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Abstract The minimum maximal flow problem is the problem of minimizing the flow value on the set
of maximal flows of a given network. The optimal value indicates how inefficiently the network can be
utilized in the presence of some uncontrollability. After extending the gap function characterizing the set
of maximal flows, we reformulate the problem as a D.C. optimization problem, and then propose an outer
approximation algorithm. The algorithm, based on the idea of ε-optimal solution and local search technique,
terminates after finitely many iterations with the optimal value of the problem.

Keywords: Network flow, minimum maximal flow, optimization over the efficient set,
D.C. optimization, outer approximation, global optimization.

1. Introduction

We are given a network (V, s, t, E, c), where V is the set of m + 2 nodes containing the
source node s and the sink node t, E is the set of n arcs and c is the n-dimensional column
vector whose hth element ch is the capacity of arc h. The set of feasible flows, denoted by
X, is given by

X = {x ∈ Rn | Ax = 0, 0 5 x 5 c }, (1.1)

where m× n matrix A is the incidence matrix whose (v, h) element avh is

avh =





+1 if arc h leaves node v

−1 if arc h enters node v

0 otherwise.

The well-known conventional maximum flow problem is

∣∣∣∣∣
max
x

dx

s.t. x ∈ X,

where d is the n-dimensional row vector whose hth element is

dh =





+1 if arc h leaves source s

−1 if arc h enters source s

0 otherwise.

Definition 1.1 (minimum maximal flow problem) A vector x ∈ X is said to be a
maximal flow if there is no y ∈ X such that y = x and y 6= x. We use XM to denote the
set of maximal flows, i.e.,

XM = {x ∈ X | there is no y ∈ X such that y = x and y 6= x }. (1.2)
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A minimum maximal flow problem, abbreviated to (mmF ), is defined as

(mmF )

∣∣∣∣∣
min
x

dx

s.t. x ∈ XM .

The purpose of this paper is to propose an algorithm for (mmF ), which is based on the
outer approximation method (OA method for short) for a D.C. optimization problem. Note
that D.C. stands for difference of two convex sets (or functions), which will be defined in
Section 3.

Below is our motivation to consider (mmF ). When we attempt to solve a maximum
flow problem on condition that we should not be allowed to decrease arc flows, we often fail
to obtain the maximum flow and are obliged to put up with a maximal flow. Under this re-
stricted controllability, the minimum flow value attained by a maximal flow, i.e., the optimal
value of (mmF ), indicates how inefficiently the network can be utilized. Figure 1 highlights
the difference between maximum flow and minimum maximal flow. For network (a), both
are 3. On the other hand, for network (b), the minimum maximal flow value reduces to
2 while the maximum flow value remains 3. The minimum maximal flow value does not
monotonically increase as the capacities grow.
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Figure 1: Maximum flow vs. minimum maximal flow

Shi-Yamamoto [24] first raised (mmF ) and proposed an algorithm. Several algorithms
for (mmF ) combining local search and global optimization technique have been proposed in
e.g., Gotoh-Thoai-Yamamoto [15] and Shigeno-Takahashi-Yamamoto [25]. An approach of
D.C. optimization is found in Muu-Shi [18]. The difficulty of (mmF ) is mainly due to the
nonconvexity of XM . Indeed, (mmF ) embraces the minimum maximal matching problem,
which is NP-hard (see e.g., Garay-Johnson [14]).

It is readily seen that (mmF ) is a special case of the optimization problem over the effi-
cient set of a multi objective optimization, which was first studied by Philip [20]. Applying
a well-known result of multi objective optimization, XM is characterized as follows: The
point x̄ is in XM if and only if there exists λ ∈ Rp++ such that x̄ is an optimal solution of

(SC(λ))

∣∣∣∣∣
max
x

λx

s.t. x ∈ X.

Therefore we can easily obtain a point x ∈ XM by solving (SC(λ)) for an arbitrarily chosen
λ ∈ Rp++. Furthermore, for a sufficiently large M > 0 the following set Λ can substitute
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for Rp++ above:

Λ = {λ ∈ Rp++ | λ = e, λ1 = M }. (1.3)

Shigeno-Takahashi-Yamamoto [25] showed that n2 suffices for M defining Λ of (1.3) for
(mmF ). It is also known and easily seen by applying the parametric optimization tech-
nique for (SC(λ)) that XM is a connected union of several faces of X. About the opti-
mization problem over the efficient set, the reader should refer to e.g., White [31], Sawaragi-
Nakayama-Tanino [22], Steuer [26] and Yamamoto [33]. For solution methods, see Ben-
son [4–6], Bolintineanu [7], Ecker-Song [11], Fülöp [13], Dauer-Fosnaugh [10], Thach-Konno-
Yokota [27], Sayin [23], Phong-Tuyen [21], Thoai [28], Muu-Luc [17], An-Tao-Thoai [3] and
An-Tao-Muu [1,2].

