle issues addressed by Jacobson-
Yung [16] will be discussed in the final paper.

4.3 Security: the two-party case

We now prove that our undeniable twd-party sig-
nature scheme satisfies our goals for ordered sys-
tems, assuming that the Diffie-Hellman decision
problem over the subgroup (g) of Z; is hard. That
is, given (p,g,9% 9%,h), it is hard to decide if
h = DHy(g", g¥), where DH,(g", g¥) = ¢ mod p.
The Diflie-Hellman (search) problem is to compute
DHy (g% g¥) given (p,g,9% ¢¥)[8]. Clearly if the
Diffie-Hellman decision problem is hard then so is
the Diffie-Hellman (search) problem.
[Theorem 3] If the Diffie-Hellman decision prob-
Jem in the subgroup {(g) of Z; is hard, then the un-
deniable two-party signature scheme achieves our
order goals.

Proof. Due to space limitation, proof is omitted. 1

4.4 Ordered undeniable multi-signatures:

the general case

We now extend our scheme to the general case.
As in the two-party case we use a discrete log-
arithm setting and work in the subgroup (g) of
7% of prime order g. Let P = {P,Py,..., P},
¢ = O(log|p|®), ¢ constant, be the set of parties.
Each party F; has [logzf] private keys: xi; €5 7,
7=1,2,...,[logaf], and as many public keys: g%,

Let ¢ = P, P}, -+ P;, be an ordering of the par-
ties. To determine the partial signature of F;; we use
the private keys of P;; which correspond to its posi-
tion in z. That is, the private keys which correspond
to the non-zero entries in the binary representation
biabiz - biftogyey Of 1 (we take i = 082 9k=1py).
The partial signature of m by Pj; is thus s;,(m) =
mzifc]-:?ﬂ biziik  and the multi-signature of m by



P:,‘lpjg e Pj‘: is:

¢ loggt]
(T Tl b

siliﬂ"'irloggﬂ(m) = m
It is easy to see how to extend the multisigna-
ture generation protocol. Each Pj; sends sj;(m)
to the Combiner C, and C multiplies these to get
Si1fy-i[1agye (). Both the confirmation and dis-
avowal protocols can be extended to the general case
(we postpone this for the final paper).
[Theorem 4] Ifthe Diffie-Hellman decision prob-
lem in the subgroup (g) of Z; is hard, then the
undeniable multi-signature scheme in Section 4.2
achieves our goals for ordered systems (Defini-
tion 1).

Proof. This iz an eztension of the two-party case.
Details will be given in the final paper.
|

In order to make the order of honest parties se-
cure, the method for the general case described
above is applicable to ElGamal-type multisignature
schemes in general,

5. Conclusion

In this paper we have discussed the importance of
order (asymmetry) in multi-party cryptography. We
presented a formal security model for order and pro-
posed unconditionally ordered authentication sys-
tems and provably ordered multi-signatures. These
systems are simple and efficient.
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Abstract — Two cryptosystems using polyno-
mials ox flnite field are introduced; permuta-
tion cipher based on permutation polynomials
and flexible secret sharing scheme. Polynomials
are called permutation polynomials if they induce
bijective functions, Metric and algebraic prop-
erties of permutation polynomials over a finite
fleld are investigated, especially properties asso-
ciated with orbits and permutation cycles, Flex-
ible secret sharing schemes have features that
they caxr change a secret, enroll/disenroll mem-
bers, imcrease/decrease threshold, without chang-
ing shares, Simple scheme using polynomials over
finite field is presented,

I. INTRODUCTION

Some cry ptosystems using polynomials over finite fleld
have been proposed so far, Dickson scheme, C* pub-
lic key cry ptosystem are examples of such cryptosystems.
RSA crytosystemn is an encryption transformation based
on polynomials of high degree. Another exainple of cryp-
tosystems using polynomials is elliptic curve cryptosys-
temns, because they are constructed on polynomials over
finite field.

In this paper we introduce two cryptosystems using
polynomaials, which are not well known yet. A permuta-
tion cipher and a secret sharing scheme.

1I. PERMUTATION CIPHERS USING PERMUTATION
POLYNOMIALS

Permutations are realized by random access mem-
ory(RRAIVIL) and two address generators. Suppose the
RAM has n addresses and is linked to Address Gener-
ators 1 amnd 2, Address Generator 1 and 2 generate ad-
dresses for writing and reading, respectively. Samples
are written according to the addresses generated by Ad-
dress Generator 1. Samples are read out according to
the addresses generated by Address Generator 2, After
writing 7a samples, reading of n samples is carried out,
In the permutation descrambler, Address Generators 1
and 2 are interchanged. No inverse transformation of the
permutation is required.

One of the two address generators, say Address Gen-
erator 2, generates a random address sequence which is
varied according to an encryption key, Address Generator
1 generates a fixed address sequence. The permutation
scheme’s security depends on the address sequences, Tor

example, if the addresses generated by Address Glenera-
tors I and 2 are similar, the scrambled signal is almost
the same as the original signal.

In this paper, Address Generators 1 and 2 are con-
structed using polynomials fy (z) over GF(q), ¢ = »™,
or their iterations. Here m is the length of an address
“digit” list and p is a prime number. Since every element
of GF(g) can be represented by a list of m “digits”, ad-
dresses can be regarded as elements of GF(g). Assume,
without loss of generality, that Address Generator 1 gen-
erates

0,l,a,az,---,aq‘g,U,I,a,a"‘,---

where o indicates a primitive element in GF(g)!. And
assume that Address Generator 2 generates

FreO) Fre(L)y Frea)y fre(e®)y ooy fe (@73, Fre(0), o,

using a polynomial fx{z) =ao+ajz + ¢+ aqz?, Here
K denotes an encryption key which consists of the coef-
ficlents list

(1)

In other words, changiug keys in this cipher means chang-
ing coefficients of the polynomial,

fr(z) should be a bijective function from GF(q) to
GF{q). Moreover, fx(z) has to be nonlinear, that is
d > 1, from a security point of view., We exhibit bi-
jective polynomials, called perrhutation polynomials (3],
over (GF(g). Any bijective functions could be used instead
of the fy (), but polynomials have several good features,
described below from the standpoint of randomness and
security criteria.

K= (ao, ay, ' -,ad).

Theorem 1 The permutation ciphers based on the fr ()
satisfy the conditions below.

L Ifd > 1, no move than d samples ave fived poinis of
the permutation. In other words, there are no more
than d elements 2 salisfying

(2)

2, In the decoded sequence, with a decryption key Ky
which is different from the encryption key K, fewer

fx(z) =2

IWe could change Address Generator 1 in such o fashion that
it generates (1,er,a®,++ 0972, 1, ,0?,.+), However, constant o
should be 0 in this case. This scheme offers simpler ¢iphers, and
Theorem 1 could be stated much simpler, but the key size becomes
smaller.



than d samples are fired points. In other words,
there are no more than d elements ¢ satisfying

fia(freu(2) = 2, (3)

where fx' denotes the inverse of the permutation
f}(, and I‘l'l # Ifg.

8, Let ag = 1. In o permuted and shifted sample
sequence, no more than 2d + 2 samples are fized
points, In other words, for any fized k (1 < k <
g — 2), there are no more than 2d + 2 elements o

satisfying
a1 a=0
k i
) o'z r=a,i+k<g—2
fre(e) = 0 a::a':,i+k=q'—1 4)
afle z=alid k>

4. Suppose that d > 1, ged(d, g~ 1} =1, and ag =1,
Then in a sequence which i3 inversely permuted with
any key and shifted, no more than 2d 4 2 samples
are fived points. In other words, for any fized &
(1 < k< q—2), there are no more than 2d + 2
elements z salisfying

afF"l g =0
k =t 4
-1 _ ) efz  p=dith<g-2
Fie, Ui (=) = 0 z=a'ithk=¢-1
o ~ly z=of i+ k2.

(8)

Polynomial Representing Permutation over
GF(2™) and Orbits

To characterize permutation polynomials, we introduce
three orbits on the set of polynomials, Let ¢ be p™. We
concentrate mainly on the case p = 2. This is gener-
ally considered the most difficult case, and in almost all
applications, p = 2.

Consider linear polynomials: ¢ -+ a¢+b where (a,b) €
(GF(g) - {0})x GF{qg). These form a subgroup L. L acts
on & polynomial f on left, right or both and produce a
left arbit Lf, a right orbit fL or a double orbit LfL.
These orbits induce equivalence relations, respectively,

Definition 1 Suppose the set of linear polynomials be L,
A left orbit Lf, a right orbit fL and a double orbit LfL
of a polynomial [ are

Lf ={af(z) +b|(a,b) € GF(g)~ x GF(g)}  (6)

fL={flaz +B)l(«, f) € GFlg)” x GF(n)} (7)
LfL = {af(az+B8)+b|(a,b), (e, f) € GF(g)~ x GF(q)).

(8)
Here GF(g)~ shows GF(g) — {0}

The size of each left orbit and each right orbit is (g —
1}).

Orbits are almost *orthogonal to the metric structure’
of corresponding permutations, as the next two theorems
indicate, Before stating the theorem, a metric dist(f,g)
is introduced in G'F(g)[x].

Definition 2 Hamming distance dist(f,g) between f, g :
GF{q) = GF{q) is defined by setling

dist(f,g) = {z € GF(q): f(z) £9(x)}.  (9)

Let Ps = {f(x) € GF(g)z]ldeg(f(z}) < 4,
f(z) is a permutation polynomial} for § < g.

Theorem 2
dist{f,g) 29 —3 (10)

if fio € Ps and g £ f. Hence if g € LfL and g # f,
then

dist(f,g) > g ~ . (1)
Theorem 3 dist(f,g) 2 g—~1ifg&€ Lf org € fL, and
g # f. Equadlity holds if and only if g(2) = flaz+8), ¢
1org{z) =af(a)} +ba# 1.

Polynomials Corresponding to Permutation Cy-
cles

We discuss algebraic cycle structures of permutations, es-
pecially, fixed points, derangements, transpositions, cy-
cles and products of cycles, because a permutation is com-
posed of pairwise digjoint cycles. A permutation peolyno-
mial corresponding to « is written as f-(z) in this paper.
Fixed Point and Derangement

Fixed points are cycles of length 1 and derangements
are permutations which have no fixed points,

Theorem 4 The degree of ¢ non-identity permutation
polynomial of degree 1 or more with k fived points is at
least k.

