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Abstract This paper proposes a new selling strategy called the switching strategy where a seller who
wishes to sell multiple homogeneous assets is permitted to decide at each point in time up to the deadline
between 1) proposing a selling price up front to an appearing buyer or 2) concealing the price and letting
the buyer come up with an offer. Our analysis indicates that under certain conditions there emerges a
time threshold after which the seller switches from concealing his idea for the selling price to proposing this
price, or vice versa. In addition, our numerical study also suggests that the maximum total expected profit
obtained from the problem with switching strategy may improve substantially upon that of the problem
without switching strategy, and this justifies the adoption of switching strategy in the business of selling
assets.
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1 Introduction

There are many ways in which an asset can be sold in order to maximize the expected

profit gained from selling it. According to Arnold and Lippman [1] there exist four major selling

mechanisms: posted price, reservation price (sequential search), auction, and bargaining. As the

meaning of the latter two mechanisms, auction and bargaining, are apparent, we shall provide

a standard definition for the first two as stated in [3]. The posted price mechanism means that

a seller proposes a selling price to each appearing buyer, who, judging from the proposed price,

decides whether or not to purchase the asset. On the other hand, the reservation price mechanism

assumes that the seller conceals the selling price and the appearing buyer offers a price. The seller

then decides whether or not to sell the asset by comparing the offered price to his reservation

price. A well known example of this mechanism is the Name-Your-Own-Price system.

These four mechanisms have attracted considerable attention with the researchers and prac-

titioners in the economics and operations research communities over the years. The literature on

them is extensive and well established. Also, an increasing number of researches examining the

coexistence of two or more mechanisms have been conducted in an attempt to determine which

of these mechanisms should be used [1] [2] [4] [14] [15]. A common feature of this work under-

taken so far assumes that a single mechanism is employed throughout the entire planning horizon.

None of this work considers the possibility of switching between mechanisms during the planning

horizon. In our paper we propose a new selling strategy called the switching strategy where the

seller is permitted to switch between the two selling mechanisms, posted price and reservation

∗Tel: +81-(0)80-5458-9040, E-mail: shan@sk.tsukuba.ac.jp
†Dr Seizo Ikuta was Mong Shan Ee’s faculty advisor from year 1999 to 2005. He retired from the University of

Tsukuba in April 2005.
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price mechanisms, over the planning horizon.

Let us convey the flavor of our proposed switching strategy with the following example. Sup-

pose a seller has an asset, say a car that he must sell before a deadline for some reasons. If the

car remains unsold at the deadline, he will have to sell it to a used-car dealer for a giveaway price

or dispose of it by paying some cost. At any time before the deadline, the seller has three possible

options: To employ the posted price mechanism throughout the planning horizon, to employ the

reservation price mechanism throughout the planning horizon, or to switch between employing

the posted price (propose a price) and reservation price (conceal the price) mechanisms at certain

points in time during the planning horizon. He then has to make a decision as to which one

to choose out of the three options. To clarify the distinction between strategy with switching

and that without switching, we shall call the strategy stated in the first and second options as

non-switching strategy.

The asset selling problem with switching strategy proposed in this paper builds on the literature

on the sequential search and posted price problem. The reservation price mechanism considered in

our model is closely related to the works on sequential search which aims to maximize the expected

value of an offer that will be accepted from the search process [9] [10] [11] [13]. The literature on

the posted price problem can be separated into two categories; the single fixed pricing problem

and dynamic pricing problem. In the first category it is assumed that a single fixed price is offered

by the seller and all arriving buyers will purchase the asset at this price [12] [16] [18]. On the

other hand, the literature in the second category assumes that selling prices can be dynamically

adjusted at each point in time over the entire planning horizon. The objective of the literature

belonging to this category is to determine the optimal pricing policy to implement at each point

in time. A thorough review of the research on the dynamic pricing problem is given in [5] and [7].

The posted price mechanism considered in our model belongs to the second category.

In addition, our paper is also related to the articles on the selling mechanism selection problem

[1] [2] [14] [15]. In these articles, separate models are developed for different selling mechanisms

and they are compared against each other to determine which mechanism to choose. These articles

show that there may exist a threshold value on which the optimal mechanism is selected. In this

case, once a mechanism is committed to, there will be no mechanism change so long as the selling

process proceeds. For example, Arnold and Lippman [1] shows that in the multiple homogeneous

assets selling problem, if the number of items on hand is less than a threshold value, the seller

should employ the reservation price mechanism, or else employ the auction mechanism. Let us

pause to note the following. In the above mentioned example, suppose auction is selected because

the quantity of items on hand at the start of the process is greater than the threshold value. A

switch in the mechanism from auction to reservation price will not occur even if the quantity

of items falls below the threshold value due to some items being sold out as the selling process

proceeds. To the best of our knowledge, no model with the introduction of the switching strategy

has ever been proposed so far. The main purpose of this paper is to propose a model for the

asset selling problem in which the switching strategy is taken into consideration and to clarify the

conditions for which switching is optimal (see Theorem 6.2).
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In order to demonstrate that the switching strategy might prove beneficial, in this paper we

assess the economic effectiveness of adopting the switching strategy by numerically comparing

the maximum total expected profits for the model with switching strategy to that for the model

with non-switching strategy (posted price or reservation price). For convenience, in the remainder

of the paper we shall call the model with switching strategy the switching model, and the one

with non-switching strategy the non-switching model. The results of our experiments show that

the proposed switching model may improve substantially upon the non-switching models. The

switching model might be thought to be an imaginary model; however, if the relative difference in

the maximum expected profits between the switching and non-switching models is large enough

not to be negligible, the seller would incur an opportunity loss for not adopting the switching

strategy. In fact, we demonstrate by numerical examples in Section 7.2 that the relative difference

may be greater than 20 percent. This fact, from a practical viewpoint, justifies the adoption

of the switching strategy in the process of selling assets, provided that its adoption is feasible.

Fortunately, recent advances in information technology such as internet-based selling systems will

make such adoption easy.

The rest of this paper is organized as follows. Section 2, that follows, provides a strict definition

of our model. Section 3 defines several functions and examines their properties, as they are used

in the subsequent analysis. In Section 4 we derive the optimal equations for the model, and

in Section 5 we state the optimal decision rules. In Section 6 we clarify the properties of the

optimal decision rules. In Section 7 we provide numerical examples that ascertain the existence of

switching property and examine the economic effectiveness of adopting switching strategy. Finally,

in Section 8 we present the overall conclusions of our research and suggest some further work which

could be done.

2 Model

The model for the dynamic asset selling process discussed in this paper is defined on the

assumptions stated below:

1. Consider the following discrete-time sequential stochastic decision problem of selling multiple

homogeneous items within a finite planning horizon. The points in time are numbered backward

from the final point in time of the planning horizon, time 0 (the deadline) as 0, 1, · · · and so

on. Accordingly, if time t is the present point in time, the two adjacent times t + 1 and t − 1

are the previous and next points in time, respectively. Let the time interval between times t

and t − 1 be called the period t, which is small enough so that no more than one buyer may

appear. Each appearing buyer is assumed to require no more than one item. Furthermore, we

do not consider the discount factor and the holding cost of storing the unsold items. We refer

the interested reader to [6] for the analysis of the switching model with discount factor and

holding cost.

2. An item remaining unsold at time 0, the deadline, can be sold at a finite salvage price ρ ∈
(−∞,∞). Here, ρ < 0 implies the disposal cost per item to discard an unsold item.