For simplicity we assume throughout this paper that the given network satisfies the
following three assumptions.
Assumption 1.2

(i) Each capacity takes a positive integer, i.e., ch ∈ Z and ch > 0 for each h ∈ E.

(ii) There is some point x ∈ X such that x 6= 0.

(iii) There is no t-s-path.
Note that Assumption 1.2 (i) ensures the integrality of vertices of X as well as the optimal
value of (mmF ). Note also that 0 6∈ XM by Assumption 1.2 (ii), and min{dx | x ∈ X } = 0
by Assumption 1.2 (iii).

In the next section we first introduce a gap function. We then extend the domain of the
gap function to Rn and reformulate (mmF ). Section 3 is devoted to a review of the OA
method for D.C. optimization problems. Based on this method, we propose an algorithm
for (mmF ) in Section 4, in which we introduce an ε-optimal solution and investigate the
proper range of the parameter ε for the optimality condition. To make the algorithm more
efficient, we incorporate a local search technique. Finally, we show that the algorithm with
the local search technique terminates after finitely many iterations. Further works will be
described in the last section.

Throughout this paper we use the following notations: Rn denotes the set of n-dimensional
column vectors. Let Rn

+ = {x ∈ Rn | x = 0 } and Rn
++ = {x ∈ Rn | x > 0 }. Let Rn

denote the set of n-dimensional row vectors, Rn+ and Rn++ are defined in the similar way.
We use e to denote the row vector of ones, 1 to denote the column vector of ones, and ei

to denote the ith unit row or column vector of an appropriate dimension. Let I denote the
identity matrix of an appropriate size. We use a> and A> to denote the transposed vector
of a and the transposed matrix of A, respectively. For a set S, we denote the interior of
S by int S, the closure of S by clS, and the relative boundary of S by ∂S. We use PV to
denote the set of vertices of a polyhedron P . For two vectors v and w, let [v, w] denote the
line segment with endpoints v and w, and let (v, w] = [v, w]\{v}. Also [v, w) and (v, w)
are defined in the similar way.

2. Reformulation of (mmF ) by the Extended Gap Function

It is known that the gap function g : Rn → [−∞, +∞] given by

g(x) = max{ ey | y ∈ X, y = x } − ex, (2.1)

defines the set of maximal flows XM as

XM = {x ∈ X | g(x) 5 0 }.
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Then we can rewrite (mmF ) as

(mmF )

∣∣∣∣∣
min
x

dx

s.t. x ∈ X, g(x) 5 0.

The function g has some nice properties such piecewise linearity and concavity; for more
information, see e.g., Benson [4] and White [32].

The domain of g, denoted by dom g, is the set {x ∈ Rn | g(x) > −∞}. When we apply
the OA method to (mmF ), we need to evaluate g at points outside of X. Unless there is a
point y ∈ X satisfying y = v, g(v) takes −∞, and hence no information is available about
how away the point v is from the domain of g. Then we extend the gap function g to Rn

in this section. The extended gap function ḡ : Rn → R is defined as

ḡ(x) = max{ ey − β̄t | y ∈ X, y + t = x, t = 0 } − ex, (2.2)

where the n-dimensional row vector β̄ will be specified later. Clearly ḡ is also a piecewise
linear concave function. The following theorem in Yamamoto-Zenke [34] shows that ḡ is an
extension of g.
Theorem 2.1 (i) The domain of ḡ is Rn for any β̄ = 0.

(ii) If β̄ = ne then ḡ = g on the domain of g.
Proof: See Appendix for the proof.

