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Abstract

The dynamic behavior of O-U processes modified by various boundaries becomes
numerically intractable despite the underlying simplicity of the Gaussian transition
structure. The purpose of this paper is to develop computational algorithms to capture
this dynamics via the Ehrenfest approximation established in Sumita, Gotoh and Jin[3].
The range of a modified O-U process with one or two boundaries is first represented
by 2V + 1 discrete points. On this discrete state space, by shifting and scaling the
Ehrenfest process with similar boundaries in an appropriate manner, the resulting
stochastic process converges in law to the modified O-U process as V → ∞. Using
the uniformization procedure of Keilson [2], numerical results reveal that absorbing,
replacement and reflection boundaries can be treated with speed and accuracy.

Keywords : Modified Ornstein-Uhlenbeck (O-U) process, Absorbing boundaries,
Replacement boundaries, Reflection boundaries, Dynamic Behavior, Uniformization
procedure

0 Introduction

The Ornstein-Uhlenbeck (O-U) process {XOU(t) : t ≥ 0} on IR is a Markov diffusion process

whose probability density function f(x, t) := d
dx

P {XOU(t) ≤ x} is governed by the forward

diffusion equation

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) +

∂

∂x
[x f(x, t)] .(0.1)

Since this process is of practical importance, it has been widely studied and applied to mod-

eling many real dynamics. Recently the usefulness of the O-U process has been reinforced in

the area of financial engineering, where spot interest rates are represented by O-U processes,

see e.g. Vasicek [4].

Despite the underlying simplicity associated with the Gaussian transition structure, the

dynamic behavior of the O-U process becomes analytically intractable when it is modified by

various types of boundaries. Typical boundaries include absorbing boundaries, replacement

boundaries, and reflection boundaries which are special cases of replacement boundaries.

The reader is referred to Feller [1] for further details. Figure 0.1(a) depicts the modified

O-U process with one absorbing boundary. The modified O-U process with two absorbing

boundaries is illustrated in Figure 0.1(b). When the upper and lower boundaries are sym-

metric about 0, this process expresses the first passage time of |XOU(t)|. Additional cases for

1Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba-City, Ibaraki, 305-8573, Japan.
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Figure 0.1: Modified O-U Processes with Various Boundaries

replacement and reflection boundaries are shown in Figures 0.1(c) and 0.1(d), respectively.

These boundaries play an important role in dealing with a variety of financial derivatives.

The purpose of this paper is to develop computational algorithms for evaluating dynamic

behavior of the modified O-U processes with such different boundaries.

In the previous paper by the authors [3], it is shown, through the spectral analysis of

a birth-death process, that a sequence of Ehrenfest processes with appropriate scaling and

shifting converges in law to the O-U process {XOU(t) : t ≥ 0}. The corresponding first pas-

sage times and the historical maximum also converge in law to those of {XOU(t) : t ≥ 0}.
It is worth noting that this approach approximates the O-U process by discretizing only

the state space, not the time axis. More specifically, a finite range of {XOU(t) : t ≥ 0} is

represented by 2V + 1 discrete states where V is a positive integer. Then the O-U process

{XOU(t) : t ≥ 0} is approximated by {XV (t) : t ≥ 0} which is constructed from the underly-

ing Ehrenfest process defined on NV = {0, 1, ..., 2V } with appropriate scaling and shifting.

The zero points of the orthogonal polynomials associated with the spectral representation of
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the Ehrenfest process are then computed, enabling one to evaluate the distributions of the

first passage times and the historical maximum. Additional numerical experiments following

the previous paper [3] have revealed that some zero points tend to cluster near the ends

of NV with diminishing distances among themselves. Consequently, those clustering zeros

cannot be computed with accuracy for V > 200. For example, with V = 200, only two digit

accuracy is assured for the survival functions of the first passage times.

In order to overcome this numerical difficulty, we propose an alternative approach based

on the uniformization procedure of Keilson [2]. As we will see, the uniformization procedure

is numerically stable with speed and accuracy, enabling one to cope with V = 20, 000 or

more where the computational burden increases only as a linear function of V . Based on this

approach, the modified Ehrenfest processes with different boundaries are evaluated, which

in turn captures the dynamic behavior of the modified O-U processes with corresponding

boundaries.