The probability that a permutation is a derangement
is 1/e a 0.37. Not all permutation polynomials are de-
rangements, but Theorem 4 shows that the probability
that a given x satisfies f(x) = z is small if the degree d
of f(z) i3 small,

Transposition

Any permutation can be expressed as a product of
transpositions. A transposition is a permutation which
interchanges two elements,

Theorem 5 Assume a fransposition permules 11,73,
and let 23,14, ++, 7y be other (fized) elements of GF(g).
Then, the polynomial corresponding to a transposition
(r1,72) 18 represented by :

g{z) = {r1— 1‘2)2(:1: —ra)(x —rq) oz —rg) + . (12)



Cycle and Product of Cycles

if 1T(1’.') = Tiy1 (i = 1,2, e -,It‘ — 1), ’;T(T‘k) =T, T ?’-‘ r§
(z # j), then = is called (algebraic) cycle and written as
(rirg-+-7rx). Any permutation is represented by a prod-
uct of disjoint cycles. A polynomial corresponding to a
cycle can be given explicitly.

Let hap(z) be a polynomial of degree ¢ - 2 defined by

hap(z) = [] (2 =)

r#a,b

hap(b) =

(13)

Then, hgp(a) = (@ = B)7Y, hap(r) =
0, for any r # a, b.

Theorem 68 A polynomial corresponding to the cycle
C={(ryrg -+ mp) s

n-1

fe(z) = E(?'l = i) (P8 — Pig ) Be g (7) + 20 (14)

izl

Note that the degree of fo(z) is not necessarily of de-
gree ¢ — 2,

A general form of a permutation polynomial f¢{z) cor-
responding to a product C' = Ci{Cq - C} of pairwise dis-
joint cycles is given by the next theorem.

Theorem 7 A polynomial representation of a product
C=C\CqrCy is

k
fola) = 3 (feu(z) - 2) + . (15)
i=1

Distribution of the Degrees of Permutation Poly-
nomials

The general form of permutation pelynomials correspond-
ing to a cycle or a product of pairwise disjoint cycles are
shown in Theorems 6, 7. However, they do not indicate
the actual degree except the case of transpositions. Theo-
rem 4 shows that the degree of a permutation polynomial
corresponding to a cycle or a product of pairwise disjoint
cycles is at least g — k, where k is the total length of
the cycle or the product of pairwise disjoint cycles when
k> L

However, it is difficult to investigate the exact degree
of permutation polynomials corresponding to cycles in
general. In Table 1, the exact degrees of permutation
polynomials corresponding to a small eycle or a product
of pairwise disjoint simall cycles are shown,

II1. FLEXIBLE SECRET SHARING SCHEME

Secret sharing scheme was proposed by G. R, Blakley and
A, Shamir independently, Blakley used hyperplanes and
Shamir used polynomials on a finite field, In this paper
Shamir’s (k,n) scheme is adopted but Blakley scheme
could be used also, Here n is the number of users and &
is threshold.

In a real situation, it happens that secret information
should be modified, However, in this case, all shares

must be changed and this is not considered to be real-
istic. To overcome this difficulty, we introduce a flexible
secret sharing scheme using polynomials on a finite field.
Shamir’s scheme

Shamir’s scheme picks up & - 1 coefficients randomly
and tnakes a polynomial

f(m)=S+dgw+ﬂgzz+...+ak_1$kwl (16)

with a constant of the secret s, and gives §; = f(wu;) to
user i as a share, u; is an identifier of user 1.

Any k users can recover the secret s, because k equa-
tions

8+ a1+ agul 4 o goquf (17

S SPE L FRRRTE PO
can determine k unknowns, in particular the secret s.
Flexible scheme
Consider the case that the secret s is changed to new
one s'. In this flexible scheme, all shares given first, then
a polynomial g{z) is determined as to cross all shares and
the new secret,

The degree of polynomial g(z), n, is usually much
higher than the degree of original polynomial f(z), k.

g(m) m.s"-{-b]m—l-bzmQ"l""“*‘bnmn (18)

Hence, any k users cannot recover secret s',

To overcome this difficulty, n — &k -+ 1 coefficients are
made public. Then the number of unknowns is (n 4+ 1) -
(n—%+1) =k, and any k users can recover the secret &'
from the equations below. Higher coeficients are public.

8" b brug + boud 400 4 b ulb !

= 5 — byub — oo bpul

(19)
1:‘:1:1,1'3,' I A

We need a trusted *dealer” who decides f(x) to dis-

tribute shares, and calculates the new polynomial g(z).

However, the dealer does not have to get all shares and

the new secret, nor calculate g{z}. His job at updating is

to calculate higher n — & + 1 coefficlents to publish, To
do this, he has only to know

J»“l:"m"':ﬂm

here § = §' — 5 and w; is the identifier of user 7. Then he
can calculate polynomial A{z) which crosses

(‘51 0)1 (“h 0)1 ('“21 0): Tty (un:_{])-
This polynomial i(z) must be a polynomial of degree n:

h{z) =&+ ey + caz? 4 o+ + cpa® (20)

Two polynomials g(2) and h(x) + f(z) are iden-
tical, because both of the polynomials cross n + 1
points (0,8"), (11, f(u1)), (ua, flu2))y o+ (uns f(un)) and
both degrees are same, n.

Higher n — k 4 1 coefficients of h{2), ek, Ch+1y "1 0n,
made to be public. These coefficients are same as

—1l~



Table 1: Distribution of permutation polynomials of various cycle structures, ¢ = 2™ > 4

cycle(s) | degg—2 |degg—3 |degqg—4 deg ¢ —5 note B
2-cycle 1 0 0 0
3-cycle 1 0 0 0 m odd
?,“:% ﬁ'i 0 0 m even
7. 3(7-86 -
4-cycle ﬁﬁ% T2 (e=3 ﬁ:ﬁfﬁ:‘é} 0 m = 0 mod 4
1 0 0 0 m = 1,3 mod 4
é%% q_z_?)_:_a 0 0 m= 2mod4
2-2 permutation g—:—} 0 a-_ljg 0
: T_Gg¥1z —8){g=1 3(g=8) B -
28 permutation | {=3fosy | (a)tea) | GHG-0T | Go-aG=a | M= 0mod®
—Bq+18 -6 -
(%;33?;:_1? (q_g)(g_‘i) D 0 m = 1, 5mod 6
(?;;2!(11—1:;; f"“g q—g; 0 Sta8) 0 . m = 2,4 mod 6
_ ~5{a- - _
A1 | (eoilest | (ooe-aig=a] | fg=ai-aig=a) | M =3 mod 6

by by 41, + -+, bn respectively, because coefficients of degree  [10) J. H. van Lint and R. M. Wilson: “A Course in Combina-

k or higher of f(z) are all zero,

torics", Cambridge University Press, 1992

Any k users can recover the new secrets 5/ in the same {11} Y. Temura and E. Okamoto: "Congept and Implementation

way in the previous discussion:

of Flexible Secret Sharing Scheme"”, Proc, of C85'98, 1998

[12) K. Martin and J. Nakahara, Jr: " Updating the Parameters of

8" by + bgud ook by gud

an Established Threshold Scheme”, Private Communications,
1998

=S - Ck’u:-“ —vimcpul (21) [13] Y. Tamura, M. Tada and E. Okamoto: "Update of Ac-

t=dy, i,y g

This means %k users can recover g(xz) directly, not
through A{z).
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Abstract In this paper, we propose new k-out-of-n signature schemes. As far as the knowledge of authors, all the
previous schemes are “at least” k-out-of-n signatures. This means that in the signature systems, at least k persons
agree on the message to be signed. More concretely, we propose “just” k-out-of-n signature schemes. To achieve
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Abstract— We present a variant of the Boneh & Franklin Identiy-based Encryption IBE scheme
to derive an authenticated symmetric key-exchange protocol, when combined with a signature scheme.
Our protocol uses IBE as a secure channel to establish a symmetric key between two users and, after
that, further communication can be done by symmetric cryptography, much faster than pairing-based

cryptography,
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1 Imntroduction

The concept of identity-based cryptography was first
proposed in 1984 by Adi Shamir [10]. In his paper,
Shamir presented a new mode] of asymumetric cryptog-
raphy in which the public key of any user is a char-
acteristic that uniquely identifies himself/herself, like
an e-malil address, Since the public keys are not ran-
dom numbers, digital certificates are needless. After
Shamir’s model, many researchers tried to propose a
cryptographic scheme in this model, but only in 2001

an efficient one was proposed by Dan Boneh and Matthew

Franklin [3), based on pairings,

However, the IBE scheme of Boneh & Franklin {which
we call “BFs scheme” in the remainder of this paper)
depends on a random number chosen by the sender of
the message, and if this random number is not carefully
chosen, the security of the scheme is seriously compro-
mised, This oceurs because the BF's scheme encrypts
a message using an XoRr function, and as proved in [4],
XOR-based functions can be easily broken by a chosen-
plaintext attack if the same key is used more than once,

In this paper, we propose a variant of the BF’s scheme,
replacing the XoR function by a symmetric encryption
algorithm, With this change, BF’s scheme can be used
as a key-exchange protacol provided that it is combined
with a signature scheme to guarantee mutual authen-
tication of the parties involved,

There are similar key-exchange protocols based on
pairings, among them we can cite [5, 6, 9, 11, 12, 8].
But they are not based on “BF’s scheme”. [8] is a
key-sharing scheme, not a key-exchange one.

This paper is organized as f{ollows: Section 2 sum-
marizes ID-based cryptosystems. Section 3 reviews the
IBE BE’s scheme and shows the need of a carefully cho-
sen randomm number, Section 4 presents our variant of
the BF’s scheme, for the key-exchange purpose. Section
5 reviews a signature scheme to be used together with a

* University of 3 Paulo, Brazil - rt@ime,usp.br
t University of § Paule, Brazil - waldyrbenits@ip2.com.br
! Univevsity of Tsukuba, Japen - okameto@is.tsukuba.acjp

Identity-based cryptosystem, pairing, bilinear map, elliptic curve cryptography, key-

modified Boneh & Franklin IBE, so ag to guarantee au-
thentication of the two parties in the protocol (a.k.a.
mutual aunthentication). Finally, section 6 concludes
the paper and proposes further research.