By Theorem 2.1, fixing β̄ = ne, we can replace the constraint g(x) 5 0 in (mmF ) with
ḡ(x) 5 0 to obtain an equivalent formulation of (mmF ):

(mmF )

∣∣∣∣∣
min
x

dx

s.t. x ∈ X, ḡ(x) 5 0,

which is equivalent to

(mmF )

∣∣∣∣∣
min
x

dx

s.t. x ∈ X\int Ḡ,

where
Ḡ = {x ∈ Rn | ḡ(x) = 0 }. (2.3)

Note that Ḡ is a convex set since ḡ is a concave function. By the definition of ḡ, it is clear
that ḡ(x) = 0 for all x ∈ X, i.e., X j Ḡ. Since Assumption 1.2 (ii) implies 0 ∈ X\XM , we
see that ḡ(0) = g(0) > 0, i.e., 0 ∈ int Ḡ. Additionally we have the following lemma.
Lemma 2.2 ḡ(x) > 0 for every point x in the relative interior of X.
Proof: Let x be a point in the relative interior of X, i.e., Ax = 0 and 0 < x < c. Letting
x′ = (1+ε)x for a sufficiently small ε > 0, we see that Ax′ = 0 and 0 5 x′ 5 c, i.e., x′ ∈ X
and x′ = x. Therefore ḡ(x) = g(x) = e(x′ − x) = εex > 0.

3. Outer Approximation Method for D.C. Optimization Problems

A set S is said to be a D.C. set if there are two convex sets Q and R such that S = Q\R.
The optimization problem on a D.C. set is called the D.C. optimization problem, which is
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studied in e.g., Tuy [29,30] and Horst-Tuy [16]. In this section we explain the OA method
for the canonical form D.C. optimization problem, abbreviated to (CDC), which is defined
as

(CDC)

∣∣∣∣∣
min
x

px

s.t. x ∈ D, h(x) = 0,

where p ∈ Rn is the cost vector, D j Rn is a nonempty compact convex set and h : Rn →
R ∪ {+∞} is a convex function. We assume that

int {x ∈ Rn | h(x) 5 0 } = {x ∈ Rn | h(x) < 0 }.
Defining the convex set H = {x ∈ Rn | h(x) 5 0 }, (CDC) can be written as

(CDC)

∣∣∣∣∣
min
x

px

s.t. x ∈ D\int H,

and hence (CDC) is a D.C. optimization problem. To make this problem simple we further
assume that

0 ∈ D ∩ int H, and min{px | x ∈ D } = 0. (3.1)

Note that (CDC) reduces to (mmF ) when D = X,H = Ḡ and p = d.

3.1. Regularity and optimality condition

Problem (CDC) is said to be regular when

D\int H = cl (D\H). (3.2)

Figure 2 shows an example of (CDC) that is not regular, where x∗ ∈ D\int H, while
x∗ 6∈ cl (D\H).

p

D
H

x∗

Figure 2: The case where (CDC) is not regular

The regularity assumption yields the optimality condition Theorem 3.1, which was given by
Horst-Tuy [16]. To make this paper self-contained, we give the proof in Appendix. In the
followings we denote

D(η) = {x ∈ D | px 5 η }, (3.3)

for η ∈ R.

Theorem 3.1 Let x̄ be a feasible solution of (CDC). Then x̄ is an optimal solution if
D(px̄) j H.

Proof: See Appendix for the proof.
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3.2. OA method for (CDC)

Let x∗ be an optimal solution of (CDC) and x̄k ∈ D\int H be the incumbent at iteration
k. In the OA method, we construct polytopes P 0, P 1, · · · , P k, · · · such that P 0 k P 1 k
· · · k P k k · · · k D(px∗). If px̄k = 0, we have done by (3.1). In the case where px̄k > 0,
we check the optimality condition D(px̄k) j H by evaluating h(v) at each vertex v of P k.
Namely, if h(v) 5 0 for each vertex v of P k, meaning P k j H, then x̄k solves (CDC).
Otherwise we construct P k+1 by adding some linear inequality to P k.

Here we describe the OA method for (CDC).

/** OA method for (CDC) **/
〈0〉 (initialization) Find an initial feasible solution x̄0 of (CDC) and construct an initial

polytope P 0 such that P 0 k D(px̄0). Compute the vertex set P 0
V of P 0. Set k := 0.

〈k〉 (iteration k) Solve max{h(v) | v ∈ P k
V } to obtain vk.

〈k1〉 (termination) If either px̄k = 0 or h(vk) 5 0, meaning P k j H, then stop.
(The current incumbent x̄k is an optimal solution of (CDC)). Otherwise, obtain
the point xk ∈ [0, vk) ∩ ∂H.