The structure of this paper is as follows. In Section 1, the key results of [3] relevant to

this paper are reviewed succinctly. The uniformization procedure of Keilson [2] for tempo-

rally homogeneous Markov chains in continuous time is summarized in Section 2, together

with algorithms for evaluating the distributions of associated first passage times and the

historical maximum. Sections 3, 4, and 5 deal with the modified O-U process with one

absorbing boundary, two absorbing boundaries, and replacement and reflection boundaries,

respectively. Numerical results are also presented, demonstrating the convergence of the

modified Ehrenfest process as V →∞ with speed and accuracy.

For notational convenience, throughout the paper, we denote a vector by attaching single

underline as x, and a matrix by attaching double underlines as a. Moreover, 1 and 0 mean

vectors whose all elements are 1 and 0, respectively. The vector um means that its element

corresponding to state m is 1 and all other elements are 0. For an N × N matrix a, a

submatrix on G ⊂ {1, ..., N} for rows and on B ⊂ {1, ..., N} for columns is denoted by

a
GB

= [aij ]i∈G,j∈B.

1 Convergence of Ehrenfest Process to O-U Process

and Corresponding State Conversion

We consider a birth-death process N2V (t) on NV = { 0, 1, ..., 2V } governed by upward and

downward transition rates given respectively by

λm = V − m

2
and µm =

m

2
, m ∈ NV .(1.1)

This Markov chain is called an Ehrenfest process in continuous time. From (1.1), one sees

that the local growth rate of the variance is given by

νm := λm + µm = V, m ∈ NV ,(1.2)
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which is independent of m, and the local velocity is given by

λm − µm = V −m.(1.3)

For the associated stationary chain {NV S(t) : t ≥ 0}, one has

cov [ NV S(t), NV S(t + τ) ] =
V

4
e−τ ,(1.4)

and asymptotic normality. The O-U process is characterized by its Markov property, normal

distribution, and exponential covariance function. Because of the properties of the Ehrenfest

process specified in (1.1) through (1.4) together with its asymptotic normality, one expects

that a sequence of processes {XV (t) : t ≥ 0}, V = 1, 2, 3, ..., defined by

XV (t) =

√
2

V
N2V (t)−

√
2V(1.5)

converges in law to the O-U process as V →∞. Indeed, this is formally proven in [3].

We note that {XV (t) : t ≥ 0 } has discrete support defined by

r(m) :=

√
2

V
m−

√
2V , m = 0, 1, ..., 2V.(1.6)

The correspondence between the states of NV (t) and those of XV (t) is summarized in Table

1.1, where

ηV (x) :=

⎡
⎢⎢⎢

√
V

2
x

⎤
⎥⎥⎥ .(1.7)

Table 1.1: State Conversions

State Conversion

Process x ∈ IR→ m ∈ N m ∈ N → x ∈ IR State Space

NV (t) ηV (x) + V m N = {0, 1, ..., 2V }
XV (t)

√
2
V

ηV (x) r(m)
{
−√2V , ...,

√
2V

}

The following two theorems of [3] are relevant to this paper. For the O-U process {XOU(t) :

t ≥ 0 }, its initial state is denoted by XOU(0) = x0.

Theorem 1.1 ([3]) For any x0, x ∈ IR, let m := V + ηV (x0) and n := V + ηV (x). Let

TV (m, n) := inf { t : XV (t) = r(n) |XV (0) = r(m) } and TOU(x0, x) := inf { t : XOU(t) = x|
XOU(0) = x0 }. Then, TV (m, n) converges in law to TOU(x0, x) as V →∞.

Theorem 1.2 ([3]) Let m be as in Theorem 1.1. Let MV (m, τ) := max
0≤t≤τ

{XV (t)|XV (0) = r(m)}
and MOU(x0, τ) := max

0≤t≤τ
{XOU(t) |XOU(0) = x0 }. Then, MV (m, τ) converges in law to

MOU(x0, τ) as V →∞.
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2 Uniformization Procedure of Keilson and First Pas-

sage Times and Historical Maximum of Markov Chains

Let N(t) be a temporally homogeneous Markov chain in continuous time defined on N :=

{ 0, 1, 2, ..., N }, N ≤ ∞. The process is governed by a set of hazard rates { νmn } where νmn

is the transition rate from state m ∈ N to state n ∈ N . Then, the infinitesimal generator

Q of N(t) is given by

Q := −ν
D

+ ν ,(2.1)

where

ν := [ νmn ] ; ν
D

:= diag [ν1, ..., νN ] ; νm :=
∑
n∈N

νmn .(2.2)

The transition probability matrix P (t) := [ pmn(t) ], where pmn(t) := P{N(t) = n |N(0) =

m }, satisfies the Kolmogorov’s matrix differential equation given by

d

dt
P (t) = Q P (t).(2.3)