2 Identity-based cryptosystems

2.1 Bilinear maps

Let G'ibe an additive group of prime order q and Gq
be a multiplicative group of the same order, in which
the discrete logarithm problem (DLP) is assumed to be
hard. Concretely, we can think of @) as a group of
points on an elliptic curve over Fy, and (7 as a sub-
group of the multiplicative group of a finite field F2
for some k € Z*. Let P be a generator of (7; and let
e: (1 x G4 — G, be a mapping with the following
properties:

1, bilinearity: A mapping e is bilinear if e(a P, bQ) =
e(P, @)% for all P,Q € G4 and for all a,b € F,
where Fy is a finite fleld of order g;

2. non-degeneracy; A mapping is non-degenerate if
exists @ € G so that e(P,Q) # 1, that is, the
mapping does not map all pairs in 71 X Gy to the
identity in Gy

3. Computability: A mapping is efficiently computable
ife(P, Q) can be computed in polynomial-time for
all P, € G,

Examples of pairings that satisfy these properties are
the Weil pairing and the Tate pairing. Due to many
improvements on its computation [1, 2], we consider
the Tate pairing more efficient than Weil pairing.

2.2 Key generation

In 1D-based cryptosystems we need a private key gen-
erator {PxG) which generates a pair of keys based on
the identity of the user. After generating the keys, the
PKG uses a secure channel to send the private key to
the owner of the identity.
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The process of generating keys is the following: let
ID be an identity of a user Alice (e.g., her e-mail ad-
dress}, First, PKG computes Alice’s public key (Qatice),
by mapping her identity to a point of the elliptic curve
(using a hash function H,) and then, PKG uses his mas-
ter key s € Fy to compute Alice’s private key (Satice),
multiplying Qaics by s. This process is summarized
below:

Qah’ce - HI(I-D) (1)
Satice = SQche (2)

Here, to strengthen the security model, we can view
the hash function H; as a random oracle, defined as
follows:

oy {0, 1}* —

3 The IBE BF’s scheme

Let (QbobyShob) be a pair of Bob's identity-based
keys; Rpy e be a standard public key of the entity that
generates Bob’s keys, so that Rprg = sP, where s is
PKa’s master key and P a generator of G;. Let m be
a message that Alice intends to secretly send to Baob,

The original 18% scheme proposed by Dan Boneh and
Mattlhew Franklin [3] is as followa:

3.1 Encryption
Alice chooses a random number r € F, and computes
(@ represents exclusive-OR {(XOR).):
{ U =P (3)
V =ma Ha(e(Rpra, rQos))
and sends the ciphertext (I/, V) to Bob,

To increase security, we can view the hash function Hy
a3 a random oracle, defined as follows:

Hy: Gy — {0, 1}'.

Notice that Alice uses Bob’s ID-based public key to
encrypt m. To do that, she needs only to know his
identity (e.g. Bob’s e-mail address).
3.2 Decryption

Bob, after receiving (U, V) from Alice, performs the
following computation to recover cleartext mu

m =V @& Hz(e(U, Stes)) (4)

Clearly, we can see that Bob uses his ID-based private
key to find m,

3.3 Verification

Let us show how Bab is able to recover m:

V & Ha(e(U, Svob))

=V & Hs(e(rP, Sbos)), as U =rP by(3)
=V @ Ha(e(rP, 5Qrob)) 88 Spop = 5Quar by(2)
=V & Hy(e(P, Qoob))™, by bilinearity

=V & Ha(e(sP,rQsob)): by bilinearity

=V ® Hs(e(Rpre,7Qom))y  2as Rpgg = sP
= m, due to equation (3)

V =m@ Ha(e(Rrprc,Qbob))

3.4 Security of Br's scheme

Schemes based on pairings, like BF's scheme, de-
pend not only on the hardness of DLP, but also on the
hardness of & problem known as bilinear Diffie-Hellman
problem (BDHP). First, we define BDHP as follows:

e BDHP — Given (P, aP, bP, ¢P) C G, compute
e(P, P).obe

We are going to show that, even if the DLP was hard,
an adversary could obtain advantages if the BDHP was
easy,

Suppose that Alice sent a message m to Bob, using
BF's scheme. As we saw, Bob received (U, V) from
Alice. If an adversary Charles intends to decrypt m,
he must compute m using equation (4). However, as
Spep 18 unknown to Charles and assuming that pLp is
hard, Charles fails to compute e(Sp.p, ) and cannot
recover mi.

Now, let us assume that Charles is able to easily
solve the BDHP in the group chosen by Alice, We can
see that Charles knows the following values:

* Rpxg = sP;

® Quob = Hi(IDpop) = hP (for some h € Fy, be-
cause Qpop 18 a point in the elliptic curve);

o {/ = rP, because we assumed that Charles had
intercepted (U, V).

As DLP is hard, the values s, h and r are unknown to
Charles, but assuming that he can solve the BpHP, if
he knows sP, hP and rP he can compute e(P, P)*h".
Nevertheless:

B(Sbob,U) = G(SQbobarP)
= eo(shP,7P)

E(P, P)ahr
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Thus, assuming that the BDHP is easy, an adversary
can compute correctly the pairing e(Syep, /) and re-
cover 1, even if the DLP is hard, that is, an adversary
needs neither Spop nor s to decrypt m.

We can guarantee the security in pairing-hased cryp-
tosystems by choosing appropriately the parameters k
and ¢ so that both the DLP and the BDHP are hard,

3.5 On the selection of a random number »

We saw in equation {3) that Alice must choose a
random number ». In the original paper, the authors
do not mention the importance of this choice, To in-
crease the security of the scheme, Alice must choose a
uniformly distributed and independent number, so as
not to give any chance for an adversary to obtain ad-
vantage. For example, let us assume that Alice chooses
p from a regular sequence », r+d, r+ 2d, ... (for some
integer d). The adversary only needs to find one r and
50, the others are easily predicted, and the security of
the system is compromised.

An extreme situation occurs when Alice chooses the
same 7 for two different messages, If she does that, any
adversary can perform an attack similar to the one de-
scribed in [4] — and summarized below — and recovera
Tit.

Let us suppose that Alice sent messages m; and my
to Bob and she carelessly chose the same ». In the
equation (3), we see that the value U will be the same,
since it depends on r, but the value ¥V will be different,
as it depends on m. So, let ¥ and Vi be the values
computed by Alice when she sent m) and g, respec-
tively.

Besides, as the values of Ha(e{Rpra, rQba)) for both
messages (my and my) remain constant since they do
not depend on im, we can call them 2.

Thus, let us rewrite the second equation of (3) as
follows:

i =nmu®e
{ Va =neodrx

If an adversary Chatles intercepts values V1 and 15,
he can compute:

V =Veh
=(m @z)® (m da)
=1m; § ma

By knowing the value V, if an adversary obtains m;
(without loss of generality), he can perform a known
plaintext attack and gets mg successfully,

This weakness is because m is XOR-ed with a com-
puted value that depends on a random number. To
avoid this problem we propose next to replace the XOR
function by a nonlinear function,

4 A key-exchange protocol

We propose a variant of the BP’s scheme, so that
it can be used as a key-exchange protocol. It is well
known the existing symmetric cryptography is much
faster than asymmetric one and, in practice, asymmet-
tic cryptography is often used as a key exchange pro-
tocol to exchange a secret key which is then used to
ensure secrecy -between the parties.

We can do the same with BF's scheme by replacing
the xoR function by a known symmetric encryption
algorithm (e,g., 3-DES or AEs). With this substitu-
tion, if Alice wants to communicate with Beb, she uses
IBE only to exchange a secret key with Bob and then
they can exchange secure messages using symmetric
cryptography, which is known to be much faster than
pairing-based cryptosystems, _

The proposed variant is as follows: notice, by equa-
tions (3) and (4) that Alice and Bob compute the same
value {Alice computes Ha(e(Rpxr g, rQuos)) and we have
proved that this value is equal to the one computed by

Bob, H3(e(U, Seos)). Let us call this value &,

In our protocol, the value &, instead of being XOR-ed
with a message by Alice to compute the encryption of
m, (that is, V), it will be used as a aymmetric encryp-
tion key hetween Alice and Bob. In this case, Alice does
not have to carefully choose a uniformly distributed
and independent random number for each message she
intends to transmit as occurs in the original scheme.
She only needs to choose one random number to ex-
change a key with Bob and after that, exchange as
many encrypted messages as needed. If she later wants
to change the secret key, she chooses another random
number and establishes another key.

Moreover, as the key value depends on the hash func-
tion Ha, we can impose the hash value to be as large as
we want, For example, we can define the hash function
to map the pairing value to a 128-bit key, or 256-bit
key or even a larger key,

The first step of our protocol is presented below:

4.1 Key establishment phase I

As in the encryption phase of BF's scheme, Alice
chooses a random number r € Fy and computes:
=rP

u (5)
k= Hale:(rQvobs RPrG))
and sends (U) to Bob.

4.2 Key establishment phase II

As in the decryption phase of BIs scheme, Bob will,
after recelving (U) from Alice, perform the following
computation to recover k:

k= Hales(Seon, U)) (6)



With this step, Alice is sure that only Bob can re-
cover k, since only he knows the appropriate Sy, How-
ever, for this protocol to be considered secure, Bob
needs to be sure that the message was sent by Alice.
Thus, to complete our protocol, it is necessary that Al-
ice signs some information she sends to Bob, so as to
prove that she is, in fact, Alice.

In the next section, we will see the complete key
exchange protocol, combining BF’s scheme with a sig-
nature scheme, to obtain mutual authentication.

5 Using a signature scheme together with

BF’s scheme

We saw in our key exchange protocol that Alice must
sign some information she sends to Bob, in order fo
prove that she is Alice. In this section we will see an ex-
ample of a signature scheme proposed by Florian Hess
[7}, that can be used together with Br’s scheme.

B.1 Signature

If Alice wants to sign a message m, first she chooses
a random number ¢ € F; and a random point Py € G}
and computes:

T=C(P1)P)t- (7)
Afterwards, she computes:
h= Hy(m||r) (8)
and at last,
W = hSqlice +tP1 (9)

Now Alice’s signature on m is (¥, h). We can think of
Hy as a random oracle defined as follows:

Hy:{0,1}* — F,

Notice by equation (9) that Alice uses her 1D-based
private key Sajee to compute the signature on m, See
also that the sum in equation (9) represents a sum of
points on an elliptic curve, since hS.ic. and iP, are
both points in G,.

