
1

Department of Social Systems and Management

Discussion Paper Series

No. 1118

A genetic algorithm with MGG and demand crossover

to solve dynamic flexible scheduling problem

Tunglun Tsai, Ryo Sato, Takao Terano

May 2005

UNIVERSITY OF TSUKUBA

Tsukuba, Ibaraki 305-8573

JAPAN

2

A genetic algorithm with MGG and demand crossover to solve dynamic

flexible scheduling problem

Tunglun Tsai*, Ryo Sato**, Takao Terano***
*Faculty of Economics, Kanto Gakuen University

**Institute of Policy and Planning Sciences, University of Tsukuba
***Dept. of Computational Intelligence and Systems Science, Tokyo Institute of Technology

Abstract

A genetic algorithm, called MDGA, is proposed for practical scheduling, where bills of

materials of parts, routings of production operations, and work-in-process inventories on hand

and in near future, are taken into consideration. The scheduling problem is called a dynamic

flexible scheduling (DFS) problem. The MDGA algorithm uses the concept of basket of

requirements in representation of chromosome. MDGA reproduces a population of

chromosomes with the principle of minimum generation gap (Yamamura et al., 1996) instead

of simple tournament selection in usual genetic algorithm.

In order to demonstrate the correctness of MDGA, a comparison with exhaustive search is

provided, which also shows the difficulty in solving the DFS problem. By applying MDGA to

a usual job shop scheduling problem, which is a simplified DFS problem, the effectiveness of

MDGA is shown to be satisfactory. Finally, since MDGA has many parameters, it is

examined how they effect on solution-search process.

Keywords: Genetic algorithm; Agile production planning and control; Work-in-process;

Demand crossover; Minimal generation gap

**Corresponding author: Ryo Sato
Phone (office): +81-298-53-5543 Facsimile: +81-298-55-3849
E-Mail: rsato@sk.tsukuba.ac.jp

3

1. Introduction

Nobody knows what will happen in the future. However, something must be predicted

before it becomes clear due to the leadtime. In the competitive market, for example, it is

almost impossible to begin a production after the actual demand is known. Based on

information of the present, decision makers always forecast the future.

Hopp and Spearman (2000) pointed out three laws of forecasting: (1) forecasts are always

wrong, (2) detailed forecasts are worse than aggregate forecasts, and (3) the further into the

future, the less reliable the forecast will be. The second law explains the reason why

production planning begins with master production schedule (MPS), which plans the

long-term requirements of the product family. Subsequently, material requirements planning

(MRP) is used to plans the short-term requirements of an individual product. The third law

reveals that the less reliable forecast should be revised by some new information.

In the field of production management, researches try to build a model to predict the

future demand. The first law does not disparage the activity of forecasting, but call attention

to the importance of forecast revision. Sato and Tsai (2004) proposed agile production

planning and control system (APPCS) to incorporate a change into production system and

provided a methodology to respond to the change agilely and simultaneously. Once there is a

notification of change, APPCS generates another feasible schedule based on work-in-process

(WIP). Tsai and Sato (2004) gave a UML model of APPCS to show the realizability of

APPCS. The schedule developed by APPCS is both practical and feasible, because it is

compatible with the product data that has the same structure detail with a commercially

available enterprise resource planning (ERP) package and an advanced planning and

scheduling (APS) system.

APPCS provides a feasible schedule, but the schedule is not necessarily good. For a plant,

a good schedule is the schedule that achieves its own goal and reflects requirements of the

4

market. The goal varies among problems and researches. For most of the scheduling problems,

it is difficult to meet all the goals. There may be conflict among different goals. Kacem et al.

(2002) proposed an approach to minimize makespan and total processing time (workload) for

a flexible job shop schedule problem. The problem is different from the general job shop

scheduling problem because it assumes the performance of the machines in a work center is

different. Assigning a fast machine to an operation minimizes both makespan and workload at

first. However as the capacity of the fast machines approaches to full, the optimization faces a

dilemma of continuously choosing a fast machine to increase makespan, or choosing a slow

machine to increase workload.

Two approaches are possible among the studies that try to achieve multiple goals. The

lexicographic approach searches for the schedule that meets the goals in a lexicographic order.

The weighted-sum approach seeks for the schedule that achieves the highest scores of a linear

combination of the goals.

A measure of the schedule varies from plant to plant, from single goal to multiple goals

and from lexicographic approach to weighted-sum approach. This research aims to solve an

optimization problem that achieves various goals subject to a set of feasible schedules that are

generated for a set of demands on the basis of product data with resource flexibility and some

WIP. The problem is called dynamic flexible scheduling (DFS) problem. It is flexible because

it assigns resources in a work center to an operation, and because it responds to various goals.

It is dynamic because it is requested to respond to any change in real time. The DFS problem

is practical because it adopts the product data that is actually used in commercially available

manufacturing planning software (such as SAP R/3 and SyteAPS).

NP-hard problems are problems for which there is no known polynomial algorithm, so

that the time to find a solution grows exponentially in problem size (Hopp and Spearman,

2000). Job shop scheduling problem is a simplified version of DFS problem, which will be

shown in Section 4, and it has been shown to be NP-hard by Croce et al. (1995) and

5

Al-Hakim (2001), hence DFS is also an NP-hard problem.

GA exhibits parallelism, contains certain redundancy and historical information of the

past solutions. It is suitable for implementation on massively parallel architecture (Wang and

Zheng, 2001), and it has been applied to a large number of complex search problems

(Nearchou, 2004). GA does not rely on analytical properties of the function to be optimized,

which makes them well suited to a wide class of optimization problems (Al-Hakim, 2001).

However, in view of the randomness property of GA, there is no guarantee of reaching

optimum solutions for most scheduling problems.

In this paper, genetic algorithm with MGG and demand crossover (MDGA) is proposed to

solve DFS problem. MGG is an abbreviation of minimal generation gap that is a generation

alternation model proposed by Yamamura et al. (1996), which keeps variety of chromosomes

in a population while preventing the search process from local optima. Unlike one-point or

two-point crossover, demand crossover is a new way proposed in this paper to exchange the

genes that are related to some demands without violating the precedence constraints. Aytug et

al. (2003) provided a review of the use of genetic algorithms to solve the production and

operations management (POM) problems. The scheduling problem is one of them, but the

optimization of DFS problem is not in those reviewed researches. In this sense, DFS problem

is new; in addition practical and suitable for responding to changes agilely as compared to the

job shop scheduling problem.

Section 2 introduces APPCS and how it responds to a change by an example. Section 3

provides a definition of DFS problem, and a formulation of the problem. Section 4 presents

MDGA, and gives exhaustive search and a comparison with other GAs to demonstrate its

correctness and effectiveness. Section 5 provides an insight into the performance of MDGA

through an experiment and gives some advice on applying MDGA to solve DFS problem.

6

2. Agile production planning and control system (APPCS)

A product data is the data related to product design and manufacturing. The product data

for APPCS contains part, bill-of-materials (BOM), routing, work center, and resource. Those

terms are illustrated with a product part shown in Fig. 1a. A gray square in the product data

shows a part. Finished product, assembly, and raw material are the types of part. This figure

shows that it needs two pieces of assembly 'A' and two pieces of assembly 'B' to make one

finished product 'F'. BOM is a term used to define such a request-supply relation.

F-1

A-2

B-1

A-1

F-2

part
oper-

ation

setup

time

process

time

work

center

F 1 4 4 w1

2 6 6 w2

A 1 6 3 w3

2 4 2 w1

B 1 6 3 w2

M 0 26 3

N 0 24 1

(a)

(b)

F-2, 4

F-1, 4

A-2, 8

A-1, 8r1

r2

r3 B-1, 8

 M-0, 8

 N-0, 16

60 8070 90 100 110 120 130 140 1504030 50100 20

d1

150120

120100

10080

100

70

8050

30

M-0

N-0

B
A

N

M

F
w1

w2

w3

r2

r1

r3

Demand

d1=(F, 4, 150)

ResourceWork center

2
2

2

1

Part & BOM Operation

Fig. 1. (a) Product data of part 'F' and (b) a schedule for a demand 'd1'

A routing is a sequence of operations to make a part. A work center that enrolls some

resources is assigned to an operation, and the operation will be processed by one of the

resources. It takes some time to set up a resource before starting an operation. Setup time and

processing time for processing a piece of part are estimated for an operation. However, the

operation for procurement is processed without specifying a work center. As shown in Fig. 1a,

finished part 'F' has two operations – 'F-1' and 'F-2'. Operation 'F-2' is processed at work

center 'w2' in which resources 'r2' and 'r3' are stationed. It takes 6 time units to set up either

resource, and 6 time units to process a part.