It then follows that

P (t) = e
t Q

.(2.4)

The process is said to be uniformizable if its hazard rates { νmn } are bounded in the

sense that νm ≤ ν for all m ∈ N for some 0 < ν < ∞, see Keilson [2]. For a uniformizable

chain with a constant ν, let a
ν

be a matrix defined by

a
ν

:= I − 1

ν
ν

D
+

1

ν
ν .(2.5)

It is clear that the matrix a
ν

is stochastic, i.e., a
ν
≥ 0, a

ν
1 = 1. From (2.1) and (2.5), one

has Q = −ν
(
I − a

ν

)
. Substituting this into (2.4), it then follows that

P (t) = exp
{
−ν t

(
I − a

ν

) }
=

∞∑
k=0

e−ν t (ν t)k

k!
a k

ν
.(2.6)

It should be noted that P (t) can be computed via (2.6) independently of ν satisfying

ν ≥ sup
m

νm. Furthermore, since the expression involves only nonnegative numbers, the

computational procedure is very stable, enabling one to deal with a fairly large state space,

say, in the order of 10,000. In what follows, we describe computational algorithms for eval-

uating distributions of first passage times and the historical maximum of the underlying

Markov chain based on (2.6).

Let G ⊂ N be a set of “G”ood states and define a set of “B”ad states by B := N \ G.

Of interest is the first passage time from a good state m ∈ G to the bad set B defined by

Tm,B := inf { t |N(t) ∈ B, N(0) = m} .(2.7)
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For computing the distributions of such first passage times, we introduce the lossy process

N∗(t) obtained from the original process N(t) by making all the states in B absorbing. More

specifically, the transition probability matrix P ∗(t) of the lossy process is given by

P ∗(t) :=

⎛
⎜⎝ P

GG
(t) P

GB
(t)

O I

⎞
⎟⎠ .(2.8)

It is clear that the first passage time Tm,B is greater than τ if and only if N(t) does not

reach B during the period [0, τ ] starting with N(0) = m ∈ G. From the definition of the

lossy process, the latter probability can be expressed as

P {N(t) ∈ G for all t ∈ [0, τ ] |N(0) = m ∈ G } = P {N∗(τ) ∈ G |N∗(0) = m ∈ G } .(2.9)

Consequently, the survival function of the first passage time TmB for m ∈ G is given by

Sm,B(τ) := P {Tm,B > τ } = P {N∗(τ) ∈ G |N∗(0) = m ∈ G } = u�
mP

GG
(τ)1,(2.10)

and the distribution function Sm,B(t) by

Sm,B(t) := 1− Sm,B(t).(2.11)

Applying (2.6) and (2.8), one can see that

P
GG

(t) =
∞∑

k=0

e−ν t (ν t)k

k!
a k

ν:GG
.(2.12)

From (2.10) and (2.12), it then follows that

Sm,B(t) =
∞∑

k=0

e−ν t (ν t)k

k!
u�

ma k
ν:GG

1.(2.13)

Hence, Sm,B(t) and Sm,B(t) can be readily computed via (2.13) through repeated vector-

matrix multiplications.

When the underlying Markov chain N(t) is a birth-death process, all the states are readily

ordered and the historical maximum process may be of interest. Let upward and downward

transition rates be defined by

νmn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λm if n = m + 1, m ≥ 0

µm if n = m− 1, m ≥ 1

0 otherwise

.(2.14)

Let M(m, τ) be the historical maximum of the birth-death process N(t) in the time interval

[0, τ ] given that N(0) = m, i.e.,

M(m, τ) := max
0≤t≤τ

{N(t) |N(0) = m } .(2.15)
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From the dual relationship between the first passage time and the historical maximum, one

sees that

Fm,τ (n) := P {M(m, τ) ≤ n} = P {Tm,n+1 > τ} = Sm,n+1(τ).(2.16)

Consequently, the distribution function of the historical maximum is given by

Fm,τ (n) =

⎧⎪⎨
⎪⎩

0 if n < m

Sm,n+1(τ) if n ≥ m
,(2.17)

where Sm,n+1(τ) is the survival function of the first passage time from m to n + 1, which is

actually the first passage time from m to B = {n + 1, n + 2, ..., N} in (2.10).

3 O-U Process with One Absorbing Boundary

In this section, by using the convergence results and the uniformization procedure reviewed

in the preceding sections, a numerical algorithm is given for evaluating the survival (or

equivalently, distribution) function of the first passage times of the modified O-U process

with one absorbing boundary. While the uniformization procedure based on (2.13) involves

repeated vector-matrix multiplications, the algorithm developed in this section requires only

vector computations since the Ehrenfest process defined in (1.1) is a birth-death process.