3. A buyer who requests an item arrives with a probability λ (0 < λ < 1).
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4. When a buyer appears, the seller has to make a decision between two alternatives: A1 〈proposing

a selling price〉 and A2 〈concealing the selling price〉.
A1. If the seller chooses the first alternative, the buyer then decides whether or not to pur-

chase the item based on the price offered by the seller. By ξ let us denote the maximum

permissible buying price of a buyer, implying that the buyer is willing to purchase if and

only if the selling price z proposed by the seller is lower than or equal to ξ, i.e., z ≤ ξ.

Here, assume that subsequent buyers’ maximum permissible buying prices ξ, ξ′, · · · are

independent identically distributed random variables having a known continuous distri-

bution function F (ξ) with a finite expectation µ; let f(ξ) denote its probability density

function, which is truncated on both sides. More precisely, F (ξ) and f(ξ) are defined as

follows. For certain given numbers a and b such that 0 < a < b < ∞

F (ξ) = 0, ξ ≤ a, 0 < F (ξ) < 1, a < ξ < b, F (ξ) = 1, b ≤ ξ, (2.1)

where

f(ξ) = 0, ξ < a, f(ξ) > 0, a ≤ ξ ≤ b, f(ξ) = 0, b < ξ. (2.2)

Then clearly a < µ < b. Thus, the probability of an appearing buyer purchasing the

asset, provided that a price z is offered by the seller, is given by p(z) = Pr{z ≤ ξ} where

0 ≤ p(z) ≤ 1. Then it can be easily seen that

p(z)

{
= 1, z ≤ a, · · · (1),

< 1, a < z, · · · (2),
p(z)

{
> 0, z < b, · · · (3),

= 0, b ≤ z, · · · (4).
(2.3)

Furthermore, let us define

¯
f = inf{f(ξ)

∣∣ ξ ∈ [a, b]} > 0, (2.4)

which will become inevitably necessary to successfully prove Lemma 3.3(a).
A2. If the seller chooses the second alternative, the buyer will definitely offer a price. The

seller will then decide whether or not to sell the item judging from the price offered by

the buyer. In this case, it is assumed that the buyer offers a price w = αξ (0 < α ≤ 1)

where ξ is the buyer’s maximum permissible buying price. Here, let us call the α the price

offering ratio, which measures the degree of a buyer’s desirability for the asset; the greater

(lower) the buyer’s desirability may be, the closer the α may be to 1 (0). In this paper,

we assume that α and ξ are stochastically independent and that subsequent buyers’ price

offering ratios, α, α′, · · · , are independent identically distributed random variables having

a known distribution function F0(α) with a finite expectation µ0 > 0, i.e., Eα[α] = µ0.

Let F1(w) and f1(w) denote, respectively, the distribution function of w and its probability

density function; by µ1 let us represent the expectation of w. Then clearly

µ1 = E[w] = E[αξ] = µ0µ > 0. (2.5)

Hence we have F1(x) = Pr{w ≤ x} = Pr{αξ ≤ x} = Pr{ξ ≤ x/α} = Eα[F (x/α)].

Accordingly, the probability density function f1(x) is given by

f1(x) = E
α

[1/αf(x/α)]. (2.6)
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The decision rules of the model consist of:

1. The Switching rule as to when to switch the alternative to be taken from A1 to A2 or

from A2 to A1.

2. The Pricing rule as to what price to offer to an arriving buyer when the seller takes alterna-

tive A1.

3. The Selling rule as to whether to sell the item or not when the seller takes alternative A2.

The objective here is to find the optimal decision rules so as to maximize the total expected

profit over the planning horizon, i.e., the total expected revenue gained from selling the items to

appearing buyers plus the total expected salvage value of the items remaining unsold at the dead-

line.

3 Preliminaries

This section defines the functions that will be used to describe the optimal equations of the

model (see Section 4). The properties of the functions verified in this section will be applied to

the analysis of our model. First, for any x let us define the following two functions:

T1(x) =
∫ ∞

0
max{ξ − x, 0}f(ξ)dξ, (3.1)

Tc(x) =
∫ ∞

0
max{w − x, 0}f1(w)dw. (3.2)

Rearranging Eq. (3.2) by substituting Eq. (2.6) yields Tc(x) = Eα[1/α
∫∞
0 max{w−x, 0}f(w/α)dw].

Then since w = αξ by definition, noting Eq. (3.1), we get

Tc(x) = Eα[α
∫ ∞

0
max{ξ − x/α, 0}f(ξ)dξ] = Eα[αT1(x/α)]. (3.3)

Next, for any real number x let us define

Tp(x) = max
z

p(z)(z − x), (3.4)

and by z(x) let us designate the smallest z attaining the maximum of the right-hand side of

Eq. (3.4) if it exists, i.e.,

Tp(x) = p(z(x))(z(x)− x). (3.5)

The function Tp(x) is also defined in [17], which studied the asset selling problem using the posted

price mechanism where a buyer can only be found by paying a search cost. Here, let us introduce

two properties of z(x) whose proofs can be found in [17].

Lemma 3.1 (You [17])

(a) z(x) is nondecreasing in x ∈ (−∞,∞) with z(x) ≥ a for any x.

(b) If x ≥ (<) b, then z(x) = b (x < z(x) < b).

As will be shown in Section 4, the decision is made between the alternatives A1 and A2 by

comparing the values of the functions Tc(x) and Tp(x). For this reason, let us define
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J(x) = Tc(x)− Tp(x), (3.6)

T (x) = max{Tc(x), Tp(x)} = max{J(x), 0}+ Tp(x). (3.7)

Furthermore, we shall define

a? = inf{x |Tp(x) > a− x}, a◦ = max{x |Tc(x) = µ1 − x}, (3.8)

x? = inf{x | z(x) > a}, b◦ = sup{x |Tc(x) > 0}, c◦ = min{x?, a◦}, (3.9)

if they exist. The above defined five symbols and their relationships are needed in examining the

properties of T (x) and J(x), which are summarized in the two lemmas below.

Lemma 3.2

(a) T (x) is continuous and nonincreasing on (−∞,∞).

(b) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(c) λT (x) + x is strictly increasing on (−∞,∞).

(d) If x ≤ (≥) y, then 0 ≤ (≥) T (x)− T (y) ≤ (≥) (y − x).

Proof. See Appendix A.

Lemma 3.3

(a) x? ≤ a? < a and c◦ ≤ b◦ ≤ b.

(b) J(x) = µ1 − a on (−∞, c◦] and J(x) = 0 on [b,∞).

(c) If b◦ < b, then J(x) is strictly increasing and negative (i.e., J(x) < 0) on [b◦, b).

Proof. See Appendix B.

From Lemma 3.3 we can only partially specify the shape of the function J(x), that is J(x) =

µ1 − a on (−∞, c◦] and J(x) = 0 on [b,∞), in other words, J(x) is constant on (−∞, c◦] and

[b,∞). However, its shape on (c◦, b) cannot be easily determined. It will be seen later that the

shape of this function decisively influences on whether or not the optimal decision rules exhibit

the existence of switching at some points during the planning horizon.

Now, in general by xJ let us denote the solutions of the equation J(x) = 0 if they exist, i.e.,

J(xJ ) = 0. We will see later on that only the solutions on the interval (c◦, b) characterize the

properties of the optimal decision rules. Noting these facts, let us provide a more precise definition

of the solution as follows. For certain α and β such that c◦ < α ≤ β < b, if J(x) = 0 on [α, β]

with J(α − ε) 6= 0 and J(β + ε′) 6= 0 for any infinitesimal ε > 0 and ε′ > 0, then let xJ = α. If

α = β, the solution is the isolated solution. Note that the solution xJ defined in this matter may

be multiple, such that c◦ < x1
J

< · · · < xk
J

< b for 1 ≤ k ≤ N . Below let us give some examples

showing that J(x) = 0 may or may not have isolated solution on the interval (c◦, b) depending on

the given distribution functions F (ξ) and F0(α).