〈k2〉 (cutting the polytope) If xk 6∈ D, set x̄k+1 := x̄k and P k+1 := P k ∩ {x ∈ Rn |
l(x) 5 0 } for some function l : Rn → R such that l(vk) > 0 and l(x) 5 0 for all
x ∈ D(px̄). If xk ∈ D, set x̄k+1 := xk and P k+1 := P k∩{x ∈ Rn | px 5 px̄k+1 }.

〈k3〉 Compute the vertex set P k+1
V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 3.2 Note that adding a linear inequality to P k makes P k+1 and the vertex set P k
V of

P k is at hand. Subroutines for computing the vertex set P k+1
V from the knowledge of P k

V are
provided in e.g., Chen-Hansen-Jaumard [8], Subsection 7.4 of Padberg [19] and Chapter 18
of Chvátal [9]. Due to the possible degeneracy of P k, a sophisticated implementation should
be needed e.g., Fukuda-Prodon [12].

4. Outer Approximation Method for (mmF )

By Assumption 1.2 (ii)-(iii), we have

0 ∈ X ∩ int Ḡ, and min{dx | x ∈ X } = 0, (4.1)

which correspond to (3.1). Then we can apply the OA method to (mmF ) if the regularity
condition is met.

4.1. Regularity and optimality condition

Unfortunately, the problem (mmF ) is not regular, hence we introduce a positive tolerance
ε and consider, instead of (mmF ),

(mmFε)

∣∣∣∣∣
min
x

dx

s.t. x ∈ X\int Ḡε,

where
Ḡε = {x ∈ Rn | ḡ(x) = ε }. (4.2)

We call an optimal solution of (mmFε) an ε-optimal solution of (mmF ).
First we show that any positive ε ensures the regularity of (mmFε).
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Theorem 4.1 The problem (mmFε) is regular for any ε > 0.
Proof: We show that

X\int Ḡε = cl(X\Ḡε), (4.3)

holds for any ε > 0.
(k) Since X\int Ḡε is closed and X\int Ḡε k X\Ḡε, we have

X\int Ḡε = cl(X\int Ḡε) k cl(X\Ḡε).

(j) Let x be an arbitrary point of X\int Ḡε and let Nδ(x) denote its δ-neighborhood,
i.e., Nδ(x) = {x′ ∈ Rn | ‖x′ − x‖ < δ }. We show that there is always a point, say
x′ in Nδ(x) ∩ (X\Ḡε). If ḡ(x) > ε then there exists γ > 0 such that ḡ(x′) > ε for any
point x′ ∈ Nγ(x) by the continuity of ḡ. This implies Nγ(x) j Ḡε, and hence x ∈ int Ḡε.
Therefore the assumption x ∈ X\int Ḡε implies that x ∈ X and ḡ(x) 5 ε. By Theorem 2.1,
we have ḡ(x) = g(x). When ḡ(x) < ε, take x as x′. Clearly x′ = x 6∈ Ḡε and x′ = x ∈
Nδ(x), and we have done. When g(x) = ḡ(x) = ε, there is an optimal solution y∗ of
max{ ey | y ∈ X, y = x } such that e(y∗ − x) = ε, and hence y∗ 6= x. Take λ such that
0 < λ < min{ 1, δ/‖y∗−x‖ } and let x′ = λy∗+(1−λ)x. Since ‖x′−x‖ = λ‖y∗−x‖ < δ,
we see x′ ∈ Nδ(x). Also we see that x′ ∈ X by the convexity of X, and hence g(x′) = ḡ(x′)
by applying Theorem 2.1 again. Since x′ = x and x′ 6= x, we have

ḡ(x′) = g(x′)

= max{ ey | y ∈ X, y = x′ } − ex′

< max{ ey | y ∈ X, y = x } − ex

= e(y∗ − x) = ε.

Therefore we see that x′ 6∈ Ḡε. This completes the proof.

Next we discuss the upper bound of ε, which will be crucial for the convergence of the
algorithm.

Lemma 4.2 If ε ∈ (0, 1) then 0 ∈ int Ḡε, and (0, v) ∩ ∂Ḡε 6= ∅ for any point v such that
ḡ(v) 5 0.

Proof: We have ḡ(0) > 0 since 0 ∈ int Ḡ. Note that ḡ(0), which coincides with g(0),
takes an integer value by the integrality property of X, and hence ḡ(0) = 1. Then we have
ḡ(0) > ε, i.e., 0 ∈ int Ḡε for any ε ∈ (0, 1). The continuity of ḡ ensures the last assertion.