5.2 Verification

If Bob wants to verify that the signature comes from
Alice, he must compute:

r =C(I‘V,P)'C(Qa!icm““RPKG)h (10)

After computing r, Bob accepts Alice’s signature as
valid if, and only ift

h = Ha(m]||r) - (11)

Notice that only public parameters are used to verify
the signature, meaning that anyone is able to perform
such verification,

5.3 Proof

Now, we are going to prove that the equation (10)
holds for a valid signature.

e(W, P) - e(Qaiice, —Rprc)®

= e(ASatice +1P1, P) - e(Qatice, —Rpx )"
= e(hSaiica +1P1, P) - e(Qatice, —5P)"
= e(hSatice + tP1, P+ &(Qatics, - P)*"
= e(hSatice + tP1y P) + €(sQatice, P) ™"
= e(hSatice + 1Py, P) - €{Satice, P)~"
= e(hSatice + tP1, P)» e(—hSatice, P)
= e(hSatice — hSatice + tP1, P)

= e(tPy, P)

= o(Py, P)!

=7 (due to equation (7))

In Hess’ schemme, we can see by equation (11) that a
verifier needs to know the message m so as to perform
the verification. There are other kinds of signature
schemes, which include message recovery, in that the
verifier by using sender’s public key, is able to recover
the message. Examplesof the latter are RSA signatures,

If we use Hess’ schemne to authenticate the sender Al-
ice, our complete key exchange protocol will be as fol-
lows: after computing & by equation (5), Alice signs k
with her private key Satice, using & in Hess’ scheme (equa-
tion 8) instead of m. After that, Alice sends U and
(W, h) to Bob, where (W, k) is Alice’s signature on 4.

Bob, to receive the secret key &, first uses his private
key Shoo to compute k (this way, Alice is sure that only
the authentic Bob could deerypt correctly) and then
he checks if (W, k) is a valid signature of Alice on &.
If this verification is correct, they can start exchanging
messages using k as a secret key; otherwise, he rejects
k.

Alice can choose any signature scheme to combine
with BF's scheme. If she decides to use a message-
recovery signature scheme instead of Hess’ scheme, she
has to sign the value U, instead of k, otherwise anyone
could recover the secret key & by only using Alice’s
public key. Bob, after receiving the signed value U,
performs a signature verification to check if I/ comes
from Alice, If not, he rejects U.
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In our key exchange protocol, once Alice and Bob are
authenticated and a key is exchanged, any message be-
tween theni can be encrypted by an agreed upon sym-
metric algorithm (for example, Alice sends C = C)|({})
and Bob computes m = Dy (C), where Dy is the inverse
of Cy, implemented by choosing secure algorithms such
as ALS, 3-DES efc.

6 Conclusions and further research

We have shown how to use IBE BF's scherne as a key
exchange protocol by replacing the xOR operation by
a symmetric algorithm and using it fogether with a
signature scheme, so as to establish mutual authenti-
cation. This way, we avoid the dependency on a ran-
dom number choice that can be exploited in the orig-
inal protocol, if the sender does not carefully choose
this random number. Moreover, our protocol allows
the pairing-based scheme to be used only as a secure
channel to transmit secret keys, and, after that, mes-
sages can be exchanged by symmetric cryptography,
much faster than asymmetric cryptography, especially
pairing-based cryptography.

We suggest, as further research, a comparison be-
tween our proposed key-exchange protocol and other
existing key-exchange protocols [5, 6, 9, 11, 12) in terms
of security and performance. Another interesting line
of research would be to conduct attacks against our
protocol, We think it is strong against the known at-
tacks but we advice further research to be done.
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Abstract— We propose some problems based on bilinear pairing such as Tate pairing over the super
singular curve. Qur problems consist of five variations and are designed to realize fast computation.
So far, many cryptographic schemes have been proposed using bilinear pairing. However, our problem
are different from those problems. We also construct three-move type signature schemes using our
problems. By analyzing our schemes, we conclude that our schemes obtain good efficiency in some
areas, We hope that our problems will give an efficient cryptographic primitive.
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1 Introduction

The pairing-based cryptosystem is a rich area in cryp-
tographic community. Recently, many cryptographic
schemes based on the pairings have been developed.
For example, there exist the following applications:

o Short signature [BLS02],

o Apggregate signature {multi signature) [BGLS03],
o Tripartite Diffie-Hellman key-exchange [Jou00Q],
e Identity-based cryptosystem [SOMO00, BF01].

The authors think there exists two reasons why this
aren is developing at such a pace. One reason is that
the pairing itself has the special property: the mapping
ig bilinear, Ancther reason is that the security of thosse
schemes also depends on the specific problem: discrete
logarithm problem in elliptic curve (ECDLP). In this
system, the addition operation in an elliptic curve cor-
responds to modular multiplication in common public-
key cryptosystemas,

We now focus on the problem which is used in cryp-
tosystern. We take the example of the RSA prob-
lem (RSA) which is the most used problem worldwide
[RSAT78|. Nowsadays, there are several variations based
on RSA. Note that those problems gives their own use-
ful features. We show some examples:

¢ The multi-prime RSA problem (Sil00] realizes fast
computation,

e The strong RSA problem [BP97] is suitable for
group signature cryptosystem [CV91],

o The approximate e-th root problem (AERP) re-
alizes fast signature generation such as ESIGN
[OFMO8].

In this paper, we propose pairing-based problem.
Our main goal is as follows. In the same way as the
RSA variant problems, we propose some variations which

* University of Tsukuba, Institute of Information Sciences
and Electronics, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573,
Japan, {ken, okamoto}€is.tsukuba,ac.jp

t  Technische Universitit Darmstadt, Fachbereich Infor-
matik, Alexanderstr.10, D-64283 Darmstadt GERMANY,
takagidinformatik.tu-darmstadt.de

Tate pairing, Elliptic curve, Pairing-based problem, Three-move type signature

are pairing-based problems. Consequently, we would
like to give desirable contributions in crypto commu-
nity.

There are five variations named RFP, LFP, SPP,
SPUP and SPSP, in this paper. The remarkable point
of our problems is that our problems are based on self-
exponent pairing although the conventional pairing-
based problems depend on ECDLP,

In previous work, Joux proposed some related prob-
lems [Jou02]. To define more strictly, we divide his
problem into two ones, i.e,, RFP and LFP. Now there is
no known reducibility between them. We explain that
why such a problem is difficult to solve and why we can
not give a solution of reducibility. On the other hand,
the definition of SPP (resp. SPUP and resp. SPSP)
is the first attempt, to the best of author’s knowledge.
SPP is actually a pairing-based self-powering problem.
SPUP is an inverse type of SPSP, i.e, the given part of
SPUP is a find part. In the same way, the find part of
SPUP is a given part of SPSP,

To improve our problems, we design our problems to
realize fast computation. Now there are actually two
funetions of the pairing: Weil pairing and Tate pairing,
‘Weil pairing can be constructed using Tate pairing and
takes large amount of work compared to Tate pairing.
For further information, see {GHS02]. Hence in this
paper, we explain only Tate pairing for convenience.

Finally, we construct some cryptographic schemes
and estimate our schemes. In this paper, we use three
signatures which derived from three-move interactive
identification schemes like [Sch90]. Our goal in this
phase is to make several variations of the signature
schemes and evaluate them in terms of the security, the
computational efficiency and so on. Each parameter of
our scheme i3 either an element in G4 or in Gy, where
G i8 an addictive group and G, is & multiplicative
group, By taking this evaluation, we confirm that our
schemes give good efficiency in some cases. We strongly
believe that many efficient schemes will be discovered
in cryptographie applications.
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This paper is organized as follows. In Section 2, we
construct well-designed Tate pairing and propose some
problems using such a pairing. We also evaluate the
computational efficiency of our problems. In Secticn 3,
we propose some signature schemes which are derived
from three-move identification scheme. The security of
our schemes is based on our problems. In Section 4,
we evaluate the performance of our schemes by com-
paring them with each other, including ECDSA. The
conclusion is given in Section 5.

2 Tate Pairing

In this section we define the Tate pairing. Although
there are several different variants of Tate pairing, we
define it as suitable for the cryptographic implemen-
tation. Indeed, we follow the definition from paper
[BKLS02].

Let p be & prime number larger than 3. Let E be
an elliptic curve over finite field IF, defined by % =
z® + az + b, We choose prime number ! such that
ged(l, p) = 1. Let k be the smallest integer that satisfies
l}(p* — 1) and I|#E(IF,). Here fp is a function whose
divisor div(f) is equal to {(P) — (), where P is a
point in E(IF ) and @ is the point of infinity. The
Tate pairing is a function

() s Ep)[l] x E(Fp)[l] — I,
which is defined by

(P,Q) = (Fp(@)F -, (1)

where P € E(IF;)[Y] and Q € E(F,x)[l]. The most
important property of Tate pairing is the following bi-
linearlity: (nP,Q) = (P,nQ) = (P,Q)" foralln € Z.
Note that @ is a point of elliptic curve over extension
field IF,» and two points P, @ are linearly independent,
namely (P, P) # 1.

In the following we treat the Tate pairing constructed
on the super singular curve B : 2 = a® + az over I,
where p = 3 mod 4 and some a € ¥,. The MOV degree
of the curve is 2, namely k = 2. The order of E is equal
to p+ 1, and thus we have l|(p + 1) and | A(p — 1).
‘The points of E(IF2){l] can be represented using the
distorsion map, namely ¥(Q) = (—=z,iy) where {1 €
Fp2,i* = ~1 and @ = (z,y) € E(F,). Barrsto et
al. pointed out that the scalar value in IF, can be
discarded if { J{q — 1), because the final multiplication
of the Tate pairing computes the exponent (p* — 1)/!
in ¥p2 [BKLS02). The Tate pairing over the super
singular curve is computed by the following Miller's
algorithm. Let n be the bit-length of prime ! and let
[[4]) be the i-th bit of L.