Example 1 Let F (ξ) be the uniform distribution function on [1.5, 2.5]. If F0(α) is a uniform

distribution function on [0.1, 0.4], then J(x) = 0 has no solution on the interval (c◦, b) with
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(I) α ∈ [0.1, 0.4]
x

J(x)

b

0

−0.5

−1

−1.3
−1 0 1 2c◦

(II) α ∈ [0.7, 0.9]
x

J(x)

x
J

b

0.15

0.1

0.05

0

−0.05

−0.1

−0.15
−0.5 0 1 2c◦

Figure 3.1: The shapes of J(x)

c◦ ≈ 0.1500 (see Figure 3.1(I)), and if F0(α) is a uniform distribution function on [0.7, 0.9],

then J(x) = 0 has an isolated solution, xJ ≈ 1.1339 on the interval (c◦, b) with c◦ ≈ 0.50 (see

Figure 3.1(II)).

Example 2 Consider F (ξ) with f(ξ) such that f(ξ) ≈ 0.05701 on [0.1, 0.599], f(ξ) is a triangle

on [0.599, 0.7] with its maximum at ξ = 0.6, and f(ξ) ≈ 0.06982 on [0.7, 3.0]. Let F0(α) be a

uniform distribution on [0.64, 0.74]. Then J(x) = 0 has three isolated solutions, x1
J
≈ −0.5566,

x2
J
≈ 0.4630, and x3

J
≈ 0.7471, on the interval (c◦, b) with c◦ ≈ −17.8272 as shown in Figure 3.2(II).

ξ

f(ξ)

16

12

8

4

0
0 0.5 1 1.5 2 2.5 3 x

J(x)

x1
J

x2
J

x3
J

b

0.03

0.02

0.01

0

−0.01

−0.02

−0.03−1.5 −0.5 0.5 1.5 2.5

Figure 3.2: f(ξ) and J(x) where c◦ ≈ −17.8272

4 Optimal Equations

Suppose that a certain number of items has been purchased at a certain past point in time

and that i items remain unsold at a time t after that. Let ut(i, φ) and ut(i, 1) be the maximum

total expected profits, respectively, with no buyer and with a buyer. Then, clearly

u0(i, φ) = ρi, ut(0, φ) = ut(0, 1) = 0, t ≥ 0, i ≥ 0, (4.1)

and
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ut(i, φ) = λut−1(i, 1) + (1− λ)ut−1(i, φ), t ≥ 1, i ≥ 0, (4.2)

ut(i, 1) = max





A1 : max
z
{p(z)

(
z + ut(i− 1, φ)

)
+ (1− p(z))ut(i, φ)} · · · (1),

A2 :
∫ ∞

0
max{w + ut(i− 1, φ), ut(i, φ)}f1(w)dw · · · (2),





,

t ≥ 0, i ≥ 1. (4.3)

Below, for convenience of the later analysis, let us transform the above equations. First, define

Ut(i) = ut(i, φ)− ut(i− 1, φ), t ≥ 0, i ≥ 1, (4.4)

and let U(i) = limt→∞ Ut(i) for any given i ≥ 1 if it exists. From Eq. (4.1) we have

U0(i) = ρ, i ≥ 1. (4.5)

Now, from Eqs. (3.2) and (3.4) we obtain, respectively,
∫∞
0 max{w, x}f1(w)dw = Tc(x) + x and

maxz{p(z)z + (1− p(z))x} = Tp(x) + x. Then noting the function T (x) defined by Eq. (3.7), we

can rewrite Eq. (4.3) as follows.

ut(i, 1) = T (Ut(i)) + ut(i, φ) (4.6)

= max{J(Ut(i)), 0}+ Tp(Ut(i)) + ut(i, φ), t ≥ 0, i ≥ 1. (4.7)

For convenience, let

Ut(0) = M, t ≥ 0, (4.8)

for a sufficiently large M such that ρ < M and b < M . Then since T (Ut(0))+ut(0, φ) = T (M) =

0 = ut(0, 1) due to Eq. (4.1) and Lemma 3.2(b), we see that Eq. (4.6) holds for i ≥ 0 instead of

i ≥ 1. Accordingly, owing to the fact that ut−1(i, 1)− ut−1(i, φ) = T (Ut−1(i)) for t ≥ 1 and i ≥ 0

from Eq. (4.6), we can rewrite Eq. (4.2) as

ut(i, φ) = λT (Ut−1(i)) + ut−1(i, φ), t ≥ 1, i ≥ 0, (4.9)

from which we get

Ut(i) = λ
(T (Ut−1(i))− T (Ut−1(i− 1))

)
+ Ut−1(i), t ≥ 1, i ≥ 1. (4.10)

5 Optimal Decision Rules

From Eq. (4.7) the optimal decision rules for a given t ≥ 0 and i ≥ 1 can be prescribed as fol-

lows.

(a) If J(Ut(i)) ≥ 0, conceal the selling price. Then, for a price w offered by a buyer appearing at

that time, if w ≥ Ut(i), sell the item, or else do not; in other words, Ut(i) becomes the seller’s

minimum permissible selling price ‡.

(b) If J(Ut(i)) ≤ 0, offer a price to an appearing buyer. The optimal selling price for an item re-

maining unsold at that time is given by the smallest z attaining the maximum of Eq. (4.3 (1))

‡Minimum permissible selling price means the reservation price of the seller for selling the asset; he is willing to
sell the asset if and only if the price offered by the buyer is greater than his reservation price.
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if it exists, denoted by zt(i). Since Eq. (4.3 (1)) can be expressed as Tp(Ut(i)) + ut(i, φ) =

maxz p(z)(z−Ut(i))+ut(i, φ), we have zt(i) = z(Ut(i)) due to the definition of z(x) (see Eq. (3.5)).

6 Analysis

This section is devoted to examining the properties of the optimal decision rules. To do so,

first we need the following lemma.

Lemma 6.1

(a) Ut(i) is nonincreasing in i ≥ 0 for t ≥ 0 and nondecreasing in t ≥ 0 for i ≥ 0.

(b) Ut(i) converges to U(i) as t →∞ for i ≥ 1 with U(i) ≥ b.

(c) If ρ < b, then for i ≥ 1 we have Ut(i) < b for t ≥ 0 and U(i) = b.

Proof. See Appendix C.

Theorem 6.1 The optimal selling price zt(i) is nonincreasing in i ≥ 0 for t ≥ 0 and nonde-

creasing in t ≥ 0 for i ≥ 0 with a ≤ zt(i) ≤ b.

Proof. Evident from the facts that zt(i) = z(Ut(i)) by definition and that the monotonicity of

Ut(i) in i and t is inherited to zt(i) due to Lemma 3.1(a); Lemmas 6.1(a); and 3.1.

Intuition suggests the following. If the seller has substantial items remaining unsold at a point

in time or if the deadline is approaching, in order to avoid leftover items at the deadline, he may

become more compelled to sell, implying that he will lower the selling price (if proposing a price

is optimal) or his minimum permissible selling price (if concealing the price is optimal) as the

number of items remaining unsold i increases or as the remaining time periods up to the deadline

t decreases. Therefore, it can be conjectured that zt(i) and Ut(i) are both nonincreasing in i

and nondecreasing in t. Lemma 6.1(a) and Theorem 6.1 affirm our conjecture; these results are

consistent with those in [1], [3], [8], and [17]. Furthermore, another immediate consequence of The-

orem 6.1 is that if the alternative A1 is optimal, the seller will charge a price which lies in between

a and b, the upper and lower bounds of the distribution function of the buyer’s reservation price.