Let {N2V (t) : t ≥ 0} be the Ehrenfest process on NV = {0, ..., 2V } governed by the

upward and downward transition rates specified in (1.1). Since the Ehrenfest process is

defined on a finite state space, it is automatically uniformizable. For m < n, let G =

{0, ..., n− 1} and consider the lossy process N∗
2V (t) obtained from N2V (t) by making all the

states in B = {n, ...2V } absorbing. Since N2V (t) is a birth-death process and hence is lattice

continuous, it is sufficient to consider N∗
2V (t) only on {0, ..., n} by making state n absorbing,

provided that the process starts with N∗
2V (0) = m ∈ G. Since the good set G is on a lower

side, we denote the corresponding stochastic matrix on {0, ..., n} by a∗
V (L)

. This matrix can

be obtained via the uniformization procedure as specified in (2.5) and is given by

a∗
V (L)

:=

0 ... n−1 n⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

a
V (L):GG

...

0

λn−1

V

0� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(3.1)
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where

0 1 2 · · · n−2 n−1

a
V (L):GG

=
1

V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ0 0 · · · 0 0

µ1 0 λ1 · · · 0 0

0 µ2 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn−2

0 0 0 · · · µn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

1

2

...

n−2

n−1

.
(3.2)

When G is on an upper side, i.e., G = {n + 1, ..., 2V }, the corresponding stochastic matrix

denoted by a∗
V (U)

is obtained similarly as

a∗
V (U)

:=

n n+1 ... 2V⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0�

µn+1

V

0
... a

V (U):GG

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(3.3)

where

n+1 n+2 n+3 · · · 2V −1 2V

a
V (U):GG

=
1

V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn+1 0 · · · 0 0

µn+2 0 λn+2 · · · 0 0

0 µn+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λ2V −1

0 0 0 · · · µ2V 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n+1

n+2

n+3

...

2V −1

2V

.
(3.4)

In either case, one sees from (2.12) that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P ∗
V (L):GG

(t) =
∞∑

k=0

e−V t (V t)k

k!

(
a

V (L):GG

)k ∈ IR|G|×|G|

P ∗
V (U):GG

(t) =
∞∑

k=0

e−V t (V t)k

k!

(
a

V (U):GG

)k ∈ IR|G|×|G|
.(3.5)

The survival function Sx0,x(τ) of the first passage time of XOU(t) from x0 to x is then

approximated by the survival function SV :m,n(t) of the first passage time of NV (t) from m
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to n where m = ηV (x0) + V and n = ηV (x) + V , which is obtained from (3.5) as

SV :m,n(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
k=0

e−V t (V t)k

k!
u�

m

(
a

V (L):GG

)k
1, for m ∈ G = {0, 1, ..., n− 1}

∞∑
k=0

e−V t (V t)k

k!
u�

m

(
a

V (U):GG

)k
1, for m ∈ G = {n + 1, ..., 2V }.

(3.6)

For the historical maximum MV (m, τ) := max
0≤t≤τ

{XV (t) |XV (0) = r(m) }, the distribution

function FV :m,τ (n) satisfies the following dual relation as (2.16):

FV :m,τ(n) = P {MV (m, τ) ≤ r(n)} = P {TV :m,n+1 > τ} = SV :m,n+1(τ).(3.7)

The distribution function FV :m,τ (n) of the historical maximum of the O-U process can be

computed from (2.17) and (3.6).

By exploiting the structure of any birth-death process, the computation for (3.6) can be

simplified. Let b be a matrix of the form

0 1 2 · · · n−2 n−1

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 η0 0 · · · 0 0

ξ1 0 η1 · · · 0 0

0 ξ2 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 ηn−2

0 0 0 · · · ξn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

1

2

...

n−2

n−1

∈ IRn×n.
(3.8)

For any n-dimensional real vector z := (z0, z1, ..., zn−1)
� ∈ IRn, let z0 and z1 ∈ IRn−1 be

defined by z0 := (z0, z1, ..., zn−2) and z1 := (z1, z2, ..., zn−1), respectively. We also define

an operator ⊗ by w ⊗ y = (w1y1, w2y2, ..., wnyn). Then, for η := (η0, η1, ..., ηn−2), and

ξ := (ξ1, ξ2, ..., ξn−1), one has

z�b = (0, z0 ⊗ η) + (z1 ⊗ ξ, 0) ∈ IRn.(3.9)

We are now in a position to describe an algorithm for computing the survival function

SV :m,n(t) in (3.6), where a generic symbol a
V :GG

is employed for a
V (L):GG

and a
V (U):GG

.