A demand is either a customer order or the result of forecasting. In Fig. 1b, a schedule

generated for a demand 'd1' is illustrated with a Gantt chart. The demand requests 2 pieces of

7

finished product 'F' before due time 150. A rectangular bar in the chart shows a task. In a

sense, a schedule is a set of tasks that are deployed in a Gantt chart. The dot line with a white

arrow in the chart shows the precedence constraints that regulate the manufacturing sequence

of tasks. According to the schedule, a task is released to the shop floor or it is passed on to the

purchasing department for subsequent processing. According to Gantt chart shown in Fig. 1b,

the first task (M-0, 8) should be lunched to a vender at time 0.

Assume a new demand 'd2', which requests 2 pieces of 'F' by time 180, arrives at time 30.

According to APPCS, once an event causes any changes in a schedule to happen, all the

planned tasks except for the in-processing ones are canceled and a new feasible schedule is

plotted out again based on the in-processing tasks according to the updated conditions. When

the in-processing task is finished, its output becomes a work-in-process (WIP).

 (WIP) M-0, 8

 M-0, 4

F-2, 6

F-1, 6A-2, 12

A-1, 12

B-1, 12

 N-0, 24

8r1

r2

r3

d2

d1
4

B-1, 4

 N-0, 8

 M-0, 4

A-1, 4 A-2, 4 F-1, 2

F-2, 2

F-2, 4F-1, 4A-2, 8

A-1, 8

B-1, 8

 N-0, 16

8
r1

r2

r3

 (WIP) M-0, 8

60 8070 90 100 110 120 130 140 150 160 170 1804030 50

d2

180

d1

150

208

21060 8070 90 100 110 120 130 140 150 160 170 180 190 2004030 50

(b)

(c)

2

 N-0, 24

 M-0, 4

A-1, 4 A-2, 4

F-1, 2 F-2, 2

F-2, 4F-1, 4

A-2, 8

A-1, 8

B-1, 12

8

r1

r2

r3

 (WIP) M-0, 8

60 8070 90 100 110 120 130 140 150 160 170 1804030 50

d2

170

d1

150

4

4
4

r1

r2

r3 B-1, 4

 (WIP) M-0, 8

 M-0, 4

A-1, 4

A-2, 4 F-1, 2 F-2, 2

F-2, 4

F-1, 4A-2, 8A-1, 8

B-1, 8

 N-0, 8

8

d2

d1

142

150

 N-0, 16 124

50 80 100 120

68

62

86 104 120

60 8070 90 100 110 120 130 140 1504030 50

166

166138110

138

9648

68

68

162

162150

120

132

150

138120

82

8050

10070

140

10080

120

132120100

50 68 98 110

120

78

110

(a)

(d)
Fig. 2. A schedule achieves (a) minimum makespan, (b) minimum processing time, (c)

maximum service level, and (d) a weighted-sum

Fig. 2a gives a new schedule for demands 'd1' and 'd2' based on the WIP (M-0, 8) whose

planned finish time is 50. A dot line with a solid arrow shows that 8 pieces of the WIP are

input to a downstream task (A-1, 8), which starts from time 50. Consequently, it is not

necessary to generate a task for operation 'M-0'. This schedule achieves minimal makespan.

Some plants may not satisfy with this schedule, because it indirectly causes a long processing

8

time (318) and tardiness (38).

Fig. 2b shows another schedule that achieves minimum total processing time (268), and

the schedule in Fig. 2c attains maximum service level (100%), minimum earliness (0), and

minimum tardiness (0). It is reasonable to process a group of identical operations together, to

cut down on setup time of processing or on ordering costs of purchasing. The minimum total

processing time of the schedule in Fig. 2b is achieved at the cost of service level (0%),

tardiness (86) and makespan (178). Fig. 2d shows a schedule that compromise a goal with

makespan of 140 and total processing time of 288 by applying the weighted-sum approach,

where the minimum makespan and total processing time are 128 and 268, respectively.

In this manner, any change to a schedule will trigger APPCS to generate an improved,

goal-oriented schedule recursively.

3. Dynamic flexible scheduling problem

3.1. Definitions and notations

Product data

The following notations are used in defining product data. An instance of the notation is

provided following the description. The instance is drawn from the product data shown in Fig.

1a.

pi A part

P={ pi } The set of parts concerned; P = { F, A, B, M, N }

bmij = (pi, pj) An ordered pair indicates that part pj is an immediate component of part pi

Bm={ bmij } The set of the ordered pairs bmij among parts in P; Bm = { (F, A), (F, B),

(A, M), (B, N) }

Qty (bmij) Quantity of pj per unit of pi; Qty (F, A) = 2

opij = (pi, j) An ordered pair, called an operation, represents the jth processing step to make

part pi

9

Nop (p i) The number of operations of part pi; Nop (F) = 2

Spt (opij) Setup time of operation opij; Spt (F, 1) = 4

Pct (opij) Unit processing time of operation opij; Pct (A, 2) = 2

Pcw (opij) Processing work center of operation opij; Pcw (B, 1) = w2

wi A work center

W={ wi } The set of work centers; W = { w1, w2, w3 }

ri A resource

R={ ri } The set of resources; R = { r1, r2, r3 }

En (wi) The set of resources enrolled in a work center wi; En (w2) = { r2, r3 }

Recursively applying the request-supply relations defined in Bm, a hierarchy of parts is

constructed. If each part in the hierarchy is replaced with its operations, then we get a

hierarchy of operations.

Rat(opim, opjn) Number of parts necessary to be processed by an operation opjn for a part by

the successor operation opim defined in the hierarchy of operations; it is

defined as

Rat(opim, opjn) =
!
"
#

),(

1

ji ppQty

)(,1,),(if

1,if

iji

ji

pNopnmBmpp

nmpp

==!

+==
 (1)

Demands

The following notations are used to denote the demands. The instance provided after the

explanation is from Fig. 3, which shows a schedule in terms of the terminologies of the

problem.

di A demand

D={ di } A set of demands; D = { d1, d2 }

Rqq (di) Request quantity of demand di; Rqq (d1) = 4

Rqp (di) Request part of demand di; Rqp (d2) = F

Dut (di) Due time of demand di; Dut (d1) = 150

10

tk
w

tk
2

tk
8

tk
7

tk
6

tk
3

tk
4

tk
1

r1

r2

r3

156R

tk
5

78

68

86 128

98

98 126

156

198

60 8070 90 100 110 120 130 140 150 160 170 180 190 2004030 50

rq
8

F-2, 2

rq
9

F-1, 2
rq

13
B-1, 4

rq
14

N-0, 8

rq
10

A-2, 4

rq
1

F-2, 4

rq
2

F-1, 4

rq
3

A-2, 8

rq
6

B-1, 8

rq
7

N-0,16

rq
12

M-0, 1
rq

5
M-0, 3

rq
11

A-1, 4

rq
4

A-1, 8

4

2

8

4

8

8

3

4

1

8

16

4

d
2

F, 2
180

d
1

F, 4

150

4

2

rq
w

M-0, 8

5

3

68

T

Fig. 3. A schedule in terms of terminologies of DFS problem

Operation requirements

An operation requirement is a request for an operation. The request is exploded either

independently or dependently from a demand. 'Requirement' is used instead of 'operation

requirement' for simplification. The following notations are used in defining requirements and

their relations.

rqi A requirement

Rq={ rqi } A set of requirements exploded from demands D; Rq = { rqi }i=1..14

Opr (rqi) Operation of requirement rqi; Opr (rq6) = (B, 1)

Net (rqi) Quantity (net requirement) of requirement rqi; Net (rq10) = 4

eij = (rqi, rqj) An ordered pair showing precedence relation that rqj must be processed

before rqi

Erq = { eij } A set of directed edges representing precedence among requirements Rq; Erq =

{ (rq1, rq2), (rq2, rq3), (rq3, rq4), (rq4, rq5), (rq2, rq6), (rq6, rq7),…,

(rq13, rq14) }

Grq=(Rq, Erq) A directed acyclic graph of the requirements Rq

Pd(rqi) The set of immediate predecessors of rqi; Pd (rq9) = { rq10, rq13 }

Sc(rqi) The immediate successor of rqi; Pd (rq4) = rq3

11

Met(di) The requirement planned to meet demand di; Met (d2) = rq8

The requirements in Rq must be generated according to the hierarchy of operations. Let

(rqi, rqj)∈Erq be arbitrary, and assume that operation Opr (rqi) = (pi, m) and Opr (rqj) = (pj, n).

If pi = pj, then m = n + 1; otherwise (pi, pj)∈Bm, m = 1, and n = Nop (pj). Requirements are

generated to meet the request of all demands. For a demand di, there must be one and only

one requirement, rqi∈Rq , such that Sc(rqi) = ∅ , Opr (rqi) = (Rqp (di) , Nop (Rqp(di))) and

Rqq (di) = Net (rqi) hold.