We name Step 3 and Step 4 TDBL and TADD, re-
spectively. Step 5 is the final exponentiation of the
Tate pairing, Let T' = (zy,31), P = (z2,32), T+ P =
(z3,y3), and 2T = (z4,y4) With T £ O, P # O, and
T # £P. Then ECDBL and ECADD are defined by

(N3t T) = 221, Mt (1 — m3) — 1) (2)
(A2aa(T\ P) — 31 — w3,
Aaaa(z1 — z3) — 1), (3)

(w4, p4) =
(2:3)3)‘3) =

Table 1: Compufation of Tate pairing

INPUT I,p, k,n, P € E(Fp)li}, and @ € E(IF,)]l]
OUTPUT (P, Q)
LT=Pf=1€lFy
2Lfori=n—-2tc0
3: T =ECDBL(T), f= fA¥T,Q)
4:  if {[§] = 1 then
T = ECADD(T, P), f = fIt%(T, P,Q)

5: f=fO'-U e Fp
6: return f
where
Aai(T) = (32 + a)/(2m1)
and

)\add(Tn P) = (yl - yﬂ)/(ml —:I:z)-

The lines {§* and 19" are defined as follows:

rlibl(Ta Q) A U Azib1(1-|)(""71-)(5‘n - 1!1), (4)
BT, P, Q) 1 y — 21— Aaaa(T, PY(z1) (& — ). (5)

Note that the coefficient of lines If¥ and 139¢ are in IF,
but the value 1T, Q) and I{44(T, P, Q) for ¥(Q) =
{—=,1y) are elements in extension field IFy2, Therefore
the updating of f = f218%(T, @) and f = fig%4(T, P, Q)
is computed in extension field IF,.

2.1 Self-Exponent Pairing

In the following we consider the Tate pairing over
the super singular curve E(IF,) : 3% = 2® + az. Let
G = {gt"- Mg IFi2}. In this section we deal
with the self pairing problem, namely (S,¥(S5)) for
S € E(IFp)[!). Indeed, we consider the following prob-
lem.

Self-Powering pairing Problem (3PP): For a
given element v € G, find the point § € E(IF,)[{]
such that (S, ¥(5)) = v.

For a given v there are only two different 5 and —8§.
Consequently, the following theorem can be proven.

Theorem 2.1 For any element v € Gy, there is a
unique element S € E(IF,)[I] up fo the sign such that
(S, 0(5)) =v.

Proof. We assume that there are two different 5;, 8, €
E(]Fp)[l] such that (S],‘I’(Sl)) = (Sz,lI’(Sg)) = W
There exist an integer 1 < ¢ < I that satisfies 5} =
¢S,. Then we obtain ¢? = 1 mod ord(v) due to v =
(51, 2(81)) = (c82,T(cS)) = (2, U(S)) = v
The order of Gy is ! and thus ord(v) = 1orl. If
ord(v) = 1 holds, we have ¢ = 1 and the theorem is
true. Otherwise ¢® = 1 mod ! has two solutions ¢ = 1
and ¢ = [ — 1, Consequently, the theorem is true.

Additiona.lly, we propose the following problerhs which
ara related to SPP.
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Self-Powering United pairing Problem
(SPUP): For a given element 7,8 € @), find
an element v € Gy such that (R, ¥(R)) = 7,
(S,¥(8)) = s, (R,¥(S)) = v and R, 5 €
E(TF,)[].

Self-Powering Separated pairing Problem
(SPSP): For a given element v € Gy, find an
element r,8 € Gy such that (R,¥(R)) = r
(5, ¥¢(8)) = 3, (R,¥(S)) = v and RS €
E(Fp)(i).

‘We now discuss the difficulty of the SPP. Joux intro-
duced the variant of the SPP [Jou02]. To investigate
more rigorously, in this paper, we classified the problem
into the following two problems:

Right-Fixed pairing Problem (R¥P): For a
given v € G and a fixed Q@ € E(IF,}[I), find the
element P € E(IF,)[l] such that (P, ¥(Q)) = v.

Left-Fixed pairing Problem (LFP): For a
given v € G; and a fixed P € E(IF,)[l), find the
element Q € E(IF,)[!] such that (P, ¥(Q)) = v.

We discuss the difficulty of these problems in the fol-
lowing. The Miller’s algorithm computes a sequence of
exponent of P based on prime !, We denote them hy
Py =P PR,Py..,Pe,Pc = O, where k is the sum
of the bit-length and the hamming weight of {. These
points P; = (z;,1;) are used for computing the coeffi-
cient of lines I§* %' by means of equations (2) and (3).
If ¥(Q) = (—=z, yi) is fixed, we can generate an equation
with variables z;, for i = 0,1,..,k — 1 due to equa-
tions (4) and {5). The variables z;,¥; are represented
by division polynomials of base point Py = (zo,%0)
{8il86]. Thus for given v and fixed ¥(Q), we obtain a
polynomial whose solution is the point Py, However the
degree of this polynomial is exponentially large at least
12, and thus we can not solve it in a polynomial time.
If P = (z,y) is fixed, we can determine all points P; for
i=0,1,..., k- 1 using equations (2} and (3), and then
all coefficients of lines I§%, I8 can be obtained from
equations (4) and (5). Note that each line equation of
a linear forms in variable ¢ and y. When we update the
accumulator f in TCDBL we have to compute squar-
ing of f. In this case the degree in %,y increases twice,
and thus we have to solve an equation over IF, with
exponentially large degree, in order to find P = (z,y).
Finally, the SPP ig a harder problem, because we have
to solve a multivariable polynomial in (z;, ;) with ex-
ponentially large degree.

2.2 Efficiency Estimation

We estimate the efficiency of computing the Tate
pairing over the super singular curve. We assume that
parameters p, ! are randomly chosen and let b,,b; be
the bit length of p,l, respectively. The estimation fol-
lows the paper [IT02], namely we use the simplified
Chudoncvsky Jacobian coordinate, Let M be one mul-
tiplication cost of IFp. One multiplication and squaring
of I, can be implemented with 4M and 2M. Izu and
Takagi estimated that TDBL and TADD requires 2244

Table 2 Variations of the pairing problem.

Problem C;l;in f)‘:::f Equation
RFP @, P v = (P, U(Q))
LFP Pv @ v = (P, ¥(Q))
SPP ] S v = (5, ¥(S5))

= (R, U(R))
SPUP T, 8 Y s = (S, ¥(8))
v = (R, ¥(S))
r = (R, ¥(R))
SPSP v T, § 8 = (8,%(9))
U= (Ra \I'(S))

and 210, respectively. The totel estimation for eval-
uating the Tate pairing without final exponentiation
requires 32.5; M, for example, 5200M for b; = 160.
The final exponentiation with exponent (p? — 1)/i re-
quires 4(2b, ~ b)) M using & standard binary method,
Therefore, the total running time is (85, + 28.55)M,
for example 86560 for b, = 512,b; = 160. The com-

- putation (P,a@) for 0 < a < ! additionally requires

the computation of e@}, namely 20.50,M and 32800
for o = 160. The computation (P,Q)¢ for 0 < a < !
additionally requires 4b; M and 6400 for b; = 180.

Table 3: Comparison of several computation.

Pairing Amount of work j
(P,R) (8b, + 28.50) M B656M
(aP, Q) (8b,, + 49b;) M 1,19364
(P Q) (8b, + 32.55) M 92067

3 Some Applications

In this section we construct some cryptosystems whose
underlying problem are our proposed ones, We propose
three-move type signature schemes such as [Sch90}.

Let G4 be an additive group whose order is a prime
g and G2 be a multiplicative of the same order g. (-,+}
is a function

('1') : Gl x Gl —+ G21

which satisfying the bilinear pairing described in Sec-
tion 2. For simplicity of our protocols, small letter is an
element in G, and capital letter in G2 unless explicitly
defined in another way. Finally, we define the following
cryptographic hash functions,

H1 H {0,1}*—-’]Fq,
Ha @ {01} > Gy,

3.1 Schemel

Key generation:
s Pick up two elements P, S.
¢ Compute v = (P, S).



Table 4: Structure of our schemes.

Scheme |! Problem | Public-key wslf:}; Commitment** | Challenge*! Responce*! Verification
RFP P . - - z' = (P Y
schemo 1 || 1pp | = (P.S) 8 =1 e=Hi(z,m) (Y ={r+e)S e L 3, (!, m)
pp— i i _ o = (PYV.B)
Scheme 2 LFP V = —sP g €T = (P, R) E= H2($1m) Y = R4 sE E ; 'Hg(a;’,m)
Scheme 3 || SPP |v=(58 | § | 7 (B.R) |, _ Hilz,x,m) | Y = R+ef o = (= HY)
' x = (R, 5)2 + Xy e L Hl('ﬂ',m)

Note: In the above table, the column of *1 represents a parameter related to the three-move type identification.

Public-key /Secret-key: Signer’s public-key is (P, v)
and secret-key is 5.

Signature Generatiom:
¢ Pick up a random number r € IF,.

« Compute
r

UH(,m,m},
(r + €)S.

T
e
Y
Signature: The signature for a message m is (e, Y).

Verification:
¢ Compute o' = (P, Y)v™°.
o Check whether e = H;(z’,m) holds or not.

This equation holds since

(P,Y)o* = (P, (r +e)S)v™
= yTtey—e
= 1)7'
= {.

3.2 Scheme 2

Key generation:
¢ Pick up an element P and a random number s €
TF,.
o Compute V' = —3sP.

Public-key /Secret-key: Signer's public-key is P,V
and secret-key is g.

Signature Generation:
» Pick up a random element R.

¢ Compute
z = (P, R),
E =H(z,m),
Y =R+ sE.

Signature: The signature for a message m is (£,Y).

Verification:
s Compute 2’ = (P,Y}(V, E).
o Check whether e = H; (2, m) holds or not.

This equation holds since

(P,YYV,E) = (P, R+ sB)(~sP, E)
(P, RY(P,sE){P,E)~*
(P R)(P, E)*(P,E)~*

¥

IO (O T

)

3.3 Scheme 3

Key generation:
s Pick up an element S,
o Compute v = (8, 5).

Public-key /Secret-key: Signer’s public-key is v and
secret-key is 5.

Signature Generation:
o Pick up a random element R.

o Compute
T = (Rn R),X = (R'l S)Z:
€= H(wIX| m):
Y =R+ eS.

Signature: The signature for a message m is (x,e, ¥},

Verification:
s Compute z’ = (vex)~¢(Y,Y).
e Check whether e = H(z',m) holds or not.

This equation holds since

(v*x) (Y, Y) = (v*x)"*(R + S, R+ ¢5)
=v~¢ x~¢(R, R}(R, eS){(eS, R)(eS,e5)
= v"*‘: x~(S, 5)¢°((R, 5)?)%(R, R)
- 'U-e x—eve xex
=1

4 Discussions

In this section we analyze our schemes. Table 4 gives
the structure of our schemes,

On Scheme 1 :
Reducibility: It is not known at present to hold that

RFP reduces to (<) LFP and LFP < RFP. Those re-

ductions remain open problem. This means that even




if an adversary knows the algorithm to solve RFP, she
can not break Scheme 1, because Scheme 1 is LFP-
based scheme. If we modify the protocol of Scheme 1
by changing v = (P, 5}, 2’ = (P,Y)v™* into v = (S, P},
z' = (Y, P)v™¢, such a modified scheme based on RFP-
based one. In this case, the adversary can bresk this
modified scheme. The same argument holds in case
Scheme 2.