Algorithm 3.1 (Survival Function of the First Passage Time of the O-U Process from x0

to x)

Input :

� V : parameter to describe the range [xL, xU] of the O-U process by 2V + 1 points

� n ∈ NV : the absorbing state with B = {n} where n = ηV (x) + V

9



� G : the good set consisting of all the states on either the lower side or the upper side

of n

� m ∈ G : the state from which N(t) starts where m = ηV (x0) + V

� τ : future time as the argument of the survival function

� εmax, εmin : parameters for stopping criteria for the series expansion of (3.6)

1) Set sm,n ← 0, k ← 0 and x← um.

2) Set K = max
{
k : e−V τ (V τ)k

k!
< εmax

}
and k0 = min

{
k : e−V τ (V τ)k

k!
> εmin

}
3) LOOP1: x� ← x�a

V :GG
.

4) If k < k0, set k ← k + 1 and go to LOOP1.

5) LOOP2: sm,n ← sm,n + e−V τ (V τ)k

k!
x�1.

6) If k < K, set x� ← x�a
V :GG

, k ← k + 1, and go to LOOP2.

7) Stop.

Remark : For computational stability in evaluating the sequence
{
e−V τ (V τ)k

k!

}
k=1,2,...

, we

used the following recurrence formula of b(V, k, τ) := ln e−V τ (V τ)k

k!
:

b(V, k, τ) = b(V, k − 1, τ) + ln
V τ

k
.

Figure 3.1(a) shows the survival function of the first passage time TV (m, n) of XV (t) from

m = ηV (0) + V = V to n = ηV (1) + V for V = 200. A sequence of such survival functions

converges in law to that of the first passage time TOU(0, 1) of XOU(t) from 0 to 1 as V →
∞. In Figure 3.1(b), this convergence is demonstrated by plotting

∥∥∥SV :m,n − S800:m,n

∥∥∥∞ =

sup
{∣∣∣SV :m,n(τ)− S800:m,n(τ)

∣∣∣ ∣∣∣ τ ∈ [0, 10]
}

from V = 200 to V = 800 with step size of 50,

and the supremum is taken with step size of ∆t = 0.1. One observes that almost 4-digit

accuracy is attained with speed at V = 800. The convergence is not monotone because the

relative location of x = 1 within a discretized interval of the width ∆x =
√

2
V

does not

change monotonically as V increases.

To examine the convergence behavior from a different angle, the median value of the

first passage time is computed as a function of V . Formally, this is defined as τ ∗(x0, x) :=

S
−1
V :m,n(0.5), where m = ηV (x0) + V and n = ηV (x) + V . We call τ ∗(x0, x) the median time.

Table 3.1 shows the computed median time τ ∗(x0, x) of the approximating process XV (t)

from x0 to a boundary point x for x0 = 0, 0.5 and x = 1, 2. Only the results for V satisfying

x0 =
√

2
V

ηV (x0) are shown. From this table, we see that the median time can be computed

with 3-digit accuracy.

We next turn our attention to the historical maximum of XV (t), which approximates

that of XOU(t). Figure 3.2(a) displays the convergence of the distribution functions of the
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(a) Survival Function SV :m,n(t) with V = 200 (b) Convergence of SV :m,n(t) to S800(t) where V = 200, 250, ..., 800

Figure 3.1: Survival Function of the First Passage Time of XV (t)
(m = ηV (0) + V = V and n = ηV (1) + V )

Table 3.1: Median Time of First Passage Time of XOU (∆t = 0.1)

V ∆x =
√

2
V

τ ∗(0, 1) τ ∗(0, 2) τ ∗(0.5, 1) τ ∗(0.5, 2)

200 0.1 1.18772 7.24733 0.38715 6.38354

800 0.05 1.18912 7.25101 0.38748 6.38650

3,200 0.025 1.18947 7.25192 0.38757 6.38723

5,000 0.02 1.18951 7.25203 0.37882 6.38732

20,000 0.01 1.18956 7.25218 0.37889 6.38737

historical maximum of the process with x0 = 0 by varying V from 200 to 800. The enlarged

view is provided in Figure 3.2(b). One sees that the speed of convergence is slower for

the historical maximum than the first passage time. Table 3.2 shows the median point

x∗(x0, τ) := F−1
x0,τ(0.5) of the historical maximum distribution until time τ when starting

from a given point x0 for x0 = 0, 0.5 and τ = 1, 10. From this table, we see that the median

point can be computed with 4-digit accuracy.