Below, we shall provide the strict definitions of the switching property.

Definition 6.1 Let i ≥ 1.

(a) When t moves from 0 to ∞, if J(Ut(i)) changes from < 0 to > 0 or from > 0 to < 0, let the

sign of J(Ut(i)) be said to change; If the sign change occurs, the optimal decision rules have

a switching property, or else do not.

(b) If a sign change occurs k ≥ 0 times, let the optimal decision rules be said to possess the

k-switching property.

(c) Let us refer to the point in time when the sign change of J(Ut(i)) occurs as the switching

time threshold, denoted by t∗(i).
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The k = 0 implies that the optimal decision rules have no switching property. For explanatory

convenience, if k = 1 (k ≥ 2), it is said to possess a single (multiple) switching property. As time

t moves from 0 to ∞, Ut(i) starting with U0(i) (equivalent to ρ due to Eq. (4.5)) increases and

converges to U(i) ≥ b (see Lemma 6.1(b)). Paying attention to this fact, we obtain the following

theorem which prescribes whether sign change of J(Ut(i)) occurs, and from this it will be known

whether or not the optimal decision rules possess the switching property as the process proceeds.

Theorem 6.2

(a) Let b ≤ ρ. Then the optimal decision rules have no switching property.

(b) Let ρ < b.

1 Let J(x) = 0 have no solution xJ on (c◦, b). Then the optimal decision rules have no

switching property.
2 Let J(x) = 0 have k ≥ 1 solutions x1

J
, x2

J
, . . . , xk

J
on (c◦, b) such that x1

J
< x2

J
< . . . < xk

J
.

Further, let x`
J
≤ ρ < x`+1

J
for a given ` such that 0 ≤ ` ≤ k where x0

J
= −∞ and xk+1

J
= ∞.

Then the optimal decision rules have the (k − `)-switching property.

Proof. Note that U0(i) = ρ from Eq. (4.5) and that Ut(i) is monotone in t from Lemma 6.1(a).

(a) Let b ≤ ρ. Then since b ≤ U0(i) ≤ Ut(i) for t ≥ 0, we have J(Ut(i)) = 0 for t ≥ 0 from

Lemma 3.3(b). Hence in this case, sign change of J(Ut(i)) does not occur on t ≥ 0, so the optimal

decision rules have no switching property.

(b) Let ρ < b.

(b1) Immediate from the fact that J(x) is constant on (−∞, c◦] and [b,∞) from Lemma 3.3(b).

(b2) If x`+1
J

, x`+2
J

, . . . , xk
J

are isolated solutions, the sign of J(Ut(i)) changes at these solutions

as t moves from 0 to∞. Thus the assertion holds. Even if all of x`+1
J

, x`+2
J

, . . . , xk
J

are not isolated

solutions, clearly sign change of J(Ut(i)) also occurs k times as t moves from 0 to∞. Consequently,

the assertion holds.

7 Numerical Experiments

The objective of the numerical experiments is twofold: to exemplify the existence of the

switching property and to assess the economic effectiveness of adopting the switching strategy.

7.1 Switching property

The optimal decision rules in Theorem 6.2 are prescribed on the assumption that none of

the i ≥ 1 items on hand at the starting point of the process will be sold out throughout the

entire planning horizon, i.e., all the items will remain unsold up to the deadline. Here, we provide

some examples where the optimal decision rules have 0, single, or multiple switching properties.

Consider f(ξ) and F0(α) defined in Example 2 where b = 3.0. Then J(x) can be depicted as in

Figure 7.3. Here, let λ = 0.5 and i = 5. Then by calculation we obtain c◦ ≈ −17.8272 and know

that J(x) = 0 has three isolated solutions: x1
J
≈ −0.5566, x2

J
≈ 0.4630, and x3

J
≈ 0.7471, i.e.,

k = 3 and x1
J

< x2
J

< x3
J
. Let ρ = −3.0, hence ρ < b, satisfying the condition of Theorem 6.2(b).

In this case, since ρ = −3.0 < −0.5566 ≈ x1
J
, the condition in Theorem 6.2(b2) with ` = 0 is also

satisfied. Consequently, it follows that the optimal decision rules have a 3-switching property for
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t ≥ 0. Similarly, if ρ = 0.01 and 0.5, then it can be easily confirmed that the optimal decision

rules have, respectively, a 2-switching property and a 1-switching property. Finally, if ρ = 1.5,

the optimal decision rules have 0-switching property.

x

J(x)

x1
J

x2
J

x3
J

• • • •−3.0 0.01

0.5

1.5

ρ ρ ρ

0.08

0.04

0

−0.04
−3 −1 1 b = 3

Figure 7.3: Switching property where c◦ ≈ −17.8272.

In reality, the assumption stated above may fail to hold since it is possible that some items are

sold to appearing buyers as the process proceeds. Taken this fact into consideration, we need to

interpret the switching property as illustrated in the following two scenarios. Let F (ξ) and F0(α)

be the uniform distribution functions, respectively, on [1.5, 15.5] and [0.58, 0.9]; and let λ = 0.54

and ρ = 0.7. From the calculation we have t∗(1) = 2, t∗(2) = 5, and t∗(3) = 9. Here note that for

each of i = 1, 2, and 3 the seller should conceal the selling price if t ≤ t∗(i), or else propose the

price. In the two scenarios below let the process start from t = 11 when a seller has i = 3 items

on hand (see Figure 7.4).

-

6

1 2 3 4 5 6 7 8 9 10 11 t
t∗(1) t∗(2) t∗(3)

0

1

2

3

i

¾

¾

¾

ª

ª

ª

¾

¾¾¾¾¾

¾¾

ª

ª

ª

¾¾¾¾¾

Scenario 1

Scenario 2

Starting point

PP

PPPPCC

PCC

P

PPPPPP

Figure 7.4: Scenarios of selling process (The symbols C and P represent the decisions
of, respectively, concealing and proposing the selling price, and the symbol

indicates that switching occurs at that time point).

Scenario 1 Since t = 11 > 9 = t∗(3), the seller should propose a price. If no item is sold

at that time, the process proceeds to t = 10 and the seller should propose a price at that time

since t = 10 > 9 = t∗(3). Assume that one item is sold at t = 10, hence the number of items

on hand at t = 9 is reduced to i = 2. Then the seller should propose a price at that time since
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t = 9 > 5 = t∗(2). If no item is sold at t = 9, the process proceeds to t = 8 and the seller should

propose a price since t = 8 > 5 = t∗(2). Similarly, if no item is sold up to t = 6, the seller should

propose a price at that time since t = 6 > 5 = t∗(2). Since t = 5 = t∗(2), the seller should switch

to concealing the price. If no item is sold at that time, the process proceeds to t = 4 and the

seller should conceal the price at that time since t = 4 < 5 = t∗(2). Assume that one item is

sold at that time. Then the number of items at t = 3 is reduced to i = 1, hence the seller should

switch to proposing the price at that time since t = 3 > 2 = t∗(1). If no item is sold at t = 3, the

process proceeds to t = 2 and the seller should switch to concealing the price since t = t∗(1) = 2.

Accordingly, in this scenario, switching occurs three times throughout the entire planning horizon

starting from time t = 11.