Tasks

A task is an operation processed within a period of time by a resource, which is generated

to meet one or more requirements. The following notations are used for defining tasks and the

relation with requirements. Notice that for a set A, | A | represents the number of elements in

A.

tki A task

Tk={ tki } A set of tasks scheduled to meet requirements Rq, | Tk | ≤ | Rq |; Tk = { tki }i=1..8

Rsc (tki) The resource assigned to process task tki; Rsc (tk3) = r3

Sta (tki) The start time of task tki; Sta (tk3) = 68

Fin (tki) The finish time of task tki; Fin (tk3) = 86

Tq (tki) A set of requirements scheduled to form a task tki; Tq (tk4) = { rq6, rq13}

Qt (rqi) The task of requirement rqi; Qt (rq6) = tk4

Sst Scheduling start time; Sst = 30

Est (rqi) The earliest time at which rqi can be started; Est (rq3) = 98, Est (rq10) = 86

Lft (rqi) The latest time which rqi must be completed; Lft (rq3) = 128, Lft (rq10) = 128

The earliest and latest times for a requirement are defined as

Est (rqi) =
!"

!
#
$ %=

&
otherwise))((max

)(if

)(
j

rqPdrq

i

rqQtFin

rqPdSst

ij

 (2)

and

12

Lft (rqi) =
!
"
#$

)))(((irqScQtSta

otherwise

)(if !=irqSc . (3)

WIP

A rigorous definition of 'work-in-process' that a requirement whose successor is canceled

by some changes is used in this paper, instead of the general one that a requirement whose

task is in-processing. This is because that scheduling start time Sst might be far later than

notification time of a change, and some in-processing tasks might have been completed.

Wp The set of work-in-processes; Wp = { rqw }

Qw (rqi) A set of WIP that was allocated to a requirement rqi; Qw (rq4) = { rqw}

Wq (rqw) A set of requirements to which a WIP rqw is allocated; Wq (rqw) = { rq4, rq11}

Alq (rqi, rqw) The quantity of WIP rqw allocated to requirement rqi; Alq (rq4, rqw) = 5

Constraints on scheduling

[C1] Operation consistency for a task: The requirements with identical operation can be

combined to form a task. That is, the following constraint should hold.

(∀tki∈Tk) (∀rqi, rqj∈Tq (tki)) Opr (rqi) = Opr (rqj) (4)

[C2] Total processing time: The total processing time of a task, i.e. the difference between

finish time and start time, equals to the sum of setup time and the product of unit processing

time and the sum of quantities of the contained requirements. It is

(∀tki∈Tk) (∃rqi∈Tq(tki)) Fin(tki) − Sta (tki) = Spt (Opr (rqi)) + Pct(Opr(rqi)) ×
)(itkTqjrq !

" Net(rqj).

 (5)

[C3] Resource flexibility: If there is a resource assigned to a task, then it must be enrolled in

the work center that is assigned to the operation of requirements satisfied by the task. That is,

(∀tki∈Tk) (∃rqi∈Tq (tki)) Rsc (tki)∈En (Pcw (Opr (rqi))). (6)

[C4] Precedence of tasks: The constraint that a task cannot be scheduled to start earlier than

the latest earliest start time and to finish later than the earliest latest finish time among its

requirements is denoted by

13

(∀tki∈Tk) Sta (tki) ≥
)(

max
itkTqirq !

Est (rqi) and Fin (tki) ≤
)(

min
itkTqirq !

Lft (rqi). (7)

[C5] Finite loading on resource: The finite loading constraint of a resource is denoted by

(∀ tki , tkj∈Tk) if Rsc (tki) = Rsc (tkj) , then [Sta (tki), Fin (tki)) ∩ [Sta (tkj), Fin (tkj)) = ∅,

where [t1, t2) means an interval of time from t1 to t2. (8)

[C6] WIP allocation: A WIP (planned requirement) can be used by a requirement if it has the

same operation with the WIP, and if the WIP is completed before the successor of the

requirement starts. That is,

(∀rqi∈Rq) (∀rqw∈Qw (rqi)) Opr (rqi) = Opr (rqw) and Fin (Qt (rqw)) ≤ Sta (Qt (Sc (rqi))). (9)

[C7] Total quantity of WIP: The total allocated quantity of a WIP among requirements cannot

exceed quantity of the WIP. That is,

(∀rqw∈Wp) Net (rqw) ≥
)(wrqWqirq !

" Alq (rqi, rqw). (10)

[C8] Net requirement: For any (rqi, rqj)∈Erq, quantity of rqj is calculated by subtracting WIP

allocations from the gross requirement requested by rqi. That is,

(∀(rqi, rqj)∈Erq) Net (rqj) = Net (rqi) × Rat (Opr (rqi), Opr (rqj)) −
)(irqQwwrq !

" Alq (rqj, rqw). (11)

Dynamic flexible scheduling problem

Denote evaluation functions of makespan by EVmks, service level by EVsvc, and tardiness

by EVtds for a schedule. Dynamic flexible scheduling (DFS) problem is defined as:

Minimize EVmks =))((min))((max
i

Tktk
i

Tktk

tkStatkFin
ii
!!

" , (12)

Maximize EVsvc = DdDutdMetQtFinI ii
Ddi

/)))()))(((((!"
#

, where I: { T, F } → { 1, 0 }, or (13)

Minimize EVtds = }0),()))(((max{ ii
Dd

dDutdMetQtFin
i

!"
#

, (14)

Subject to the following eight constraints.

[C1] Operation consistency for a task

[C2] Total processing time

[C3] Resource flexibility

14

[C4] Precedence of tasks

[C5] Finite loading on resource

[C6] WIP allocation

[C7] Total quantity of WIP

[C8] Net requirement

3.2. Problem formulation

Requirement arrangement, requirement aggregation, resource assignment, WIP allocation,

and scheduling alternatives are the steps to formulate DFS problem in a systematic way.

(a)

1234567891011121314

1234567 891011121314

123456789101112 1314

123456789101112 1314

123456789101112 1314

12345 67 89101112 1314

8 1234567 91011121314

2 9714 11 4512 9 2310 18

sq
i

qaij

sq
1

sq
2

sq
3

sq
4

sqi

sq
343200

(d)

(b)

Alt
1

Alt
2

rqw, M-0, 8

0Alt 1

0Alt
2

1

0

2

0

08

10

1

1

07

21

1

2

10

77

0

8
k2, r3 k4, r3k3, - k7, r3k1, - k6, r2 k8, r2k5, r3

rq
1

F-2
4

rq
2

F-1
4

rq
6

B-1
8

rq
7

N-0
16

rq
4

A-1
8

rq
3

A-2
8

rq
5

M-0
8

rq
8

F-2
2

rq
9

F-1
2

rq
13

B-1
4

rq
14

N-0
8

rq
11

A-1
4

rq
10

A-2
4

rq
12

M-0
4

front rear

234567 91011121314 18

34567 1011121314 189 2

front rear

k8
rq

8

F-2, 2
rq

1

F-2, 4

k7k6k5k4k3k2k1

k2, r2 k4, r1k3, - k7, r2k1, - k6, r1 k8, r1k5, r1

k2, r3 k4, r1k3, - k7, r2k1, - k6, r1 k8, r1k5, r1

(c)

qa
i1

qa
i2

qa i3

qa
i128

raij1
ra
ij2

ra
ij64

wa
1
wa

2
wa

3
wa

9
wa

11
wa

17
wa

19
wa

43
wa

45

SQ

Rq

QAi

RAij

WA

w1

r2r1
w3

r3r1

w2

r3r2

dummy

-

rq1

F-2, 4
rq 2

F-1, 4
rq 6

B-1, 8
rq7

N-0, 16
rq4

A-1, 8
rq3

A-2, 8
rq5

M-0, 8
rq8

F-2, 2
rq9

F-1, 2
rq 13

B-1, 4
rq14

N-0, 8
rq11

A-1, 4
rq10

A-2, 4
rq12

M-0, 4

rq
4

A-1, 8
rq

9

F-1, 2
rq

13

B-1, 4
rq

11

A-1, 4
rq

10

A-2, 4
rq

12

M-0, 4
rq

14

N-0, 8
rq

7

N-0, 16
rq

6

B-1, 8
rq

5

M-0, 8
rq

3

A-2, 8
rq

2

F-1, 4

Fig. 4. (a) Legal sequences of requirements, (b) sequences of baskets, (c) possible resource

assignments for a sequence of baskets, (d) possible WIP allocations for a set of requirements

(1) Requirement arrangement: Production planning and scheduling assigns available capacity

(a time interval) of a resource to requirements in Rq. To solve the conflict caused when

more than one requirement requests for the same period of time from a resource, these

requirements are arranged to a sequence 〈rqi〉i=1..|Rq| (rqi∈Rq) and the capacity of resource

is assigned to the requirements in order of the sequence. Let SQ = { sq1, sq2, …, sqk } be a

set of all legal sequences on the requirements in Rq, where a sequence of the requirements

is said to be legal if the order of the requirements doesn’t violate the precedence

15

constraints Erq. Fig. 4a shows the set SQ.