Fast on-line computation; In Scheme 1, ¥ = (r +
e)S, Note that when we calculate the value of Y, we
first compute (r + ¢) € Z. This means that neither
multiplication nor modular reduction is used in this
phase. Moreover, S is & fixed point since 5 is a secret-
key. Consequently, one may say that Scheme 1 requires
fast signature generation in the on-line phase compared
to Scheme 1, 2 and ECDSA.

On Schems 2

Hashing: In Scheme 2, we use the hash function s
such that Ha : {0,1}* — G1. In case of implementa-
tion, we must take care of the designing of such hash
functions. 'We need the structure to relax the hash-
ing requirement. For more information, we refer to
[BLS02].

Fast verification: As for the Scheme 2, the actual
computation in verification is ' = (P, V)(V, E}. Note
that there is no need to compute a@, (P, ¢Q) or (P, Q)*
for some P, Q and a € IF,. On the other hand, Scheme
I, 3 and BCDSA need such computations. Based on
Table 3, one may conclude that Scheme 2 realizes the
fast verification compared to the other schemes,

On Scheme 3;

Self-exponent: It is not known that SPP < ECDLP
and ECDLP < SPP. We next discuss the reducibility on
SPUP and SPSP. As a result, SPUP < SPP. However,
it is not known whether SPP < SPUP. Finally, we write
the following open problem. It is not known both SPP
< SPSP and SPSP < SPP.

Security: In verification, e is used as an exponent
since &’ = (v®x)~%(Y,Y}. Thi means that an adver-
sary can break Scheme 3 using the algorithm to solve
discrete logarithm problem in finite field (DLP). If an
adversary knows the algorithm to solve SPUP, then
she can compute y using v and z. However, we can
not describe the algorithm to break Scheme 3 using
the algorithm to solve SPUP.

5 Conclusion

In this paper, we have proposed some pairing-based
problems named RFP, LFP, SPP, SPUP and SPSP. We
also have shown that those problems can be efficient
cryptographic primitives by presenting three signature
schemes named Scheme 1, 2, and 3.

As & result, Scheme 1 realizes fast signature gen-
eration in the on-line phase. Scheme 2 realizes fast
verification thanks to a unique equation in verification.
Scheme 3 may be more secure than ECDSA. Now there
are many apen problems with respect to our problems,

Due to the lack of space, we have just focused on
the signature schemes as application. Hence the other

cryptosystem, such as encryption and key distribution
also should be considered. We believe that our prob-
lems and schemes would contribute to the cryptographic
community.
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A Fast Signature Scheme with New On-line Computation

Takeshi OKAMOTO“) Regular Member, Hirofumi KATSUNOM"Y, Nonmember,

SUMMARY In this paper, we propose a fast signature
scheme which realizes short transmissions and minimal on-line
computatlon. Our scheme requires a modular exponentiation as
preprocessing (i.e., off-line computation). However, we need to
acknowledge the existance of the following remarkable properties:
neither multiplication nor modular reductton is used in the actual
aignaturs generation (i.e., on-line computation). Qur scheme re-
quires only two operationg: hashing and addition, Although some
fast signature schemes with small on-line computation have been
proposed so far, those schemes require multiplication or modular
reduction in the on-line phase. This leads to a large amount of
work compared to that of additlon. As far as we know, this is
the first approach to obtain the fast signature without those two
calculus methods,

key words: digitel signature, on-line camputatwn, random or-
acle model, provable security

1. Introduction

1.1 Motivation

Nowadays, a signature scheme is an important too'll

for secure communication over open network. Conse-
quently, there is a strong need for more compact signa-
ture schemes to spread public-key infrastructure {(PXI)
.aystem. In this case, the compactness means the ef-
ficiency of both computational work and transmitted
data size. Such compactness is more convenient for
users and is more adaptable for various applications.

We are now going to have a look into the computa-
tional efficiency in signature schemes and focusing on
the signer’s computational work which can be derived
from a three-pass identification scheme like [23],
such a signature scheme, we can see two kinds of com-
putation for the signer: pre-computation and (actual)
signature generation.

The pre-computation can compute values without a
message to be signed, and can be executed during idle
time and completely independent of the message. This
means that such a computational cost does not influ-
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ence the real-time computing. We are defining such a
computation as off-line processing. On the other hand,
the (actual) signature generation does directly influence
the processing time because a message is indispensable
for computing, We are defining that such a computa-
tion as on-line processing.

To estimate the efficlency of a signature scheme, we
must separately congider the two types of computation.
Needless to say, the fast signature scheme with the on-
line computational efficiency, can make digital signa-
tures much more practical in a variety of scenarios.

Let us now focus on the various operations which ap-
pear in the on-line signature generation. In the case of
usual signature, there are four kinds of operationa: mul-
tiplication, modular reduction, addition and hashing.
Although multiplication or modular reduction require
a large amount of work, the computational work for ad-
dition as well as hashing is quite small. Consequently,

- the most desirable way for fast on-line computing is to

eliminate both of such heavy operations,
‘We now want to emphasize that our signature system

.in this paper is used under the following specifications:

e Some values which are independent of a message,
are always computed in the off-line phase.

¢ At the time of signature creation, only on-line pro-
cessing is performed.

Because of the above setting, if a signer wants to re-
alize a fast mgna.ture generation, she needs to reduce
the amount of work in the on-line phase. As a result,
our scheme is quite useful under the following circum-
stances:

1. In case the real-time processing ia required for a
long time: For example, suppose a user is dealing
with a streaming media, To avoid the deviation of
copyright, it i3 desirable for the server to sign the
contents using a secret-key which is different for
every user, To realize a streaming implementation,
it is necessary to create a fast on-line signature.

2 In case many signatures should be generated simul-
taneously: In electronic authentication systems, so
many userg access to a center using on-line service,
In this case, the center creates signatures of mes-
sages which are selected by the users, and trans-
mits those to the users, When the center needs
to generate many signatures simultaneously, high-
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speed signature generation is required.

3. In case application is required: There are some ap-
plications such that a center picks up some values
in the off-line phase, Usually, those values consists
of a random number and a calculation result. A
user uses those values as a coupon. By using such
a coupon, a user signs the message by performing
on-line processing, For example, one system was
proposed in [12].

1.2 Related Work

To realize the fast on-line signature generation, Girault
(6] has modified Schnorr’s scheme [23] which uses an
RSA-modulus (i.e., the modulus is a product of two
distinet primes) instead of a prime modulus. This mod-
ification leads to no modulo reduction in the on-line sig-
nature generation. Therefore, Girault’s scheme creates
faster processing for signature generation compared to
Schnorr’s one. In 1998, Poupard and Stern [20] investi-
gated and gave provable security for Girault’s scheme,
and named that scheme GPS. According to [20], we say
that a signature scheme, in which modulo reduction is
not used in the on-line signature generation, 18 on the
fly scheme,

In 1999, Poupard and Stern [21] proposed another on
the fly scheme (P8), whose security relies on the diffi-
culty of integer factoring. In 2001, Okamoto, Tada and
Miyaji [15] proposed on the fly scheme (OTM1) by im-
proving PS in the computational work and transmitted
data size.

In 2002, Okamoto, Tada and Miyaji [16] proposed
another signature (OTM2) in which no multiplication
is used in the on-line phase. This means that the phase
involves only hashing, addition and modular reduction.

1.3 Owur Contribution

In this paper, we propose a fast signature scheme which
is derived from & three-pass identification scheme. This
paper ig analyzed in the outline of [14]. Owr scheme
has small key-storage inefficiencies such as the size of
public-key or that of secret-key, but realizes quite fast
on-line signature generation. ‘

Our approach for reducing the on-line computation
ig different from that of previous work. That is, both
modular reduction and multiplication are eliminated in
our acheme, although the previous schemes can elimi-
nate only one operation: either modular reduction or
multiplication. As a result, our scheme consists of only
hashing and addition in the on-line phase. Until now,
some fast signature schemes which have the property of
small on-line computation, have been proposed. Con-
sequently, in the on-line computation, multiplication is
used in on the fly schemes and the modular reduction
ig used in the OTM?2 scheme. We emphasize that those
two operations are not used in our scheme,
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Let us now compare the computational efficiency in
the multiplication, the modular reduction and the ad-
dition. In the multiplication, a recursive algorithm due
to (8] reduces the complexity of the multiplying. In
the modular reduction, we can use the efficient meth-
ods such as [1],{11]. Nevertheless, those methods suffer
from a Jarge amount of work compared to the addition.
On the other hand, addition is computed using a more
straightforward way, and reduces the considerable com-
plexity in the on-line phase.

Consequently, the addition in cur scheme is faster
than the other operations from implementation point
of view, For more detailed analysis of the operations,
see [9].

We now give a concrete evaluation. Compared with
Feige-Fiat-Shamir [4] (FFS), GPS, PS, OTM1 and
OTM2, the size of a signature in our scheme can be
reduced by at least 70%, T4%, 56%, 17%, 32%, respec-
tively,

As for the security, our scheme i3 as secure as in-
teger factoring problem based on an RSA maodulus n
fin the random oracle model). To satisfy the security,
our scheme uses a public key g with specific structure,
called agymmetric basis, which is a variant of [17). This
leads to good efficiency in terms of both transmitted
data size (i.e., the size of signature) and amount of
work (in the on-line phase).

1.4 Outline of Qur Paper

This paper is organized as follows. In Section 2, we
give the overview of fast signature schemes. In Section
3, we introduce our signature scheme. In Section 4,
we show that our scheme is provably secure under the
assumption that factoring problem is computationally
hard to solve. In Section 5, we suggest practical values
of our signature scheme and describe the implementa-
tion notes. In Section 6, we evaluate the performance
of our signature scheme by comparing it with existing
fast signature schemes: FFS, GPS, PS, OTMI1, OTM2.
The conclugion is given in Section 7.

2. Previous Schemes

In this section, we survey the previous work.