Scenario 2 Since t = 11 > 9 = t∗(3), the seller should propose a price. Assume that one

item is sold at that time, so the number of items at t = 10 is reduced to i = 2, hence the seller

should propose a price at that time since t = 10 > 5 = t∗(2). Assume that one item is sold at

that time, hence the number of items at t = 9 is reduced to i = 1. Then the seller should propose

a price at that time since t = 9 > 2 = t∗(1). If no item is sold at that time, the process proceeds

to t = 8 and the seller should propose a price at that time since t = 8 > 2 = t∗(1). Similarly, if

no item is sold up to t = 4, the seller should propose a price at that time since t = 4 > 2 = t∗(1).

Suppose that the last item is sold at t = 4. Then in this scenario, it eventually follows that no

switch of action occurs throughout the entire planning horizon.

We should notice that scenario 2 exemplifies that although switching time thresholds exist for

each of i = 1, 2, and 3 (i.e., switching occurs if i items on hand at the starting point remain unsold

up to the deadline), switching might not occur if i items gradually decrease due to being sold out

as the selling process proceeds.

7.2 Economic effectiveness of adopting switching strategy

First, let ũt(i, φ) be the maximum total expected profit of non-switching model which employs

the non-switching strategy, posted price or reservation price, for t ≥ 0 and i ≥ 0, provided

that no buyer exists. Then let ϕt(i) be the relative difference in the maximum total expected

profits between the switching and non-switching models, provided that ut(i, φ) 6= 0, i.e., ϕt(i) =

(ut(i, φ) − ũt(i, φ))/ut(i, φ). For convenience, let ϕt(i) for posted price and reservation price

mechanism be denoted by, respectively, ϕp
t (i) and ϕc

t(i). For all the numerical results illustrated

below, let F (ξ) and F0(α) be the uniform distribution functions, respectively, on [1.5, 15.5] and

[0.58, 0.9]; and let λ = 0.54 and ρ = 0.7. Our main observations are the following:

1) Figure 7.5(I,II) depicts the monotonicity of, respectively, ϕt(1) and ϕt(10) in t. In this case

we have the switching time threshold t∗(1) = 2 and t∗(10) = 35. When i = 1 (i = 10),

it is optimal to conceal a price if t ≤ 2 (t ≤ 35) and propose it if t > 2 (t > 35). In

addition, from Figure 7.5(I) we see that ϕp
t (1) and ϕc

t(1) can be as high as 24% and 16%,

respectively. This implies that the seller may bear the risk of having a large difference in

the maximum total expected profits by using non-switching strategy (either posted price or

reservation price mechanism) throughout the entire planning horizon, instead of employing the

switching strategy.
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Figure 7.5: Relationship of ϕc
t(i) and ϕp

t (i) with t where the symbol • indicates the switch-
ing time threshold t∗(i).

2) As illustrated in Section 7.1, a proper adoption of switching strategy in business requires the

monitoring of the quantity on hand. Thus if the relative difference between the switching and

non-switching models is not large enough, the sellers may confront the situation where the

cost of frequent monitoring exceeds the benefit for adopting the switching strategy. In such

case, from a practical viewpoint, the seller should not employ the switching strategy. Suppose

for this reason, the seller determines to employ the non-switching strategy. Then the bold

curves of Figure 7.5(I,II) tell us the following. When i = 1 (i = 10) it is optimal to adopt

the reservation price mechanism throughout the entire planning horizon if the process starts

from time t ≤ 6 (t ≤ 44) and the posted price mechanism if from t > 6 (t > 44). In addition,

it should be noted that when i = 1 (i = 10) the maximum relative difference for employing

non-switching strategy is approximately 5% (4.3%), which occurs at t = 6 (t = 44), and that

the relative difference decreases gradually as the planning horizon becomes greater or less than

6 (44). Furthermore, we obtain a numerical example demonstrating that the maximum relative

difference for employing non-switching strategy may increase more than twofold; for instance,

it becomes 11% when i = 1, ρ = −5.0 and F0(α) be uniform on [0.3, 0.9] by letting λ and F (ξ)

unchanged.

8 Conclusions and Suggested Future Studies

In this paper we have proposed a basic model for an asset selling problem where the seller

can switch between proposing a selling price to appearing buyers and concealing the price. From

our analysis, we obtained some conditions that guarantee the existence of the switching property.

Below, we shall reemphasize the two distinctive points derived from our analysis.

1. Through the analysis, we showed that the optimal decision rules may possess switching prop-

erty; a numerical experiment also demonstrated that multiple switching property may exist.

2. The results of the numerical experiments we obtained in Section 7 demonstrated that the

adoption of the switching strategy may be effective in increasing the seller’s profit. We showed

that the relative difference between the maximum total expected profits for the switching and
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non-switching models can be as high as 24 percent. This implies that a seller may incur an

opportunity loss if the switching strategy is not employed.

Below, let us mention some interesting directions for extending our model that could make

it more practical. Possible extensions include: 1) consideration of the cost of monitoring the

current quantity of items on hand and conducting mechanism switching, 2) future availability

of the buyer who leaves the selling process without purchase, 3) proposed selling price affecting

the buyer arriving probability λ, and 4) introduction of a cost of attracting buyers, called the

search cost.

Appendix : Proofs

A. Proof of Lemma 3.2

Before proving this lemma we must introduce three additional lemmas and a proposition. The

proof of Lemma A.1 can be found in [17].

Lemma A.1 (You [17])

(a) Tp(x) is continuous§, nonincreasing on (−∞,∞), and strictly decreasing on (−∞, b).

(b) Tp(x) > 0 on (−∞, b) and Tp(x) = 0 on [b,∞).

(c) Tp(x) + x is nondecreasing on (−∞,∞) and strictly increasing on (a,∞).

(d) If x ≤ (≥) y, then 0 ≤ (≥) Tp(x)− Tp(y) ≤ (≥) y − x¶.

Proposition A.1 Let a given continuous function g(x) be nonincreasing (nondecreasing) on

(−∞,∞). Then if g(x) is strictly decreasing (strictly increasing) on (−∞, A) or (B,∞) for

certain given finite A and B, so also is it on (−∞, A] or [B,∞).

Proof. It suffices to show that if x < A, then g(x) > (<) g(A), and if x > B, then g(x) < (>) g(B).

Assume g(A) = g(x) for a certain x < A. Then g(x′) < (>) g(x) = g(A) for x < x′ < A, which

is a contradiction, hence it must be g(A) < (>) g(x), implying that g(x) is strictly decreasing

(strictly increasing) on (−∞, A]. It can be proven in a quite similar way that g(x) must be

strictly decreasing (strictly increasing) on [B,∞).

Lemma A.2

(a) T1(x) is continuous, nonincreasing, and convex in x ∈ (−∞,∞).

(b) T1(x) > 0 for x ∈ (−∞, b) and T1(x) = 0 for x ∈ [b,∞).

(c) T1(x) = µ− x for x ∈ (−∞, a] and T1(x) > µ− x for x ∈ (a,∞).

§The assertion that Tp(x) is continuous on (−∞,∞) is not provided in [17]. However, this assertion is obvious
from the fact that p(z)(z − x) is continuous on (−∞,∞) for any x.