(2) Requirement aggregation: The requirements with the same operation that are located

adjacent to each other in a sequence can be grouped together into a basket. A basket is a

basic unit of scheduling and the requirements in a basket will be scheduled together to

form a task. A basket is for a requirement if either side of the requirement does not have

any requirement with identical operation. The aggregation of adjacent requirements

without shifting their position in a sequence complies with the precedence constraints Erq.

Denote a set of sequences of baskets by QAi = { qai1, qai2, …, qaim } on a sequence of

requirements sqi SQ. Fig. 4b shows the possible cases of QAi for a sqi SQ in Fig.

4a.

(3) Resource assignment: A work center is assigned to an operation except operations that

need to be planned lead time for procurement. To keep it simple, we assume that such an

operation is assigned to a dummy work center. A basket, including at least one

requirement, inherits work center from the requirements, and one of the resources in the

work center is assigned to the basket for scheduling. For a sequence of requirements

sqi SQ, and for a sequence of baskets qaij QAi, let RAij = { raij1, raij2, …, raijk } be a set

of sequences of resource-assigned baskets. Fig. 4c shows some instances of resource

assignment for a sequence of baskets in Fig. 4b. Dummy resource is assigned to baskets

k1 and k3, because they are the aggregation of procurement requirements.

(4) WIP allocation: Quantity of WIP can be allocated to the requirements of the same

operation, as shown in [C7], in the new scheduling run. Fig. 4d shows the alternative ways

to allocate 8 units of WIP rqw to rq5 and rq12. Let WA be a set of the possible WIP

assignments from WIP in Wp to requirements in Rq.

(5) Scheduling alternatives: SA = { fs, bs } is a function set of two scheduling alternatives -

forward scheduling and backward scheduling. Backward scheduling generates a schedule

backwardly from due time of a demand, while forward scheduling does it forwardly from

16

the scheduling start time Sst.

/* Terms denote baskets together with their relations with requirements
Bk={ bki } A set of the resource-assigned baskets
〈bki〉i=1..|Bk| A sequence of baskets on Bk
Bq (bki) A set of requirements in a basket

/* Production planning and scheduling
Production_ Planning_and_Scheduling (Sequence of baskets: 〈bki〉)
(01) IF scheduling alternatives = 'forward scheduling'
(02) THEN DO Forward_Scheduling (Sequence of baskets: 〈bki〉);
(03) ELSE DO Backward_Scheduling (Sequence of baskets: 〈bki〉);

/* Backward scheduling of a sequence of baskets
Backward_Scheduling (Sequence of baskets: 〈bki〉)
(04) FOR each basket bki∈Bk in a reverse order of 〈bki〉
(05) Calculate quantity of each requirement in bki by [C8]
 in the confines of [C6];
(06) Generate a task tkn for all requirements in bki due to [C1];
(07) Get resource rs assigned to basket bki due to [C3];
(08) Calculate total processing time tpt of tkn by [C2];
(09) Get a set of intervals Itv of resource rs whose length ≥ tpt
 and finish time ≤ min{ Lft(rq) | rq∈Bq(bki) } due to [C4];
(10) Pick an interval of the latest finish time fin from Itv, and
 reserve capacity [fin − tpt, fin) of rs for tkn due to [C2].
(11) ENDFOR
(12) IF any task in the Gantt chart starts before Sst
 THEN DO Forward_Scheduling (Sequence of baskets: 〈bki〉);

/* forward scheduling of a sequence of baskets
Forward_Scheduling (Sequence of baskets: 〈bki〉)
(13) FOR each basket bki∈Bk in a reverse order of 〈bki〉
(14) Calculate quantity of each requirement in bki by [C8];
(15) ENDFOR
(16) FOR each basket bki∈Bk in the order of 〈bki〉
(17) Generate a task tkn for all requirements in bki due to [C1];
(18) Get resource rs assigned to basket bki due to [C3];
(19) Calculate total processing time tpt of tkn by [C2];
(20) Get a set of intervals Itv of resource rs whose length ≥ tpt,
 start time ≥ max{ Est(rq) | rq∈Bq(bki) } due to [C4], and
 start time ≥ max{ Fin (Qt (rqw)) | rqw∈Qw(Bq(bki)) } due to
[C6];
(21) Pick an interval of the earliest start time sta from Itv, and
 reserve capacity [sta , sta + tpt) of rs for tkn due to [C2];
(22) ENDFOR

Fig. 5. Procedures of production planning and scheduling

The ways to calculate the total number of cases in requirement arrangement, requirement

aggregation, and WIP allocation are shown in Appendix A, B, and C, respectively. Domain of

17

DFS problem formulated in a systematic way can be denoted by U U
SQ

i

QA

j ij

i

RAWASA
1 1= =

!! .

Production planning and scheduling is to transform a sequence of resource-assigned baskets

with respective WIP allocation and the specification of a scheduling alternative into a set of

tasks, which can be deployed on a Gantt chart. One basket, including a set of requirements, is

converted to a task.

The procedure of production planning and scheduling is shown in Fig. 5. Lines from (01)

to (03) show that a chromosome running forward scheduling or backward scheduling is

determined by the scheduling alternative. Lines from (04) to (11) show backward scheduling

runs net requirement planning together with scheduling in a sequence one by one from the

rear basket back to the front one. In line (05), quantity (net requirement) of each requirement

in a basket is planned by deducting effective quantity of WIP allocation (due to [C6]) from

gross requirement of the successor according to [C8]. Lines (06) and (07) show that a task is

generated for a basket and the resource for the task is brought from the basket. Referring to

[C2], total processing time of a task is calculated in line (08). In line (09), available intervals

of the resource enough and in time for the processing time are gathered. Finish time of the

intervals cannot be later than the start time of the successor requirements. The interval with

the latest finish time among the intervals is selected and occupied with the processing time of

the task as denoted in line (10). Finally, as shown by line (12), if the schedule by backward

scheduling starts before scheduling start time Sst, then forward scheduling is triggered to

generate a feasible schedule from Sst.

Forward scheduling plans net requirement from line (13) to (15), then runs scheduling

from the front basket to the rear one as listed from line (16) to (21). The net requirement

planning is similar to backward scheduling with the exception that all allocated WIP is forced

to be used in offsetting the gross requirement as shown in line (17). However, finish times of

the WIP must be taken into consideration in determining the earliest start time of the task. As

18

shown in line (20), the earliest start time forces a new task to start after not only the finish

times of the predecessor requirements but also the allocated WIP.

The result of production planning and scheduling of a sequence of baskets appeared in Fig.

4 is shown in Fig. 6, in which 'qty', 'tpt', 'lft', and 'est' are total net requirements, total

processing time, latest finish time, and earliest start time of a basket, respectively, for

deploying a task in the Gantt chart. As shown by Fig. 6a, backward scheduling plans from

basket k8 to k1. A WIP rqw that ends in time 50 is allocated to requirements rq5 and rq12,

but the WIP is not in time for tasks tk3 and tk5 , hence the allocation is unusable.

Consequently, the schedule by backward scheduling is not feasible because it starts before the

scheduling start time Sst. Forward scheduling is done, accordingly. Fig. 6b shows the resultant

feasible schedule run by forward scheduling starting from Sst = 30, while the allocated WIP is

used, hence less material needs to be purchased.

backward scheduling

bk
2

(-)

bk
7

(r3)

bk
5

(r1)

bk
6

(r2)

bk
3

(r3)

bk
1

(-)

bk
4

(r3)

bk
8

(r1)

rq
w

M-0, 8

5(0) rq
8

F-2, 2
rq

9
F-1, 2

rq
13

B-1, 4
rq

14
N-0, 8

rq
10

A-2, 4

rq
1

F-2, 4
rq

2

F-1, 4
rq

3

A-2, 8
rq

6

B-1, 8
rq

7

N-0, 16

rq
12

M-0, 4

rq
5

M-0, 8

rq
11

A-1, 4

rq
4

A-1, 8 4

2

8

4

8

88

4

4

8

16 4

3(0)

d
2

F, 2
180

d
1

F, 4

1504

2

qty =6
tpt =42

lft =150

qty =6
tpt =28

lft =108

qty =12
tpt =28

lft =80

qty =8
tpt =30

lft =52

qty =12
tpt =42

lft =80

qty =4
tpt =18

lft =52

qty =12
tpt =62

lft =20

qty =24
tpt =48

lft =38

 rq
w
 M-0, 8

 tk
2
 M-0, 12

tk
8

F-2, 6

tk
7

F-1, 6

tk
6

A-2, 12

tk
3

A-1, 4

tk
4

B-1, 12

 tk
1
 N-0, 24

r1

r2

r3

150

tk
5

A-1, 8

60 8070 90 100 110 120 130 140 1504030 5020100

 rq
w
 M-0, 8

 tk
2
 M-0, 4

tk
8

F-2, 6

tk
7

F-1, 6

tk
6

A-2, 12

tk
3

A-1, 4

tk
4

B-1, 12

1

r1

r2

r3

156

Sst

tk
5

A-1, 8
3

78

68

86 128

5

3

98

98 126

156

198

60 8070 90 100 110 120 130 140 150 160 170 180 190 2004030 50

108

10880

8052

52

20 38

-10

-42

22

(a) (b)Sst

forward scheduling

bk
2

(-)

bk
7

(r3)

bk
5

(r1)

bk
6

(r2)

bk
3

(r3)

bk
1

(-)

bk
4

(r3)

bk
8

(r1)