4 O-U Process with Two Absorbing Boundaries

In this section, modified O-U processes with two absorbing boundaries are considered. Let

x1 and x2 be the down and the upper boundaries respectively and define Sx0,(x1,x2)(t) =

P
{
Tx0,(x1,x2) > t

}
where Tx0,(x1,x2) is the first passage time of the modified O-U process

from x0 ∈ (x1, x2) to either x1 or x2. The corresponding approximation SV :m,(n1,n2)(t) with

11
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(a) Overview (b) Enlarged View

Figure 3.2: Convergence of Distribution Function of Historical Maximum of XV (t)
(x0 = 0 and V = 200, ..., 800)

Table 3.2: Median Point of Historical Maximum M(x0, τ) of XOU(t)

V ∆x =
√

2
V

x∗(0, 1) x∗(0, 10) x∗(0.5, 1) x∗(0.5, 10)

200 0.1 0.92412 2.17776 1.24186 2.22067

800 0.05 0.92337 2.17765 1.24095 2.22057

3,200 0.025 0.92315 2.17759 1.24081 2.22052

5,000 0.02 0.92313 2.17758 1.24076 2.22052

20,000 0.01 0.92311 2.17758 1.24076 2.22052

m = ηV (x0)+V , n1 = ηV (x1)+V and n2 = ηV (x2)+V can be evaluated via the uniformization

procedure as for the case of one absorbing boundary. The stochastic matrix a∗
V

of interest

becomes

a∗
V

:=

n1 n1+1 .... n2−1 n2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0� 0

µn1+1

V
0

0 0
... a

V :GG

...

0 0

0
λn2−1

V

0 0� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(4.1)
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where

n1+1 n1+2 n1+3 · · · n2−2 n2−1

a
V :GG

=
1

V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn1+1 0 · · · 0 0

µn1+2 0 λn1+2 · · · 0 0

0 µn1+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn2−2

0 0 0 · · · µn2−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1+1

n1+2

n1+3

...

n2−2

n2−1

.
(4.2)

From (2.13), it then follows that

SV :m,(n1,n2)(τ) =
∞∑

k=0

e−V τ (V τ)k

k!
u�

m

(
a

V :GG

)k
1, for m ∈ G = {n1 + 1, ..., n2 − 1}.(4.3)

For the historical maximum M+
V (m, τ) := max

0≤t≤τ
{ |XV (t)| |XV (0) = r(m) }, the distribu-

tion function F+
V :m,τ(n1, n2) satisfies the following dual relation as before:

F+
V :m,τ(n1, n2) = P { r(n1) ≤MV (m, τ) ≤ r(n2) }

= P
{
Tm,(n1−1,n2+1) > τ

}
(4.4)

= SV :m,(n1−1,n2+1)(τ),

where n2 = 2V − n1 ≥ V . Consequently, corresponding to (2.16), it follows that

F+
V :m,τ(n1, n2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

SV :m,(n1,n2)(τ) for m ∈ {n1 + 1, ..., n2 − 1}
0 for m ∈ {0, ..., n1 − 1} or m ∈ {n2 + 1, ..., 2V }
1 for m = n1 or n2

.(4.5)

Both SV :m,(n1,n2)(τ) and F+
V :m,τ (n1, n2) can be readily computed by an algorithm similar

to Algorithm 3.1. Because of this similarity, the description of the algorithm is omitted here.

It should be noted that the first passage time of the absolute value process |XOU(t)| is a

special case with x1 = −x and x2 = x for x > 0. Let T+
OU(x0, x) be the first passage time

of |XOU(t)| defined by T+
OU(x0, x) := inf { t : |XOU(t)| = x |XOU(0) = x0 } for x ≥ 0. The

corresponding survival function is denoted by S
+
OU:x0,x(τ) := P

{
T+

OU(x0, x) > τ
}
. Figure

4.1(a) shows S
+
OU:x0,x(τ) with V = 200 for x0 = 0 and x = 1, and Figure 4.1(b) demonstrates

the speed of convergence of such survival functions as V varies from 200 to 800 with step

size of 50. Almost 4-digit accuracy is attained with speed at V = 800. As for Figure 3.1(b),

the convergence is not monotone.