¶Let x ≤ (≥) y. Then Tp(x)− Tp(y) ≥ (≤) 0 from (a). The assertion of Tp(x)− Tp(y) ≤ y− x · · · (1∗) if x ≤ y is
equivalent to the one of Lemma 3.1(e) in [17] since Tp(x) ≥ 0 from (b). Multiplying both sides of (1∗) by −1 leads
to Tp(y)− Tp(x) ≥ x− y for x ≤ y, and then interchanging the notations x and y yields Tp(x)− Tp(y) ≥ y − x for
y ≤ x.
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Proof. T1(x) =
∫∞
x (ξ − x)dF (ξ) ≥ ∫∞

y (ξ − x)dF (ξ) for any x and y, so

T1(x)− T1(y) ≥
∫ ∞

y
(ξ − x)dF (ξ)−

∫ ∞

y
(ξ − y)dF (ξ) = −(x− y)(1− F (y)).

Similarly we get T1(x)− T1(y) ≤ −(x− y)(1− F (x)). Hence

−(x− y)(1− F (y)) ≤ T1(x)− T1(y) ≤ −(x− y)(1− F (x)), (A.1)

so

(x− y)F (y) ≤ T1(x) + x− T1(y)− y ≤ (x− y)F (x). (A.2)

(a) Immediate from the fact that max{ξ − x, 0} is continuous, nonincreasing, and convex in

x for any ξ.

(b) Let x ≥ b. Then max{ξ − x, 0} = 0 for ξ ≤ b, so ξ ≤ b ≤ x. Since f(ξ) = 0 for ξ > b

from Eq. (2.2), we get T1(x) =
∫ b
0 max{ξ − x, 0}f(ξ)dξ =

∫ b
0 0f(ξ)dξ = 0; the later half holds.

Let y < x < b. Then −(x − y)(1 − F (x)) < 0 since F (x) < 1 due to Eq. (2.1), so T1(x) < T1(y)

from Eq. (A.1), i.e., T1(x) is strictly decreasing on (−∞, b), hence on (−∞, b] due to (a) and

Proposition A.1. Since T1(b) = 0, we have T1(x) > T1(b) = 0 for x < b, so the former half is true.

(c) Let y < x. Then since (x − y)F (y) ≥ 0, we have T1(y) + y ≤ T1(x) + x from Eq. (A.2),

hence T1(x) + x is nondecreasing on (−∞,∞). Let a < y < x. Then (x − y)F (y) > 0 due to

Eq. (2.1). Thus T1(y)+y < T1(x)+x from Eq. (A.2) or equivalently T1(x)+x is strictly increasing

on (a,∞), hence on [a,∞) due to the monotonicity of T1(x) + x and Proposition A.1. Let x ≤ a.

Then since f(ξ) = 0 for ξ < x ≤ a from Eq. (2.2) and since max{ξ − x, 0} = ξ − x for a ≤ ξ, we

have T1(x) =
∫∞
a max{ξ − x, 0}f(ξ)dξ =

∫∞
a (ξ − x)f(ξ)dξ = µ− x. Hence since T1(a) = µ− a, if

a < x, from the monotonicity of T1(x)+x on [a,∞) we have T1(x)+x > T1(a)+a = µ−a+a = µ,

so T1(x) > µ− x. Thus the latter half is true.

Lemma A.3

(a) Tc(x) is continuous, nonincreasing, and convex on (−∞,∞).

(b) Tc(x) > 0 on (−∞, b◦) and Tc(x) = 0 on [b◦,∞) where b◦ ≤ b.

(c) Tc(x) + x is nondecreasing on (−∞,∞).

(d) Tc(x) = µ1 − x on (−∞, a◦] and Tc(x) > µ1 − x on (a◦,∞).

Proof. (a) Immediate from Lemma A.2(a) and Eq. (3.3).

(b) First, note that µ1 = µ0µ · · · (1∗) from Eq. (2.5). Since 0 < a by assumption, we have

T1(0) = µ due to Lemma A.2(c). From this result and the definition of Eα[α] = µ0 we have

Tc(0) = Eα[αT1(0)] = µ0µ = µ1 > 0 · · · (2∗). If x ≥ b, then x/α ≥ b due to α ∈ (0, 1], hence

T1(x/α) = 0 from Lemma A.2(b), so Tc(x) = 0 due to Eq. (3.3). From this result, (a), and the fact

that Tc(0) > 0 due to (2∗), there exists a supremum b◦ of x such that Tc(x) > 0 (see Eq. (3.9)).

Thus Tc(x) > 0 for x < b◦ and Tc(x) = 0 for x ≥ b◦. Since Tc(b) = Eα[αT1(b/α)] = 0 due to

b/α ≥ b and Lemma A.2(b), we have b◦ ≤ b.
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(c) Let y < x. Then noting Eqs. (3.3) and (A.2), we get

Tc(x) + x− Tc(y)− y = Eα[α
(
T1(x/α) + x/α− T1(y/α)− y/α

)
]

≥ Eα[α(x/α− y/α)F (y/α)] = (x− y)Eα[F (y/α)] ≥ 0,

so that Tc(y) + y ≤ Tc(x) + x. Thus Tc(x) + x is nondecreasing on (−∞,∞).

(d) Define G(x) = Tc(x) + x − µ1. Let x ≤ 0. Then since 0 < a by assumption, we get

x/α ≤ 0 < a for α ∈ (0, 1], so T1(x/α) = µ − x/α from Lemma A.2(c). Hence, from Eq. (3.3)

and (1∗) we get Tc(x) = Eα[α(µ − x/α)] = Eα[αµ − x] = µ0µ − x = µ1 − x or equivalently

G(x) = 0 · · · (3∗) for x ≤ 0. Since µ > a by assumption, we have µ/α > a for α ∈ (0, 1],

hence T1(µ/α) > µ − µ/α from Lemma A.2(c), so αT1(µ/α) > αµ − µ for α ∈ (0, 1]. Thus

Tc(µ) = Eα[αT1(µ/α)] > Eα[αµ − µ] = µ0µ − µ = µ1 − µ or equivalently G(µ) > 0 · · · (4∗).
In addition, since G(x) is nondecreasing on (−∞,∞) from (c), noting (3∗) and (4∗), we see that

there exists a maximum a◦ of x such that G(x) = 0, i.e., Tc(x) = µ1 − x (see Eq. (3.8)). Thus,

G(x) > 0 for x > a◦, so Tc(x) > µ1 − x for x > a◦; and G(x) = 0 for x ≤ a◦, so Tc(x) = µ1 − x

for x ≤ a◦.

Proof of Lemma 3.2

(a) Immediate from Eq. (3.7), Lemmas A.1(a), and A.3(a).

(b) Note that b◦ ≤ b from Lemma A.3(b). Suppose b◦ = b. Then the assertion clearly

holds due to Lemmas A.1(b) and A.3(b). Suppose b◦ < b. Let x < b◦. Then since Tp(x) > 0

due to Lemma A.1(b) and x < b◦ < b, and since Tc(x) > 0 due to Lemma A.3(b), we have

T (x) > 0. Let b◦ ≤ x < b. Then since Tp(x) > 0 due to Lemma A.1(b) and since Tc(x) = 0 due

to Lemma A.3(b), it follows that T (x) = max{Tc(x), Tp(x)} = Tp(x) > 0. Thus the former half

of the assertion holds. Let x ≥ b. Since x ≥ b > b◦, we have Tp(x) = 0 due to Lemma A.1(b) and

since Tc(x) = 0 due to Lemma A.3(b), so T (x) = 0, the latter half holds.