5(5)
rq

8
F-2, 2

rq
9

F-1, 2
rq

13
B-1, 4

rq
14

N-0, 8
rq

10
A-2, 4

rq
1

F-2, 4
rq

2

F-1, 4
rq

3

A-2, 8
rq

6

B-1, 8
rq

7

N-0, 16

rq
12

M-0, 1

rq
5

M-0, 3

rq
11

A-1, 4

rq
4

A-1, 8 4

2

8

4

8

8
3

4

1

8

16 4

3(3)

d
2

F, 2
180

d
1

F, 4

1504

2

qty =6
tpt =42

est =156

qty =6
tpt =28

est =128

qty =12
tpt =28

est =98

qty =8
tpt =30

est =68

qty =12
tpt =42

est =78

qty =4
tpt =18

est =68

qty =4
tpt =38

est =30

qty =24
tpt =48

est =30

rq
w

M-0, 8

 tk
1
 N-0, 24

Fig. 6. Results of (a) backward scheduling, and (b) forward scheduling

4. Genetic algorithm with MGG and demand crossover (MDGA)

This paper proposes a specific genetic algorithm, called MDGA, to solve DFS problems.

A chromosome acts as information carrier through the processes of MDGA. It joins the

reproduction process to propagate its offspring by demand crossover and mutation. Then, the

offspring’s fitness values are measured to compete with those of other chromosomes by

19

minimal generation gap (MGG) generation alternation process to decide whether they can be

promoted to the next generation. If lost, it is abandoned to have more room for a new

chromosome. The processes of reproduction and selection are repeated until all termination

conditions are satisfied. The correctness and effectiveness of MDGA will be examined by

exhaustive search and a comparison with other GAs.

4.1. Encoding

To encode a chromosome is to represent an instance of domain of DFS problem. A

chromosome is a combination of components, called genes. We encode a gene with a

requirement, and a chromosome with a sequence of requirements.

A chromosome
schAlt= forward scheduling

bk
6

(r3)
bk

2
(r2)

bk
1

(r1)
bk

3
(r3)

bk
5

(r1)
bk

4
(-)

bk
7

(-)

An instance in domain of DFS problem
forward scheduling

rq
3

d1o3
rq

2
d1o2

rq
1

d1o1

rq
6

d2o3
rq

5
d2o2

rq
4

d2o1

rq
9

d3o3
rq

8
d3o2

rq
7

d3o1

x
1x

2
x

3

gene g
1

opr=d1o1
res=(r1)
agf=(F)
wip={}

gene g
3

opr=d1o3
res=(-)
agf=(T)
wip ={}

gene g
4

opr=d2o1
res=(r2)
agf=(F)
wip={}

gene g
5

opr=d2o2
res=(r3)
agf=(T)

wip ={(w, x
2
)}

gene g
6

opr=d2o3
res=(-)

agf=(T)
wip={}

gene g
7

opr=d3o1
res=(r1)
agf=(F)
wip={}

gene g
9

opr=d3o3
res=(-)

agf =(T)
wip={}

WIP w, o2, x

gene g
2

opr=d1o2
res=(r2)
agf=(T)

wip={(w, x
1
)}

gene g
8

opr=d3o2
res=(r3)
agf =(T)

wip={(w, x
3
)}

G
rq

Hierarchy of

operations

o1

o2

o3

demand d1 demand d2 demand d3

rq
1

d1o1
rq

2
d1o2

rq
4

d2o1
rq

5
d2o2

rq
6

d2o3
rq

7
d3o1

rq
8

d3o2
rq

9
d3o3

rq
3

d1o3

E
nc

od
in

g

D
ec

o
d
in

g

Fig. 7. The mapping of DFS problem to the GA encoding

A gene has four attributes: operation, aggregation flag, resource, and WIP allocation.

Aggregation flag and operation advise whether the gene is capable of aggregating with other

genes. A chromosome has an attribute for scheduling alternative, which suggests whether the

chromosome should run forward scheduling or backward scheduling. Fig. 7 shows the

encoding corresponding to the DFS problem, where 'opr' indicates the operation, 'res' the

assigned resource, 'agf' the aggregation flag, 'wip' the WIP allocations of gene, and 'schAlt' the

scheduling alternative.

20

If several genes have the same operation, 'True' aggregation flags, and are adjacent each

other in a chromosome, then they are grouped together in a basket. Subsequently, the

responsible resource for a group of genes is randomly selected among resources of the genes.

As a result, a chromosome can be decoded back to a sequence of baskets.

4.2. Initialization

At first a set of chromosomes is randomly generated to form a population. An

initialization procedure is proposed in Fig. 8a to generate a legal chromosome for the initial

population, where the lines from (02) to (09) are a loop for sampling a sequence of genes

without violating the precedence constraints. The key to that is appending the predecessor

requirements to the sampling pool Q in line (04) immediately after a requirement is removed

from Q as shown in line (03). For a gene, a resource is randomly skimmed off among the

resources selected by applying [C3] in line (06), and the aggregation flag is set in line (07). At

the end, the quantity of WIP, if any, is distributed to suitable genes randomly according to

rules [C6], [C7], and [C9] in line (10). From line (11) to (12), a chromosome is generated to

contain the sequence of genes, and the scheduling alternative of the chromosome is set to be

either forward scheduling or backward scheduling.

/* Generate an initial population of chromosomes
(a) Initialization ()
(01) Put the last requirement in Rq into a queue Q;
(02) WHILE Q is not empty
(03) Remove any requirement rqi from Q;
(04) Add predecessor requirements Pd(rqi) to Q;
(05) Create a gene gn for rqi;
(06) Choose a resource in En(Pcw(Opr(rqi)))
 for gn due to [C3];
(07) Set aggregation flag of gn to be 'True' or 'False';
(08) Append gn to a queue of genes G;
(09) END WHILE
(10) Allocate quantity of WIP to genes in G randomly
 according to [C6], [C7], [C9];
(11) Designate a chromosome C contains G;
(12) Assign a scheduling function in { ' fs', 'bs' } to C;

/* Generation alternation with rMGG
(b) rMGG (m, n, k)
(01) Generate m chromosomes as initial population P;
(02) FOR each generation UNTIL nth generation
(03) Remove 2 chromosomes {x, y} from P;
(04) Apply N-demand crossover on {x, y},
 and get { x', y'};
(05) Evaluate x' and y';
(06) Choose the best fit from { x, y, x', y'} as b;
(07) Choose any one from { x, y, x', y'}−{ b } as
a;
(08) Put a and b back to P;
(09) IF random number < k
(10) Select a chromosome ch from P;
(11) Apply shift mutation to ch, and evaluate it;
(12) END IF
(13) END FOR

Fig. 8. Procedures of (a) initialization, and (b) generation alternation with rMGG

21

4.3. Reproduction

Two methods, crossover and mutation, are used in MDGA to reproduce new

chromosomes. In general, crossover operator randomly selects two chromosomes from a

population, exchanges some genes of them, and reproduces two new chromosomes. Mutation

operator randomly selects a chromosome from the population, reverses some data, and then

puts it back to the population. For DFS problem, both operators must comply with the

precedence constraint when reproducing a new sequence of genes. The crossover and

mutation of MDGA are explained as follows.

(1) N-demand crossover

The genes in a chromosome with common attributes form a sub-chromosome. The genes

sharing the same resource are competitors, while the genes belonging to the same demand are

partners. Besides, the genes reside in a sub-chromosome with their positions in the

chromosome might provides some valuable information on solving DFS problem.