Corresponding to Table 3.1, the median times of |XV (t)| are exhibited in Table 4.1 for

x0 = 0, x1 = −1,−2 and x2 = 1, 2. One observes that the median time can be computed

with 3-digit accuracy.
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(a) Survival Function SV :m,n(t) with V = 200 (b) Convergence of SV :m,n(t) to S800:m,n(t) where V = 200, 250, ..., 800

Figure 4.1: Survival Function of the First Passage Time of |XV (t)|
(m = ηV (0) + V = V and n = ηV (1) + V )

Table 4.1: Median Time of First Passage Time of |XV (t)|
V ∆x =

√
2
V

τ ∗
0,(−1,1) τ ∗

0,(−2,2) τ ∗
0.5,(−1,1) τ ∗

0.5,(−2,2)

200 0.1 0.44659 3.24198 0.30079 3.11018

800 0.05 0.44721 3.24366 0.30142 3.11172

3,200 0.025 0.44736 3.24408 0.30158 3.11211

5,000 0.02 0.44738 3.24413 0.30160 3.11215

20,000 0.01 0.44740 3.24419 0.30162 3.11218

Table 4.2: Median Point of Historical Maximum of |XV (t)|
V ∆x =

√
2
V

x∗
0,1 x∗

0,10 x∗
0.5,1 x∗

0.5,10

200 0.1 1.38328 2.54814 1.44852 2.55399

800 0.05 1.38239 2.54823 1.44707 2.55409

3,200 0.025 1.38207 2.54837 1.44691 2.55422

5,000 0.02 1.38201 2.54840 1.44690 2.55424

20,000 0.01 1.38201 2.54840 1.44690 2.55424

Figure 4.2(a) shows the distribution functions of the historical maximum of the absolute

value process for V from 200 to 800 with step size of 50. These graphs are enlarged in Figure

4.2(b) so as to see the convergence speed better. Table 4.2 shows the median value of the

14
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(a) Overview (b) Enlarged View

Figure 4.2: Convergence of Distribution Function of Historical Maximum of |XV (t)|
(x0 = 0 and V = 200, ..., 800)

historical maximum of the absolute value process with 3-digit accuracy.

5 O-U Process with Two Replacement and Reflection

Boundaries

In contrast with absorbing boundaries discussed in the previous two sections, a replacement

boundary moves the process to a state in G according to a certain probability law as soon as

the process reaches B. The purpose of this section is to establish a numerical algorithm to

capture the dynamic behavior of modified O-U processes with such replacement boundaries.

The relationship between a modified O-U process with one replacement boundary and that

with two replacement boundaries is similar to the relationship for absorbing boundaries.

Because of this, only the cases of two replacement boundaries are discussed here.

We say that {XRP
OU(t) : t ≥ 0} has two replacement boundaries at xL and xU with

replacement probability density functions rL(x) and rU(x) respectively if an instantaneous

replacement to state x ∈ (xL, xU) occurs according to rL(x) or rU(x) as soon as the process

reaches xL or xU, respectively. Figure 5.1(a) illustrates the movement of a modified O-U

process with two replacement boundaries. The movement of the approximating process

{XRP
V (t) : t ≥ 0} is depicted in Figure 5.1(b), where the replacement probability vectors rL

and rU are employed instead of rL(x) and rU(x).

It should be noted that replacements for XRP
V (t) occur as soon as the process reaches

either r(n1) or r(n2) starting from r(m) where m = ηV (x0) + V , n1 := ηV (xL) + V , and

n2 := ηV (xU)+V . As in (1.5), the relationship between XRP
V (t) and the associated Ehrenfest

15
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Figure 5.1: Two Processes with Double Replacement Boundaries

process NRP
2V (t) is given by

XRP
V (t) =

√
2

V
NRP

2V (t)−
√

2V .(5.1)

It can be readily seen that NRP
2V (t) has the transition probability matrix PRP(t) given via

the uniformization procedure as

PRP(t) =
∞∑

k=0

e−V t (V t)k

k!
aRP

V

k
,(5.2)

where

aRP
V

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 r�L 0

µn1+1

V
0

0 a
V (n1+1:n2−1)

0

0
λn2−1

V

0 r�U 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.3)

and

n1+1 n1+2 n1+3 · · · n2−2 n2−1

a
V (n1+1:n2−1)

=
1

V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λn1+1 0 · · · 0 0

µn1+2 0 λn1+2 · · · 0 0

0 µn1+3 0
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 0 λn2−2

0 0 0 · · · µn2−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n1+1

n1+2

n1+3

...