(c) Since λTp(x) + x = λ(Tp(x) + x) + (1− λ)x and λTc(x) + x = λ(Tc(x) + x) + (1− λ)x, it

follows from Lemmas A.1(c), A.3(c), and the assumption of λ < 1 that λTp(x)+x and λTc(x)+x

are both strictly increasing on (−∞,∞). Therefore, the assertion is evident from the fact that

λT (x) + x = max{λTc(x) + x, λTp(x) + x}.
(d) Let x ≤ (≥) y. Then T (x)−T (y) ≥ (≤) 0 from (a). Since 1−F (x) ≤ 1 and 1−F (y) ≤ 1,

from Eq. (A.1) we get T1(x) − T1(y) ≤ (≥) y − x if x ≤ (≥) y. In addition, since x/α ≤ (≥) y/α

due α ∈ (0, 1], from Eq. (3.3) we get

Tc(x)− Tc(y) = Eα[α(T1(x/α)− T1(y/α))]

≤ (≥) Eα[α(y/α− x/α)] = Eα[y − x] = y − x.

Further, noting Eq. (3.7) and Lemma A.1(d), if x ≤ y, we obtain

T (x)− T (y) = max{Tc(x), Tp(x)} −max{Tc(y), Tp(y)}
≤ max{Tc(x)− Tc(y), Tp(x)− Tp(y)} ≤ max{y − x, y − x} = y − x.
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Multiplying both sides of the above inequality by −1 leads to T (y)−T (x) ≥ x− y for x ≤ y, and

then interchanging the notations x and y yields T (x) − T (y) ≥ y − x for y ≤ x.

B. Lemma 3.3

(a) The assertion is proven by the subsequent three steps below.

S1. First, let us prove that x? is finite and that x? < a.

1. Let h? = supz>a h(z) where h(z) = p(z)(z − a)/(1 − p(z)) for z > a (, hence p(z) <

1 due to Eq. (2.3 (2))). Note that
¯
f > 0 from Eq. (2.4). Owing to Eq. (2.3 (2, 3)) we

have 0 < p(b − ε) < 1 for an infinitesimal ε > 0 such that b > b − ε > a. Hence

h(b− ε) = p(b− ε)(b− ε− a)/(1− p(b− ε)) > 0, implying that h? ≥ h(b− ε) > 0 · · · (1∗).

Assume that h? = ∞. Now h(z) = 0 for z ≥ b since p(z) = 0 due to Eq. (2.3 (4)), hence

h? = supb>z>a h(z). Accordingly, the assumption of h? = ∞ implies that there exists at

least one z′ such that a < z′ < b and h(z′) ≥ H/
¯
f for any given sufficiently large H > 1,

i.e., h(z′) = p(z′)(z′ − a)/(1− p(z′)) ≥ H/
¯
f . Then

p(z′)(z′ − a) = (1− p(z′))h(z′) ≥ (1− p(z′))H/
¯
f = Pr{ξ < z′}H/

¯
f · · · (2∗).

Since f(ξ) ≥
¯
f for a ≤ ξ ≤ z′ < b due to Eq. (2.4), we have Pr{ξ < z′} =

∫ z′
a f(ξ)dξ ≥

¯
f

∫ z′
a dξ = (z′ − a)

¯
f . Hence, from (2∗) we have p(z′)(z′ − a) ≥ (z′ − a)

¯
fH/

¯
f = (z′ − a)H,

leading to the contradiction of p(z′) ≥ H > 1. Accordingly it must follows that h? <

∞ · · · (3∗).

2. Using the above result, let us prove that x? is finite. For convenience, let us further

define Tp(x, z) = p(z)(z − x) for any x, hence Tp(x) = maxz Tp(x, z). Here note that

Tp(x) = maxz≥a Tp(x, z) · · · (4∗) due to Lemma 3.1(a). Then for any given x let us consider

the four successive assertions:

A1〈z(x) > a〉,
A2〈Tp(x, a) < Tp(x, z′)for at least one z′ > a〉,
A3〈a− h(z′) < xfor at least one z′ > a〉,
A4〈 inf

z>a
{a− h(z)} < x〉.

Here note that 1 > p(z) for any z > a from Eq. (2.3 (2)) and that z(x) ≥ a for all x due to

Lemma 3.1(a).

a. Suppose A1 is true.
i. Let x ≥ b, so x ≥ b > a, hence a−x < 0. Then z(x) = b > a from Lemma 3.1(b).

Here note that p(a) = 1 from Eq. (2.3 (1)) and p(z(x)) = 0 from Eq. (2.3 (4)).

Since Tp(x, a) = p(a)(a−x) = a−x < 0 and Tp(x, z(x)) = p(z(x))(z(x)−x) = 0,

we have Tp(x, a) < Tp(x, z(x)), implying that A2 holds, i.e., A1 ⇒ A2.

ii. Let x < b. Assume that Tp(x, a) ≥ Tp(x, z′) for all z′ > a, so for z′ ≥ a,

implying that z(x) = a from (4∗), which contradicts A1. Hence it must be that

Tp(x, a) < Tp(x, z′) for at least one z′ > a, thus A2 must be true, i.e., A1 ⇒ A2.
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Accordingly, it follows that A1 ⇒ A2 whether x ≥ b or x < b. Suppose A2 is true.

Then if z(x) = a, we have Tp(x, a) < Tp(x, z′) ≤ Tp(x) = Tp(x, z(x)) = Tp(x, a), which

is a contradiction, hence it must be that z(x) > a due to Lemma 3.1(a), i.e., A1 is

true, so that A2 ⇒ A1. From all the above it eventually follows that A1 ⇔ A2.

b. Since p(a) = 1 from Eq. (2.3 (1)), for any given z′ > a (, hence 1 > p(z′) from

Eq. (2.3 (2))) we have

Tp(x, a)− Tp(x, z′) = p(a)(a− x)− p(z′)(z′ − x)

= a− x− p(z′)((a− x) + (z′ − a))

= (1− p(z′))(a− x)− p(z′)(z′ − a)

= (1− p(z′))
(
a− x− p(z′)(z′ − a)/(1− p(z′))

)

= (1− p(z′))(a− h(z′)− x),

hence it can be immediately seen that A2 ⇔ A3.

c. If A3 is true, then clearly so also is A4, i.e., A3 ⇒ A4. If A4 is true, then a−h(z′) < x

for at least one z′ > a, hence A3 is true, i.e., A4 ⇒ A3, so that A3 ⇔ A4.

Since A1 ⇔ A4 from all the above, we eventually obtain

x? = inf{x ∣∣ z(x) > a}
= inf{x ∣∣ inf

z>a
{a− h(z)} < x} = inf

z>a
{a− h(z)} = a− sup

z>a
h(z) = a− h? · · · (5∗),

which is finite due to 0 < h? < ∞ from (1∗, 3∗). Hence x? < a due to (5∗).