After selecting 2 chromosomes from the population, N-demand crossover begins with

choosing N demands from D randomly, and then identifies the genes belonging to those

demands in both chromosomes. Finally, it exchanges the genes from N demands in a

chromosome with the genes in another chromosome.

g
4

d2o1
g

5

d2o2
g

6

d2o3

(a) one-demand crossover (demand d2 is preserved) (b) two-demand crossover

(demands d1 and d3 are preserved)

(c) shift mutation

g
2

d1o2
g

1

d1o1
g

3

d1o3
g

4

d2o1
g

5

d2o2
g

6

d2o3
g

7

d3o1
g

8

d3o2
g

9

d3o3
g

2

d1o2
g

1

d1o1
g

3

d1o3
g

4

d2o1
g

5

d2o2
g

6

d2o3
g

7

d3o1
g

8

d3o2
g

9

d3o3

Chromosome
schAlt = fs

Chromosome
schAlt = bs

Parent x
schAlt = fs

Parent y
schAlt = bs

Child c
schAlt = fs

Parent x
schAlt = fs

Parent y
schAlt = bs

Child c
schAlt = fs

g
2

d1o2
g

1
d1o1

g
3

d1o3
g

4
d2o1

g
5

d2o2
g

6
d2o3

g
7

d3o1
g

8
d3o2

g
9

d3o3

g
7

d3o1
g

4

d2o1
g

1

d1o1
g

2

d1o2
g

5

d2o2
g

8

d3o2
g

9

d3o3
g

6

d2o3
g

3

d1o3

g
2

d1o2
g

1
d1o1

g
3

d1o3
g

4
d2o1

g
5

d2o2
g

6
d2o3

g
7

d3o1
g

8
d3o2

g
9

d3o3

g
2

d1o2
g

1

d1o1
g

3

d1o3
g

4

d2o1
g

5

d2o2
g

6

d2o3
g

7

d3o1
g

8

d3o2
g

9

d3o3

g
2

d1o2
g

1

d1o1
g

3

d1o3
g

7

d3o1
g

8

d3o2
g

9

d3o3

5
d2o2

g
4

d2o1
g

1

d1o1
g

7

d3o1
g

6

d2o3
g

3

d1o3
g

8

d3o2
g

9

d3o3
g

2

d1o2

Fig. 9. The reproduction operators

22

Fig. 9a shows how one-demand crossover swaps genes {g4, g5, g6}, which belong to

demand d2 as shown in Fig. 7, between parent chromosomes {x, y} to make a child

chromosome c. Similarly, two-demand crossover swaps genes from demands { d1, d3 } in a

chromosome with the genes from the same demands in another chromosome, as shown in Fig.

9b.

The crossover operator exchanges not only the sequence of genes in a chromosome but

also the embedded information including aggregation flag, resource, and WIP allocations. If

the sum of the WIP allocations violates the constraint [C7] after crossover, deduct the surplus

or replenish the shortage from the WIP allocations.

In order to consider the general cases, assume that the selected N demands contain a set of

genes G = { g1, g2, …, gn } in a chromosome. The chromosome is a sequence of genes denoted

by x=G1 <{g1}<G2 <…<{gn}<Gn+1 , where '<' means the precedence relation in a chromosome,

and G1 , G2 ,…, Gn+1 are sets of sub-chromosomes; on the same assumption, the same

genes in chromosome y can be denoted by y=H1 <{g1}<H2 <…<{gn}<Hn+1 .

Define the crossover of x and y as)())((1
1 GyGxyx i

n
i !"!=#
+
=U , where 'Q↓S' means

taking genes in set S away from sequence Q but remaining the position of other genes

unchanged, and 'Q↑P' means filling up the empty position in sequence Q with genes in a

sequence P. However, the crossover of x and y, x⊗y , is not necessarily equal to y⊗x . The

N-demand crossover operator abides by precedence constraints, because the genes in

sequence n

ii
g

1=
 and (H1 <H2 <…<Hn+1) belong to different demands.

(2) Shift mutation

A single gene is chosen randomly from a chromosome, and then inserted into a random

position after its preceding genes and before its succeeding gene as shown in Fig. 9c. Besides,

resource and aggregation flag of the gene, and scheduling alternative of the chromosome are

randomly given a new value. The WIP allocation to the gene, if any, is set to 0, and the

23

mismatch caused by shift mutation invokes a process to redistribute WIP quantity among

those genes sharing the WIP.

4.4. Generation alternation

Generation alternation models are important to provide controls on searching process.

Existing works have often used SGA (simple or standard GA) for a fixed generation

alternation model. Yamamura et al. (1996) proposed a roulette minimal generation gap

(rMGG) as an extension of MGG. The MDGA applies rMGG to generation alternation.

Fig. 8b lists the steps of generation alternation of MDGA. Line (01) shows the generation

of initial population; from line (03) to (08), the N-demand crossover operator; and from line

(10) to (11), the shift mutation operator. The crossover operator selects two chromosomes

from the population as shown in line (03), reproduces two descendants in line (04), evaluates

them in line (05), chooses the best one among the four chromosomes in line (06) and any one

from the remains in line (07), and puts the two chromosomes back to the population with

replacement in line (08). In this figure, m denotes the population size, n the number of

generations, and k the mutation rate.

The main difference between SGA and MDGA is that SGA reproduces all the offspring at

a generation then carries out the tournament selection from the whole population, while

MDGA executes roulette selection from the 4 chromosomes immediately after reproduction.

MDGA keeps variety of chromosomes in a population, prevents the search process from

rushing into local optima.

4.5. Correctness and effectiveness

(1) Exhaustive search

Exhaustive search (ES) is to examine all the possible elements in domain of DFS problem

to find the best solution. As shown in Table 1, according to 4 sets of demands, four problems

based on the product data shown in Fig. 1a, and 8 units of WIP M-0 are prepared. These

problems and their results by ES and MDGA are shown in Table 1.

24

No Demand set
(part, qty, due)

DFS problem
Domain size Time Result Emks Eprt Etds Esvc

ES 120 170 0 100 1 d1=(F, 4, 150) 5,760 3 sec
MDGA (sn1) 120 (1) 170 (3) 0 (1) 100 (1)

ES 120 212 0 100 2 d1=(F, 4, 150)
d2=(A, 4, 120) 25,021,440 3.1 hrs.

MDGA (sn) 120 (44) 212 (42) 0 (579) 100 (35)
ES 120 248 0 100

3
d1=(F, 4, 150)
d2=(A, 4, 180)
d3=(B, 4, 80)

4,149,596,160 21.4 days
MDGA (sn) 120 (34) 248 (475) 0 (338) 100 (562)

ES2 126 268 0 100 4 d1=(F, 4, 150)
d2=(F, 2, 180) 115,142,123,520 49.5 years

MDGA (sn) 120 (633) 268 (1,162) 0 (25) 100 (39)
1 'sn' means number of times of the scheduling run when the best value is found by MDGA.
2 The result of running exhaustive search for about 2 months.

Table 1. Result of the exhaustive search

We accomplished the exhaustive search of problem 1, 2, and 3. Problem 4 had been tried

for two months on a PC, while the best value found by ES during the search is even worse

than that of MDGA. The correctness of MDGA is proved by that it achieves the optimum

value identical to the result of ES. The computer executing ES and MDGA can process about

2000 chromosomes per second. The fact that MDGA reaches the optimum value in less than a

second gives an account of the efficiency.

(2) Benchmark

Job shop scheduling (JSS) problem is a subset of DFS problem. Moreover, JSS problem is

a restricted DFS problem. If we do not use bill of materials, routing flexibility, WIP, or setup

time, if we specify only forward scheduling as the scheduling alternative, and if we select

makespan as the evaluation function, then we have a JSS. In other words, it is hardly to

produce a practical schedule by solving JSS where the use of product data is inevitable.

A benchmark of some famous JSS problems is used to compare with the work of Croce

(1995), who proposed an encoding based on preference rules and an updating step which

speeds up the evolutionary process. The problems whose identification starts with 'MT' are

from Muth & Thompson, and with 'LA' are from Lawrence, according to Croce (1995).

It is not appropriate to compare the performance of GA on the basis of time, since the

experiments are carried out on different computers with different operating system and

implemented by using different programming languages with different skill. As MGG has

25

different definition of a generation with SGA, generation is not adequate for comparison

either. Croce measured the performance on the basis of the number of chromosomes

generated during a run. In a similar way, we count the times of scheduling as the basis of

comparison.