n2−2

n2−1

.
(5.4)
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Clearly, aRP
V

is ergodic and so is NRP
2V (t) and XRP

V (t). Hence, of interest is to compute

the time dependent tail state probability defined as

G
RP
V (t, x) := P

{
XRP

V (t) > x = r(n)
}

= P
{
NRP

2V (t) > n
}

=
n2∑

k=n+1

pRP
mk(t),(5.5)

where pRP
m

(t) :=
(
pRP

mn1
(t), ..., pRP

mn2
(t)

)�
is computed from (5.2) by pRP

m
(t)

�
= u�

mPRP(t). As

V →∞, G
RP
V (t, x) converges to G

RP
OU(t, x) := P

{
XRP

OU(t) > x = r(n)
}
.

Figure 5.2 shows G
RP
V (t, x) with V = 800, xL = −2, xU = 2, and t = 0.1, 0.2, ..., 0.6, as

well as the ergodic distribution

G
RP
V (∞, x) =

n2∑
k=n+1

eRP
k ,(5.6)

where the ergodic vector eRP :=
(
eRP

n1
, ..., eRP

n2

)�
is obtained from (5.3) by solving eRP� =

eRP�aRP
V

with eRP�1 = 1. The two replacement probability vectors are taken to be a binomial

distribution rLk = rUk =
(

n
k

)
0.5k 0.5n−k, k = 0, 1, ..., n = n2 − n1 − 1. One can see that

G
RP
V (t, x) converges to the ergodic distribution G

RP
V (∞, x) as t increases.
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Figure 5.2: Convergence of Tail State Probability with Two Replacement Boundaries
(V = 800, xL = −2, xU = 2)

A modified O-U process with two reflection boundaries at xL and xU, denoted by {XRF
OU(t) :

t ≥ 0}, is a special case of {XRP
OU(t) : t ≥ 0} with two replacement boundaries at xL and xU.

More specifically, the approximating process {NRF
V (t) : t ≥ 0} has the transition probability

matrix PRP(t), which is obtained as

PRF(t) =
∞∑

k=0

e−V t (V t)k

k!
aRF

V

k
,(5.7)
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where

aRF
V

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 r�L 0

µn1+1

V
0

0 a
V (n1+1:n2−1)

0

0
λn2−1

V

0 r�U 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.8)

with rL = (1, 0, ..., 0)�, rU = (0, ..., 0, 1)�, and a
V (n1+1:n2−1)

given by (5.4). Figure 5.3(a)

illustrates the movement of XRF
OU(t) and the movement of the approximating process XRF

V (t)

is depicted in Figure 5.3(b).
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Figure 5.3: Two Processes with Double Reflection Boundaries

Similarly to (5.5) and (5.6), one has

G
RF
V (t, x) := P

{
XRF

V (t) > x = r(n)
}

= P
{
NRF

2V (t) > n
}

=
n2∑

k=n+1

pRF
mk(t),(5.9)

and

G
RF
V (∞, x) =

n2∑
k=n+1

eRF
k ,(5.10)

where pRF
m

(t) :=
(
pRF

mn1
(t), ..., pRF

mn2
(t)

)�
and eRF :=

(
eRF

n1
, ..., eRF

n2

)�
are computed from pRF

m
(t)

�
=

u�
mP RF(t) and eRF� = eRF�aRF

V
with eRF�1 = 1, respectively. As before, G

RF
V (t, x) converges

to G
RF
OU(t, x) := P

{
XRF

OU(t) > x = r(n)
}

as V →∞.

Figure 5.4 shows G
RF
V (t, x) and G

RF
V (∞, x) with V = 800, xL = −2, xU = 2, and t =

0.1, 0.2, ..., 1.0. One can see that G
RF
V (t, x) converges to the ergodic distribution G

RF
V (∞, x)

as t increases.
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Figure 5.4: Convergence of Tail State Probability with Two Reflection Boundaries
(V = 800, xL = −2, xU = 2)

6 Concluding Remarks

In this paper, computational algorithms are developed for capturing the dynamic behavior of

modified O-U processes with one or two of absorbing, replacement or reflection boundaries. It

is shown that, using the Ehrenfest approximation of Sumita, Gotoh and Jin [3] combined with

the uniformization procedure of Keilson [2], such dynamic behaviors as the first passage time,

the historical maximum and the time dependent tail state probabilities as well as the ergodic

probabilities can be computed with speed and accuracy. The numerical procedures developed

in this paper would provide useful tools for evaluating a class of derivatives involving modified

O-U processes with various boundaries. This study is in progress and will be reported

elsewhere.
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