‘We first introduce some notations. () denotes Euler
totient function, 1.e., y(n) is the number of the natural
numbers less than n and coprime to n. A(:) denotes
so-called Carmichael function, i.e, A(n) is the greatest
number among the possible orders of elements in ZJ,
Let m € {0,1}" be a message to be signed. Let H:
{0,1}* — {0,1}* be a hash function. The right side
of H(x) = (ex, ez, -+ ,ex) means the bit strings of bit
length k, where z € {0,1}" andeg; € {0,1} 1 i <
k). The order of an element g € Zj}, is represented as
Ord,(g). || denctes the binary length for a positive
integer #. We say that p is a strong prime if p and p'
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are primes satisfying p = 2p' + 1.
We now show the overview of the previous schemaes.
For all schemes, the signature for m is (x, e,y).

FFS [4]: The public key is (m,v;), where n is an
RSA modulus and » = sj?modn for I < i < &
8; € Zn (1 € i < k) is picked up at random, The
secret key is 8; (1 < 4 < k). For signature generation, a
signer picks up r € Z,, at random. She also computes
z =72 mod n, e = H(z,m) and y = - ML, s mod n,
A verifier finally checks whether z = y%-Ht_,v{" mod n
holds or not. Each parameter (k,n) satisfles the condi-
tion 2F €« n.

GPS [20]: The public key is (n,g,v), where n is an
RSA modulus, g € Z% is an element with high order,
and v = g~" modn. 8 € Zo is picked up at random.
The secret key is 3, For signature generation, a signer
picks up r € A at random. She also computes z =
g'modn, e = H(z,m) and y = r + se (in Z). For
verification, a verifler finally checks the validity whether
z = g¥v® mod n holds or not. Each parameter (A4, B, k)
satisfies B « 2% « A, where e € Zp.

PS [21]: The public key is (n, g), where n i8 a product
of strong primes p and ¢, and g € Z}, is an element
such that Ord,(g) € {A(n), A(n)/2}. The secret key is
s =n-p(n) (=p+g+1), where |s| = k. For signature
generation, a signer picks up r € Z 4 at random. She
also computes 2 = g"modn, e = H{z,m) and y =
r + se (in Z). For verification, a verifier finally checks
whether both y < 4 and =z = g¥~"¢ mod n hold or not.
Each parameter (4, B, k) satisfies B « 2% < A, where
e Efp. :

OTM]1 [15]: The public key is (n,g,2), where n =
I'I;f__.1 o for an integer ¢t > 2, g € Z}, is an slement such
that Ord,(g) = ¢. 2 € Zg« is picked up at random. The
secret key is 8 = 2 mod ¢, where |s] = k. For signature
generation, a signer picksup r € 2° at random. She also
computes x = g" mod n, e €g= H(z,m) and y = r+se
{(in Z). A verifier finally checks whether both y < 2%+!
and & = g¥*¢ hold or not. Each parameter (a,b, ¢, k)
satisfies the condition 2° & 2% & 2% « 2%, where
e € 2°%

OTM2 [16]: The public key is (n, g), where n = pg and
g € Z, is an asymmetric basic described in Section 3.
"The secret key iz a prime number s with Ord,{(g) = s.
For signature generation, & signer picks up r € 2% at
random. She also computes £ = g" mod n, e = H{z,m)
and y = r+ (e mod s) . The signature for m is {2, e,y).
A verifier finally checks whether both i < 2%+ 2% and
x = g¥"* mod n hold or not. Each parameter (a,b, k, 2)
satisﬁbes_the condition 2¥! < 2% & 28 « 2%, where
e €2%

R.emark. Foreach scheme mentioned above, we set the

security parameter k by taking the author’s definition.
Therefore, each scheme is defined such that k = |n|,
k = lef or k = |s|, s0o one scheme may be different
from another. However, that ig not an essential matter
because k& is a security parameter,.

3. Signature Scheme

In this section, we introduce our signature scheme,

Note that our signature scheme is derived from three-
pass interactive zero-knowledge identification scheme.
That scheme can be translated into a signature scheme
by using the methods of (5], [23]

For reader’s convenience, we now briefly show some
parameters. Let k,a,s and O be four integers satisfy-
ing 2¥ &« 2¢ « 2° and 2*¥ « O, where (k,a,s) and
© are public and secret parameters, respectively. The
more detalled relations between thogse parameters are
analyzed in Section 5.

In our scheme, we use slightly generalized asymmetric
basis [17], which is defined as follows,

Definition 3.1 (Asymmetric basis): Let n be an
RSA modulus such that n = pg. Then we say that
g is an asymmetric basis in Z} if the multiplicity of 2
in Ordy(g) is not equal to that of 2 in Ord,(g). |

We hereafter show the signaturve algorithms of our
scheme. The intuitive description is shown in Fig. 1.

Key generation: A signer who wants to generate key
parameters, executes the following steps.
1. Pick up two large primes p and gq.
2. Compute n = pq.
3. Pick up an asymmetric basis g- € Z}, where
Ordn(g) = O.
4. Pick up k random integers 9,, 89, -+, 83 € Zas.
5. Compute v; = g~*" mod nj each i (1 <i<k).

Public-key/Secret-key:
(Ulsvfh .

Signer’s public-key is
-, tx;n; g) and secret-key is (83,82, ,81).

Signature generation: Suppose a signer who has a
public-key and the corresponding secret-key, generates
the signature of her message m. The signer executes
the following steps,

1. Pick up a random number r € Zga.

2. Compute z = g" mod n. -

3. Compute e = H(z,m) = (e1,ea,-++ ,ex); eache; €

(0,1}, o
4, Compute y = r + X¥_, S}, where

[0 ife=0,
S‘“{ 8§ ife;=1f

Remark. As you see, our scheme requires only hashing
and addition operations in the on-line phase for signa-
ture generation, This means that our scheme satisfies
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Parametera:
* RSA modulus n = pg

koo g

Key generation

» asymmetric basis g € Z} with Ordn(g) = @
o foreachi (1 Si<k) (86022, vy =g % modn]
L]

Public-key: vy, n, g
Secret-key: s;

[Off-line phase]

rER Z-gu
r=g" modn

[On-line phase]

Signature generation and verification

e = Hlz,m)
= (e1,€9, &) for each e; €'{0, 1}

y=r+ D&, 5;, where
S = 0 if e;=0;
7] 8 if g =1

m, (z,¢¥)

:n"?:.-. g¥ T, v} modn
¢ = H(z',m)

Fig.1 OQur signature scheme.

the conditions which are described in Segtion 1.
Signature: The signature for a message m is (z, e, y).

Verification: Suppose a verifier who has the signer's
public key and the corresponding message, checks the
validity of the signature for m. The signer executes the
following steps,

1. Check whether 0 < y < 2%4-k2¢ holds or not. If the
equation does not hold, then reject the signature
and stop this protocol.

2, Compute & = H{z,m) and &' = g¥ T, 4* mod
n

3. Check whether both e = ¢’ and & = &' hold or
not. If both equations hold, accept the signature,
Otherwise reject it.

4. Security Analysis

In this section, we analyze the security of our scheme.

We say that a signature scheme is secure, if no poly-
nomial time adversary can existentially forge a signa-
ture in the adaptive chosen message attack. In this
section, we show that our signatures acheme is'secure,
by using the forking lemina in [18], and showing that
* asigning oracle can be simulated by a polynomial-time

machine in the random oracle model [2], which is under
the one key attack scenario.

Lemma 4.1: Let n = pg be an RSA modulus, Let
g be an asymmetric basis in Z}. If we find a non-
negative integer I such that g* = 1 mod n, then we
can construct a Turing machine M which on input n, g
and L outputs a factor of n in time O(| L{[n|*)

Proof. To prove this lemma, we first describe a simau-
lation. M executes the following steps.

1. Extract the odd part of L, i.e., compute a and b
such that L = 2%, where 0 € Z and b is an odd
number,

2. Compute 2 by using the following loop algorithm:

for (£=0,1,+-,4~1) do
Compute & = ged(g?® — 1 mod n,n).
If # # 1 then exit this loop.
aend for
3. Compute y = n/z.
4. Output (z,¥).

Note that, in Step 4, two integers (x,y) are the fac-
tors of n. We now explain why M can generate such
factors by using above steps, :
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In the same way as Step 1, we would like to ex-
tract the odd parts of Ordp(g) and Ordy(g), respec-
tively, We define (e, 8,4,8) such that Ord,(g) = 28
and Ord,(g) = 274, where a,v € Z and (4,4) are odd
numbers, L

Since g is an asymmetric basis in Z},, & # «. Hence

¢*"% =1 mod n,

¢** =1modp and ¢*°% = 1 mod ¢.

Those equations lead to

2==1p
g

=-1modp and ¢*" "% =1 mod q.

We assume « > 4 in this proof. Then

o a1 .
rto? " _1 and glg¥ t-1,
where b is the same number in Step 1. Hence
ni P )

Consequently, M can find a factor « of n by comput-
ing ged(g2® — 1 mod n,n) for an integer 0 < £ < a—1.
Note that the modular exponentiation aIgorlthm has

& running time of O([L{[n|?). In the same way, the ex-
tended Euclidean algorithm has that of O(|n|?). There-

fore, M can execute the above steps in time O(|L||n[?).
O

We say that a positive function f(k): N — R is said
to be negligible, if for any ¢, there exists a k. such that
F(k) < k™ for any k > k.. Otherwise f is said to be
non negthbIe

Let @ be the number of queries which a polynomial-
time adversary A (adaptive chosen-message attacker)
can ask to the random oracle. Let R be the number of
queries which A can ask to the the actual signer.

|| denotes the binary length for a positive integer z.

Theorem 4.2: Assume that, in our scheme, 2%/2°%
is negligible. Also assume that A can forge a signa-
ture with non-negligible probability ¢ > 10{R+ 1)}{(R+
@)/2%, and with the average running time 7. Then we
can construct a polynomial time machine M which can
solve the factorization of n with non negligible proba-
bility in expected time O(QT/e + |Ljjn}*).k

Proof. Let us first show the outline of this proof. Note
that our signature is of the form (z,e,y) and each of
(%, e,y) is corresponds to one of the three phases of an
identification protocol. If parameters (z,e,y) can be
statistically simulated by a polynomial time machine
M without knowing the secret-key, then there is an
algorithm A’ who produces two valid signatures like
(z,e,y) and (z,e',y") with e # . Consequently we
can compute two factors of n by using such signatures.
For more details see [18],

We now show that our signature can be statisti-
cally simulated by & polynomial time machine, We

now denote, by pla, 8,7) and p{a, 8,7), the proba-
bilities that (e, f,4) is output by the signature algo-
rithm and the simulator, respectively. We set ¢ = k22,
Let R : {0,1}* = {0,1}* be an ideal hash function
(i.e., random oracle) for a given message m € {0,1}".
Here R(z1,22) = (81,82, , fr) = f for two integers
x; and z3. For an integer 4 and a positive constant
A, N(R,A,A) is defined to be the number of pairs
(e, ) suchthatO <e< 2 A <y< A+ A and

R(g*IIE, vf' mod n,m) =e.