The number of N-demand crossover (NDC) is set to the maximum degree (half of the

number of demands). No mutation is set in the benchmark. Table 2 shows the performance of

MDGA where the number of scheduling (SCH) is used as the termination parameter. SCHs

are set to 10000, 30000, and 60000, respectively. Croce’s result is shown for comparison,

which uses 30000 chromosomes. Two population sizes (POP) are set: POP=50 in

SCH=10000 for faster termination, and POP=100 in SCH=30000 and SCH=60000 for slower

termination. If MDGA achieves the best value so far (OPT) by applying POP=50 to some

easy problem, then the test for POP=100 is omitted. The best makespan shown in the table is

selected over five runs, and so is the average makespan.
MDGA Croce

POP=50 POP=100 POP=300
SCH=10000 SCH=30000 SCH=60000 SCH=30000 Problem n m OPT1 NDC2

Best Avg. Best Avg. Best Avg. Best Avg.
MT06 6 6 55 3 55 55.0 55 55.0
MT10 10 10 930 5 955 965.2 939 949.0 939 948.4 946 965.2
MT20 20 5 1165 10 1176 1193.4 1174 1178.0 1165 1172.2 1178 1199.0
LA01 10 5 666 5 666 666.0 666 666.0
LA06 15 5 926 7 926 926.0 926 926.0
LA11 20 5 1222 10 1222 1222.0 1222 1222.0
LA16 10 10 945 5 967 979.0 959 973.6 946 963.0 979 989.0
LA21 15 10 1048 7 1074 1098.8 1066 1077.4 1055 1071.2 1097 1113.6
LA26 20 10 1218 10 1281 1294.8 1220 1230.8 1218 1226.6 1231 1248.0
LA31 30 10 1784 15 1784 1784 1784 1784
LA36 15 15 1268 7 1336 1339.4 1305 1312.0 1297 1306 1305 1330.4

1. 'OPT' means the best value found so far by the heuristic researches.
2. 'NDC' means number of demand crossover using in the benchmark.

Table 2. Comparison of MDGA with Croce’s GA

By observing Table 2, MDGA is not a bad method for solving JSS problem. Furthermore,

its ability overcomes simple JSS solvers, in the sense that MDGA provides a way to handle

practical product data and then is able to produce feasible schedule.

26

5. Experimental analysis

An experiment is conducted to investigate the factors and mutual effects on applying

genetic algorithms with MGG and demand crossover (MDGA) to dynamic flexible

scheduling (DFS) problem. Population size 50 is set, and the number of N-demand crossover

(NDC) is set to be 0.5| D |. The product data used in the experiment is shown in Fig. 10a. The

factors in DFS problem that might have influence on performance of MDGA are the number

of demand, routing flexibility, and evaluation functions.

A01

A02 A04

2 3

A03

3

A05

1 A06

2

A07

1

B01

B02 B04

1 4

B03

2

B05

3

B06

2

B07

1

C01

C02

C04
3 2

C03

2 C052
C06

1

C07

3part
opr

ID

setup

time

prc

time

work

cnter

A01 1 25 4 w01

2 10 4 w04

A02 1 8 4 w05

2 28 4 w03

A03 1 2 5 w01

2 8 5 w05

A04 1 6 1 w04

2 25 4 w03

A05 1 17 3 w02

2 6 4 w05

A06 1 27 5 w03

2 26 4 w03

A07 1 20 3 w02

2 7 4 w03

part
opr

ID

setup

time

prc

time

work

cnter

B01 1 11 3 w01

2 20 3 w01

B02 1 22 4 w01

2 3 5 w04

B03 1 10 2 w02

2 18 4 w04

B04 1 28 3 w03

2 2 2 w02

B05 1 9 3 w02

2 3 4 w02

B06 1 2 5 w04

2 11 4 w03

B07 1 20 4 w04

2 9 4 w04

part
opr

ID

setup

time

prc

time

work

cnter

C01 1 20 4 w05

2 21 4 w05

C02 1 23 2 w02

2 3 3 w04

C03 1 4 4 w03

2 26 3 w05

C04 1 28 3 w02

2 8 2 w05

C05 1 20 4 w05

2 2 4 w03

C06 1 28 1 w05

2 14 3 w03

C07 1 4 4 w04

2 6 3 w04

w01 w02 w03

r02 r03r01

O
p

e
ra

tio
n

B
O

M

r04 r05

w04 w05

Resource

Work
center

W
IP

part operation quantity resource start time finish time

A04 2 50 r03 2003/12/31 23:00 2004/01/01 02:00

B06 1 200 r04 2003/12/31 23:00 2004/01/01 01:00

C01 1 20 r05 2004/01/01 00:00 2004/01/01 03:00

(a)

(b)

rf01 rf03 rf05

w
o

rk
 c

e
n

te
r

{
re

so
u

rc
e
} w01{r01}

w02{r02}

w03{r03}

w04{r04}

w05{r05}

w01{r01,r02,r03}

w02{r02,r03,r04}

w03{r03,r04,r05}

w04{r04,r05,r01}

w05{r05,r04,r03}

w01{r01,r02,r03,r04,r05}

w02{r02,r03,r04,r05,r01}

w03{r03,r04,r05,r01,r02}

w04{r04,r05,r01,r02,r03}

w05{r05,r04,r03,r02,r01}

level (c)

Resource Flexibility

No. of demands

(A01, 100, 2004/01/07 12:00) _1
(B01, 100, 2004/01/06 00:00) _1
(C01, 100, 2004/01/08 10:00) _1

(A01, 50, 2004/01/07 12:00) _2
(B01, 50, 2004/01/06 00:00) _2
(C01, 50, 2004/01/08 10:00) _2

(A01, 25, 2004/01/07 12:00) _4
(B01, 25, 2004/01/06 00:00) _4

(C01, 25, 2004/01/08 10:00) _4

(A01, 5, 2004/01/07 12:00) _20

(B01, 5, 2004/01/06 00:00) _20
(C01, 5, 2004/01/08 10:00) _20

nd03

nd06

nd12

nd60

Fig. 10. Experiment data of (a) product data, (b) No. of demands, and (c) resource flexibility

[1] Number of demands (ND): The number of demands increases exponentially in domain

size of DFS problem. Four levels of the factor are set in the experiment as shown in Fig.

10b, which are ND=3 (nd03), ND=6 (nd06), ND=12 (nd12), and ND=60 (nd60). The

demands in nd06, nd12, and nd60 are generated by splitting quantity of a demand in

nd03 into 2, 4, and 20, respectively. The domain of nd03 is a subset of nd06, because

requirements exploded from demands in nd03 can be composed by aggregating the

requirements from demands in nd06. Similarly, nd06 and nd12 are sub-problems of

27

nd12 and nd60 respectively.

[2] Resource flexibility (RF): A resource is called flexible, if it works for more than one

work centers. Resource flexibility is defined as the average number of work centers that

a resource joins. Three levels of the factor, rf01, rf03, and rf05, are well prepared, as

shown in Fig. 10c, to make the work center - resource pairs in rf01 and rf03 be subset of

the pairs in rf03 and rf05, respectively.

[3] Evaluation function (EF): Three evaluation functions are performed in the experiment,

which are makespan, service level, and tardiness.

There are 27 cases composed by 3 NDs, 3 RFs, and 3 EFs in the experiment, and each

case runs 10 times. The result of each run is evaluated when the number of scheduling (SCH)

equals 30000.

We run the cases on a laptop computer with Centrino Penitum® M 0.9 Ghz CPU, and the

necessary times for running problem nd03, nd06, nd12, and nd60 are 50, 105, 250, and 2610

seconds, respectively. If the numbers of demands are 100, 200, and 300, the necessary times

become 200, 1600, and 7500 minutes, respectively. The time needs to run a case grows up

exponentially with the length of a chromosome.
 RF
 rf01 rf03 rf05
ND EF Best Avg. Diff. CV Best Avg. Diff. CV Best Avg. Diff. CV

Makespan 14338 14338 0 0.000 11073 11254 181 0.013 11073 11352 279 0.023
Service level 67 53 14 0.306 67 63 4 0.158 67 67 0 0.000 nd03
Tardiness 9033 9164 131 0.036 4658 5712 54 0.097 4067 5381 1314 0.160
Makespan 13322 13333 11 0.008 10442 10569 127 0.009 10390 10465 75 0.005
Service level 83 76 7 0.000 83 67 17 0.000 83 67 17 0.000 nd06
Tardiness 6673 6976 303 0.020 1212 3420 2208 0.344 313 3713 3400 0.393
Makespan 13172 13194 22 0.002 10406 10601 195 0.003 10390 10628 238 0.004
Service level 83 73 10 0.045 100 74 26 0.060 100 74 26 0.034 nd12
Tardiness 6673 11667 4994 0.016 0 4246 4246 0.180 0 3379 3379 0.479
Makespan 13112 13587 475 0.003 10406 13498 3092 0.031 10390 11752 1362 0.007
Service level 83 63 20 0.026 100 66 34 0.043 100 68 32 0.033 nd60
Tardiness 6673 76189 69516 0.046 0 52360 52360 0.140 0 49856 49856 0.139

Table 3. The best and statistical results of the experiment

Table 3 shows the best value, average value, performance, and variance of the cases. The

28

'best' values, found so far, of the evaluation functions are discovered by setting parameters to

keep MDGA in a divergence status for a long time. The average value is measured over 10

optimal values of a case. Performance of MDGA is defined as the difference between the

average value and the best one. The variability of applying MDGA to runs of the cases in the

experiment measured by coefficient of variance (CV), denoted by δ / µ, where δ is the

standard deviation and µ the mean of the optimal values.