S2. Let x < x?. Then z(x) = a from the definition of x? and Lemma 3.1(a), so p(z(x)) = 1

from Eq. (2.3 (1)), thus Tp(x) = p(z(x))(z(x)− x) = a− x for x < x? (see Figure B.6). Now,

Tp(a) > 0 = a−a from Lemma A.1(b); in other words, Tp(x) > a−x for x = a or equivalently

Tp(x) + x > a for x = a, implying that a? < a. Therefore, Tp(x) + x > a for any x ≥ a

from Lemma A.1(c) or equivalently Tp(x) > a − x for x ≥ a. Further, for any x we have

Tp(x) ≥ p(a)(a− x) = a− x due to p(a) = 1 from Eq. (2.3 (1)). Consequently, it follows that

there exists an infimum of x such that Tp(x) > a − x, i.e., a? defined by Eq. (3.8). Hence

x? ≤ a? because if a? < x?, then for a? < x < x? we obtain the contradiction of Tp(x) = a−x

due to x < x? and Tp(x) > a− x due to a? < x. Thus x? ≤ a? < a. Accordingly, the former

half of the assertion holds. From the above and the definition of a? given by Eq. (3.8), it

follows that Tp(x) = a− x on (−∞, a?] and Tp(x) > a− x on (a?,∞) · · · (6∗).
S3. Now since Tc(a◦) = µ1−a◦ from Lemma A.3(d), if µ1 < a◦, then Tc(a◦) < 0, which contradicts

Lemma A.3(b). Hence, it must be that µ1 ≥ a◦. In addition, since 0 = Tc(b◦) ≥ µ1 − b◦

from Lemma A.3(b,d), we get b◦ ≥ µ1, hence a◦ ≤ b◦. Therefore, noting c◦ = min{x?, a◦}, if

a◦ ≥ x?, then c◦ = x? ≤ a◦ ≤ b◦, and if a◦ < x?, then c◦ = a◦ ≤ b◦. Thus c◦ ≤ b◦ whether

a◦ ≥ x? or a◦ < x?. Since b◦ ≤ b from Lemma A.3(b), we have c◦ ≤ b◦ ≤ b. Accordingly, the

later half holds.

(b) Let x ≤ c◦, so x ≤ x? and x ≤ a◦ due to Eq. (3.9). Then Tp(x) = a−x from x ≤ x? ≤ a?

due to (a) and from (6∗). In addition, owing to x ≤ a◦, we get Tc(x) = µ1−x from Lemma A.3(d).
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Therefore, from Eq. (3.6) we obtain J(x) = µ1− x− (a− x) = µ1− a for x ≤ c◦. Thus the former

half holds. Let x ≥ b. Then Tc(x) = 0 from Lemma A.3(b) and Tp(x) = 0 from Lemma A.1(b),

so J(x) = 0. Hence the latter half is true.

(c) Let b◦ < b. If b◦ ≤ x < b, then Tc(x) = 0 from Lemma A.3(b) and Tp(x) > 0 from

Lemma A.1(b). Hence we get J(x) = −Tp(x) < 0 from Eq. (3.6). Since Tp(x) is strictly decreasing

on [b◦, b) due to Lemma A.1(a), it follows that J(x) is strictly increasing on [b◦, b).

x?

•

a?

•

a b

a •

a−
x

Tp(x)

Figure B.6: x? ≤ a? < a.

C. Lemma 6.1

(a) Since U0(0) = M ≥ ρ = U0(i) · · · (1∗) for i ≥ 1 by assumption, Eqs. (4.8), and (4.5), the

former half of the assertion is clearly true for t = 0. Now U0(1) ≤ M = U0(0) from (1∗). Let

Ut−1(1) ≤ M = Ut−1(0). Since T (Ut−1(0)) ≥ 0 for t ≥ 1 due to Lemma 3.2(b), we have Ut(1) ≤
λT (Ut−1(1)) + Ut−1(1) ≤ λT (M) + M = M = Ut(0) for t ≥ 1 from Eq. (4.10), Lemma 3.2(c,b),

and Eq. (4.8). Hence by induction it follows that Ut(1) ≤ Ut(0) · · · (2∗) for t ≥ 0. Suppose Ut−1(i)

are nonincreasing in i ≥ 0. Since Ut−1(i) ≤ Ut−1(i− 1) ≤ Ut−1(i− 2) for i ≥ 2, from Eq. (4.10) we

get

Ut(i)− Ut(i− 1) = λ
(T (Ut−1(i))− T (Ut−1(i− 1)) + T (Ut−1(i− 2))− T (Ut−1(i− 1))

)

+Ut−1(i)− Ut−1(i− 1) · · · (3∗), t ≥ 1, i ≥ 2.

Note that T (Ut−1(i))−T (Ut−1(i−1)) ≤ Ut−1(i−1)−Ut−1(i) due to Lemma 3.2(d) and T (Ut−1(i−
2))− T (Ut−1(i− 1)) ≤ 0 due to Lemma 3.2(a). Accordingly, from (3∗) we get

Ut(i)− Ut(i− 1) ≤ λ(Ut−1(i− 1)− Ut−1(i)) + Ut−1(i)− Ut−1(i− 1)

= (1− λ)(Ut−1(i)− Ut−1(i− 1)) ≤ 0,

hence Ut(i) ≤ Ut(i− 1) for i ≥ 2, so for i ≥ 1 due to (2∗). Thus, Ut(i) ≤ Ut(i− 1) · · · (4∗) for i ≥ 1

and t ≥ 0 by induction; accordingly, the former half of the assertion holds. Now, since Ut(0) = M

for t ≥ 0 from Eq. (4.8), the later half of the assertion holds for i = 0. Since Ut−1(i) ≤ Ut−1(i− 1)

for i ≥ 1 and t ≥ 1 from (4∗), we have T (Ut−1(i)) ≥ T (Ut−1(i − 1)) due to Lemma 3.2(a).

Therefore, from Eq. (4.10) we get Ut(i) ≥ Ut−1(i) for t ≥ 1 and i ≥ 1, hence also for t ≥ 1 and
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i ≥ 0. Consequently, the later half holds.

(b) From (1∗) and Eq. (4.8) we have U0(i) ≤ M for i ≥ 0. Suppose Ut−1(i) ≤ M for

i ≥ 0. Then from Lemma 3.2(c) and the fact that T (M) = 0 due to Lemma 3.2(b) we have

λT (Ut−1(i)) + Ut−1(i) ≤ λT (M) + M = M for i ≥ 0. Since T (Ut−1(i − 1)) ≥ 0 for i ≥ 1 due

to Lemma 3.2(b), from Eq. (4.10) we have Ut(i) ≤ M for i ≥ 1, hence also for i ≥ 0 due to

Ut(0) = M for t ≥ 0 from Eq. (4.8). Consequently, by induction Ut(i) is upper bounded in i and

t. Further, since Ut(0) = M > ρ for t ≥ 0 from Eq. (4.8) and the assumption of ρ < M and since

Ut(i) ≥ U0(i) = ρ for t ≥ 0 and i ≥ 1 from (a) and Eq. (4.5), we have Ut(i) ≥ ρ for t ≥ 0 and

i ≥ 0, i.e., Ut(i) is lower bounded in i and t. From the above and the monotonicity of Ut(i) in

t ≥ 0 for i ≥ 0 due to (a) it follows that Ut(i) converges to a finite U(i) for i ≥ 0 as t → ∞.

Accordingly, from Eq. (4.10) we can easily show that U(i) = λ
(T (U(i))−T (U(i−1))

)
+U(i), hence

T (U(i)) = T (U(i− 1)) for i ≥ 1. Since T (U(0)) = T (M) = 0 from Eq. (4.8) and Lemma 3.2(b),

we have T (U(i)) = 0 for i ≥ 0. Accordingly, from Lemma 3.2(b) we obtain U(i) ≥ b for i ≥ 0.

(c) Let ρ < b. Then U0(i) = ρ < b for i ≥ 1 from Eq. (4.5). Suppose Ut−1(i) < b for i ≥ 1.

From Eq. (4.10) and Lemma 3.2(b) we have Ut(i) = λT (Ut−1(i)) + Ut−1(i) − λT (Ut−1(i − 1)) ≤
λT (Ut−1(i))+Ut−1(i) for i ≥ 1. Thus Ut(i) < λT (b)+b = b for i ≥ 1 due to Lemma 3.2(c,b). Hence

the former half holds by induction, so U(i) ≤ b for i ≥ 1 . From this fact and (b) we get U(i) = b.
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