Let p be a predicate. x{gp) is the characteristic func-
tion of p, that is, if g is true then x(p) = 1. Otherwise
x(g) = 0. Then we have the following:

g7 Ik 1’”1 modn:a,
x| R{a,m) =46,
0<v— b 88 <20
(i) = ——=T =

20
and
g T v} mod n = a,
X 'g'(ah m) = ﬁ:¢
, _ Ly <2 -
p (O‘:ﬁy'f) - N(R, ¢1 2& — ¢) '

Therefore, the summation

L= Z |P(a:ﬁ:’7) ”p’(atﬁ:'ﬂt
a By

has an upper bound of 2°k/2°%, because T = 2(1 —
N(R,$,2° — ¢)/2%) holds similarly with [20]. Con-
sequently, the output by real signer and that by the
simulator are statistically indistinguishable.

Next, by using the technique in 118], we can get a
multiple of Ord,(g), L, such that g = 1 mod n. This
means that we can obtain factorization of n. Hence this
proves the theorem, 0

5. "Analysis of Our Scheme

In this section, we present the conditions of the param-
eters to maintain the security of our signature schems,
In addition, we show how to implement the parameters.
Moreover, an optimized scheme which reduces the size
of signature, is also given.

5.1 Parameter Generation

Parameters a and s: For the security reason, the
values of a and s shall satisfy: a = s+ k/2 + %1 and
8 = B -+ kg, where k i3 a security parameter and both
k1 and kg are information leak parameters. @ must be
satisfied such that 1/2% is negligible for the security
parameter k. In addition, s and 1/2%2 have the same
conditions. In implementation, we should set x; (resp.

— 46—
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Table 1 Performance of signature schemes.
Underlying Off—]muza On-line Verl. Public | Secret Sig,
Scheme problem comput. comput (<M} key key (bits)
{x M) ' (bits) (bita)
addition
Our achema Fact,*? 81 40 times ars 83968 12800 320
(160 bits)
FFS Fact. 1 mod. multh 44y | gyoss | 81020 | 1104
41M
Disc, log. multi.
GPS§ (modulo 1) 381 80 % 1024 1796 3072 1024 12684
multi.
P3 Fact, 381 80 x 512 18566 1024 513 736
w1l N multi.
OTM1 Fact. 61 80 % 160 552 2356 180 384
2 mod, reduct.
OTM2 Fact. 61 248 mod 160 372 2048 160 472

Abbreviation:
e M represents the computational cost for one multiplication under a 1024-bit moduius,
e 4 X 0 represents tha computational cost for multiplication of an ~-bit number and a §-bit number
on Z.
o o mod B represents the computational cost for modular reduction of an a-bit number and a #-bit
number modulua,

Parameters;
s For all schemes, we set [n| =
Section 8.2.
All the values related o the amount of work are shown by the average running time.
QOur scheme has @ = 240 and s = 160 by taking k = 80 and |@| = 160.
FFS has k = 80.
GPS has |A] = 1184 and |B| = 80 by taking k = 1024.
PS has |A| = 656 and |B| = 80 by taking & = 513,
OTM1 has a = 304, b = 80, ¢ = 288 and ¢ = 2 by taking k = 160,
OTM2 has a = 224 and b = 248 by taking k = 160, k1 = 64 and k3 = 24,

1024 and optimize the size of signature by uslng the technique in

Some Notes:

v For all achemes, wa Bet up the parameter on the scenarlo of the one-key attack in [21],

» For respective computatlona! cost, a primitive arlthmetic of binary methods [9] is used, e.g. amount
of work for g mad n is §[a|M if [n| = 1024, Of course there exist more sophisticated methods
which reduce the amount of computational work. However we think they represent the actual
estimate without loss of generosity.

¢ In the row of “#1" i.e,, OTM1, n is an R5A modulus and g is an ssymmetric basis in Z?, to keep the
same security level as our scheme, Furthermore, the size of public-key 18 optimized as follows. We
regard actual public-key as (n, g), and 2 is computed by 2 = H'(n, g), where #' is a hash function
H {01} = {0, 1)°.

¢ The factoring problem of “+2" is different from usual integer factoring problem. This is a problem
on input RSA modulus n and the asymmetric basis g, outputa the factor of n,

¢ In the column of “£3", the signer uses the technique of CRT, In this cese, the signer must seeretly
have the factors of n, p and g.

set up such that the above algorithms cannot be ap-
plied for the security parameter k. In implementation,
we should set O greater than 160 bits for the security
reason,

kg) greater than 80 bits. Consequently, a = 240 and
# = 160 are reliable values.

Parameter @ Let us consider the attack where an
adversary computes @ only from the information of the
public-key (n,g). We can see the algorithms to extract.
O, such as Pollard lambda method in [19] and the baby-
step giant-step method in {10]. One may say that the
former is better than the latter since it has same com-

Choice of p, g and g: We describe how to find p, ¢
and an asymmetric basis g in 27,

1. Pick up two pnmes p=2p'p"+1and g = 2¢'¢"+1

such that p’ and ¢' are also pr1mes and p” and ¢"

putational complexity (exponential-time: O(v®)) but
does not need large memory. The size of @ shall be

are odd numbers,
2. Choose o, € Z satisfying g, = a(” /s # 1 mod

—d7—
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p. In the same way, choose oy € Zj satisfying

ag # ¢— 1mod g, aff™V/?

a&qml)/m" # 1 mod q.
3. Compute n = pg and g = gq(¢g~! mod p)g,
+p(p~! mod q)g, mod n.

In the last step, g is computed by using the tech-
nique of Chinese Reminder Theorem (CRT). Note that
Ordy(g) =p' and Ordy(g) = 2¢'. Therefore, Ord,(g)
= lem(p',2¢') = 2p'¢.

Choice of H: If H is an ideal hash function (ie.,
random oracle), then the proposed signature scheme
would be secure under the meaning of [18]. Since such
a random function does not exist in the real world, in
implementation, one may recommend to adopt MD§
by [22] or SHA-1 by [13], each of which is designed so
that the algorithm can be a collision intractable hash
function [3).

# 1mod g and g, =

5.2 Optimized Scheme

As for the signature scheme in Section 3, we can reducs
the size of the signature. Consequently, communication
load gets smaller than before. When we have two pa-
rameters e and y, the parameter = can be generated by
computing z = g¥ IT¥_;vf* mod n, Therefore, the sig-
nature z is eliminated like conventional generic signa-
ture schemes such as Schnorr [23] or Guillou-Quisquater
[7]. In this case, the signature for m congists of (e, ).

6. Performance BEvaluation

In this section, we evaluate the efficiency of our scheme
by comparing existing fast signatures,

Table 1 gives the performance of various schemes,
such as FFS, GFS, PS, OTM1 and OTM2, including
our scheme. This table show that our signature scheme
is quite efficient from both the computational cost and
the transmitted data-size point of view.

Hereafter, we show the comparison between FFS
(resp. GPS, resp. P8, resp. OTMI and resp. OTM2)
and our scheme,

FFS: FFS has a large size of public-key becauge at least
5 |vi| = k x |n| bits ave included in it. Similarly, our
scheme also has a large size of public-key hecause of
the same reason. As for the secret-key, FFS and our
scheme have the same structure such as 4;,1 <{ < k.
However, the size of secret-key in FFS is much larger
than that in our scheme, because each s; in FFS is large
compared to our schems, Consequently, FFS has the
largest size for public-key of all the schemes in table I,

GPS: Note that all the schemes in the table refer to
under the one-key attack scenario [21]. Moreover, GPS
has the provable security whose scheme is as secure as
the discrete problem for modulo n. Those situations

lead to the inefficiency in the size of secret-key: |s| =
1024. Consequently, GPS needs a large amount of work
in the on-line phase: multiplication is 80 x 1024 on Z.
For more details, we refer to [17).

PS: P8 has some drawbacks with respect to the struc-
ture of a secret-key. As you see in Section 2, the secret
key in PS is created by g = n— ¢(n). So the size of s is
about half of |3|. Therefore it takes 80 x 512 in the on-
line phase. On the other hand, since PS is intended to
be used with a modulus product of two strong primes,
g = 2 i8 a correct basis and does not have to be in-
cluded in the public-key. Consequently, we can set the
gize of signature to 1024 bits for PS.

OTMI1: One of the verifications in OTM is z =
g¥~*¢ mod n. Let us now focus on the index of g in
the equation. One can ses the multiplication of two pa-
rameters z and e. On the other hand, the verification
in our scheme I8 2' = g¥ II¥.,v{’ mod n, 0 the mul-
tiplication in the index does not exist. the large-size
index involved in the multiplication leads to the inef-
ficiency from both the amount of work and data size
point of view. Consequently, the amount of work for
verification and the size of signature are both superior
to those in OTM1.

OTM2: With respect to the modular reduction, we
can use the efficient methods such as [1],(11] in im-
plementation. Those methods are more advantageous
than the multiplication computing in Z such as [8},
because a single modulus can be used in the modu-
lar reduction and the other efficient reductions can be
used. However, the addition is performed by using a
more straightforward way and reduces the considerable
amount of work compared to modular reduction, To
sum up, the on-line additions in our scheme are faster
than the on-line reduction in OTM2 from implementa-
tion point of view.

7. Conclusion .

In this paper, we have proposed an efficient and fast sig-
nature scheme, which is derived from a three-pass iden-
tification scheme. As a result, the following remarkable
advantages are given in our scheme. Firstly, the struc-
ture in the on-line phase is very simple: our scheme re-
quires only hashing and addition. Consequently, min-
imal on-line computation is achieved. Secondly, the
trangmitted data size is small. We believe that our
scheme would contribute to the cryptographic commu-
nity. ! T

We have also shown that our signature scheme is
existentially unforgeable against any polynomial-time
adversaries that can execute adaptive chosen message
attack in the random oracle model. In this case, the
underlying number theoretic problem ls the integer fac-
toring problem with an asymmetric basis g for an RSA



modulus n.
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