Since there is an inclusive relationship between levels of ND and RF, the smaller the lot

size and the more flexible the resource, the better the best value can be found. However,

increasing ND and RF not only provide MDGA with a better chance of optimization, but also

enlarge domain size of the problem. The DFS problem with large domain size challenges the

limits of MDGA’s ability. As shown in the table, increasing ND and RF improves the optimal

value at first, but it gets worse when ND and RF continue to increase.

The large ND aggravates the performance of MDGA. RF performs in a similar way with

ND except that increasing RF won’t delay the response time or severely worsen the

performance of MDGA. A plant with high resource flexibility using MDGA against

uncertainty is regarded as capable of responding to a change well and efficiently.

In general, the case setting makespan as evaluation function has low variability (CV < 0.1).

Whether or not service level performs stable depends very much on the problem. For some

difficult cases like the combination of nd06 and rf03, the performance of service level

obtained by setting tardiness as evaluation function is even better than by setting service level

itself. There are n+1 degrees of service level if ND equals to n. Having few degree of

evaluation makes MDGA easy to converge to a degree and dull to make a step toward a better

degree. The cases setting tardiness as evaluation function has high variability (CV > 0.1) when

ND and RF are high. The solution to the high variability of tardiness is to run a case longer or

set a larger population.

29

6. Conclusion

A genetic algorithm with MGG and demand crossover (MDGA) is proposed to solve

dynamic flexible scheduling (DFS) problem. The problem is formulated and its domain is

associated with the searching space of GA to encode a chromosome of MDGA. The problem

is practical, goal-oriented, resource flexible, and capable of doing rescheduling dynamically.

Though MDGA approach to DFS problem has its own value, this research is also an

augmentation of agile production planning and control system (APPCS) that only generates a

feasible schedule.

MDGA integrates minimal generation gap (MGG) and demand crossover. The

effectiveness and correctness of MDGA have been shown by a benchmark and the exhaustive

search. The formulation of DFS problem makes the exhaustive search possible.

The response time of MDGA to DFS problem increases exponentially with the length of a

chromosome, which is determined by the shape of BOM, routing, and number of demands.

Therefore, when MDGA is applied to a plant, to estimate execution time, it is necessary to

calculate the length of a chromosome made from the BOM, routing, and demands. The

experiment suggests that if the lengths of a chromosome are 700, 900, 2000, 3000, and 4500,

then the response times will be 05 hour, 1 hour, 0.5 day, 1 day, and 5 days, respectively. A

more efficient algorithm for a huge DFS problem will be a topic of future research.

A balance between the flexibilities and the ability of MDGA is a key point to get a better

optimal value. The experiment for the example indicates that a double or triple flexibility

improves about 10% - 25% of optimal value.

Forecasting is always wrong. Reserving safety buffers for a forecasting error is not the

only way against unknown uncertainty. Forecasting revision is shown to be possible by

APPCS and improved by MDGA.

30

Acknowledgement

One of the authors is grateful to the Research Assistant Grant of the University of

Tsukuba, 2003, for partial support of the research.

Appendixes

Appendix A: The total number of legal permutations on requirements in Rq

The size of the set SQ depends on the size of the set Rq, and the shape of graph Grq on Rq.

An example of the graph is shown in Fig. 3. The graph is split into two branches b1=〈 rq1,

rq2,…, rq7 〉, b2=〈 rq8, rq9,…, rq14 〉, and both branches have two sub-branches b11=〈 rq3, rq4,

rq5 〉, b12=〈 rq6, rq7 〉, and b21=〈 rq10, rq11, rq12 〉, b22=〈 rq13, rq14 〉, respectively.

The requirements in a branch is regulated by precedence constraints, but no such

constraint exists among branches of the same level, e.g. b11 and b12. A permutation on

elements of the lower-level branches determines a sequence of the higher-level branch.

Let n

ii
rqN

1=
!"= and m

ii
rqM

1=
!"= be two legal sequences of requirements. A sequence

mn

ii
rqV

+

=
!"=

1
 is a legal permutation on n

ii

m

ii
rqrq

11
}{}{

==
! if NrqV

m

ii
=!

=1
}{ and MrqV

n

ii
=!

=1
}{ ,

where '−' is a function removing the elements in a set from a sequence without changing order

of the sequence. The various requirements, whose precedence relation within M and N is

unchanged, can be viewed as the same requirements in permutation. Hence, the total number

of permutations is (m+n)!/m!n! or nm

m
C

+ .

For example, 10
23

=
+

e
C legal permutations of b1 is determined by permutations on

requirements in b11 and b12. In a similar manner, b2 also has 10 permutations. There are

432,3
77

7
=

+
C legal permutations for a permutation of b1 and a permutation of b2. Size of the

set of legal sequences |SQ| in Fig. 4a is thus 10×10×3432=343200.

Appendix B: The number of requirement aggregations for a sequence of requirements

Assume there are n requirements with the same operation that are linked together

31

somewhere in a sequence. The n requirements can be put into 1, 2,…, m (m n) baskets with

each basket having (c1, c2, …, cm) requirements. For example, 6 requirements can be put into

3 baskets by ways of (4, 1, 1), (3, 2, 1), and (2, 2, 2). The number of alternatives to

distribute n requirements into m baskets with each basket having (k1, k2, …, km) requirements

is)!!...!()...(
21

21

3

1

21 v

mk

mk

kkn

k

kn

k

n

k
bbbCCCC

!!! , where bi, i=1..v, are numbers of baskets whose number of

requirements is equal and ! =
=

v

i i
mb

1
. For example, there are 15)!1!2()(1

1

2

1

6

4
=!CCC ways to

put 6 requirements into 3 baskets by way of (4, 1, 1). The numbers of ways for the other

cases (3, 2, 1) and (2, 2, 2) are 10 and 15 respectively.

There are 7 groups of 2 requirements with the same operation linked together in the

sequence sqi shown in Fig. 4b. Each group has 2 ways of aggregation, i.e. either aggregate or

not, hence 1282
7
==iQA .

Appendix C: The number of WIP allocations

Let’s first consider the problem of allocating q units of a WIP to n requirements with each

requirement having ci (i=1..n) units such that ! =
=

n

i i
qc

1
 and ci is a natural number. This

problem can be viewed as permutation of q units of WIP and n different requirements. Let 'o'

represent a WIP, ri (i=1..n) a requirement, and the permutation 'r1 o o o r5 r3 o….' shows c1=0,

c5=3, and c3=0, i.e. the number of WIP before a requirement represents the allocated quantity.

Since 'r1 o o o r5 r3 o….' and 'r5 o o o r3 r1 o….' represent the same set of WIP allocation, the

precedence relation of requirements in a sequence must be fixed to avoid such duplication.

Total number of permutations is thus (q+n)!/q!n! or nq

n
C

+ .

Assume | Wp | = u, and (q1, q2,…, qu) are the quantities of WIP allocated to number of

requirements (n1 , n2 ,…, nu) in Rq, then there are unuq

un

nq

n

nq

n
CCC

+++
!! ...22

2

11

1
 ways of such

allocation. The number of possible allocations for the case shown in Fig. 4d is 45
28

2
=

+
C .

32

References

Al-Hakim, L., 2001. An analogue genetic algorithm for solving job shop scheduling problems,

International Journal of Production Research 39 (7) 1537-1548.

Aytug, H., Khouja, M., Vergara, F. E., 2003. Use of genetic algorithms to solve production

and operations management problems: a review, International Journal of Production

Research 41 (17) 3955-4009.

Croce, F. D., Tadei, R., Volta, G., 1995. A genetic algorithm for the job shop problem,

Computers & Operations Research 22 (1) 15-24.

Hopp, W. J., Spearman, M. L., 2000. Factory Physics – Foundations of Manufacturing

Management, 2nd edition, McGraw-Hill College.

Kacem, I., Hammadi, S., Borne, P., 2002. Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems, IEEE Transactions

on Systems, Man, and Cybernetics – Part C: Applications and Reviews 32 (1) 1-13.

Nearchou, A. C., 2004. The effect of various operators on the genetic search for large

scheduling problems, International Journal of Production Economics 88 (2) 191-203.

Sato, R., Tsai, T. L., 2004. An agile production planning and control with advance

notification to change schedule, International Journal of Production Research 42 (2)

321-336.

Tsai, T. L., Sato, R., 2004. A UML model of agile production planning and control system,

Computers in Industry 53 (2) 133-152.

Wang, L., Zheng, D., 2001. An effective hybrid optimization strategy for job-shop scheduling

problems, Computers & Operations Research 28 (6) 585-596.

Yamamura, M., Satoh, H., Kobayashi, S., 1996. An analysis on generation alternation models

by using the minimal deceptive problems, Journals of the Japanese Society for Artificial

Intelligence 13 (5) 746-756. (in Japanese)