For the following lemma, we use δs to denote the number of arcs leaving node s, i.e.,

δs = |{ i | di = +1 }|. (4.4)

Lemma 4.3 Let x∗ and x∗ε be an optimal solution and an ε-optimal solution of (mmF ),
respectively. Then 0 5 dx∗ − dx∗ε 5 εδs.

Proof: Since x∗ ∈ X and ḡ(x∗) 5 0, x∗ is a feasible solution of (mmFε), and hence
dx∗ε 5 dx∗. Let y∗ε be an optimal solution of max{ ey | y ∈ X, y = x∗ε }. Clearly
y∗ε ∈ XM , i.e., y∗ε is a feasible solution of (mmF ), and hence dx∗ 5 dy∗ε. We see that
y∗εi − x∗εi 5 ε for each i = 1, . . . , n, since y∗ε − x∗ε = 0 and e(y∗ε − x∗ε) 5 ε. That implies
d(y∗ε − x∗ε) 5 ε|{ i | di = +1 }| = εδs, hence dx∗ε 5 dx∗ 5 dy∗ε 5 dx∗ε + εδs.
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Theorem 4.4 Let x∗ε be an ε-optimal solution for some ε ∈ (0, 1/δs). Then ddx∗εe coin-
cides with the optimal value of (mmF ).

Proof: From Lemma 4.3 we see that 0 5 dx∗−dx∗ε < 1. This inequality and the integrality
of dx∗ gives the assertion.

In the sequel we choose ε from the open interval (0, 1/δs).
Note that ḡ(x∗ε) 5 ε holds for an ε-optimal solution x∗ε of (mmF ). Therefore ḡ(x) 5 0

for any accumulation point x of {x∗ε}ε→0+. This observation leads to the following corollary.

Corollary 4.5 Let {x∗ε}ε→0+ be a sequence of ε-optimal solutions of (mmF ) for ε converg-
ing to 0 from above. Then any accumulation point of {x∗ε}ε→0+ is an optimal solution of
(mmF ).

As seen in Theorem 3.1, letting

X(η) = {x ∈ X | dx 5 η }, (4.5)

for η ∈ R, the optimality condition of the OA method is X(dx̄ε) j Ḡε for some x̄ε ∈
X\int Ḡε. We can further relax this condition.

Theorem 4.6 Let x̄ε ∈ X\int Ḡε for some ε ∈ (0, 1/δs). If X(ddx̄ε − 1e) j Ḡε′ for some
ε′ > 0 then ddx̄εe coincides with the optimal value of (mmF ).

Proof: Let x∗ and x∗ε be an optimal solution and an ε-optimal solution of (mmF ), respec-
tively. Since x̄ε is a feasible solution of (mmFε), we have dx∗ε 5 dx̄ε. It is also clear that
dx∗ε 5 dx∗. If dx∗ < dx̄ε then we have x∗ ∈ X(ddx̄ε − 1e) j Ḡε′ since dx∗ is integer, and
hence ḡ(x∗) = ε′ > 0, which contradicts that ḡ(x∗) = 0. Then we have dx̄ε 5 dx∗. Hence
by Lemma 4.3 we obtain dx∗ε 5 dx̄ε 5 dx∗ 5 dx∗ε + εδs < dx∗ε + 1. This completes the
proof.

We construct a polytope P satisfying X(ddx̄ε−1e) j P for some x̄ε ∈ X\int Ḡε. Let v∗ be
a vertex minimizing ḡ(v) over PV and ε′ = ḡ(v∗). For any x ∈ P we have ḡ(x) = ḡ(v∗), i.e.,
0 5 ḡ(x)− ḡ(v∗) = ḡ(x)− ε′, and hence P j Ḡε′ . This implies that X(ddx̄ε − 1e) j Ḡε′ .
Therefore if ε′ > 0 then the optimal value of (mmF ) is obtained by Theorem 4.6.

4.2. Local search

For v ∈ XM ∩XV , we define the set of efficient vertices linked to v by an edge as

NM(v) = {v′ ∈ XM ∩XV | [v, v′] is an edge of X } (4.6)

= {v′ ∈ XV | [v, v′] is an edge of X and g(v′) 5 0 }.

Whenever we find a feasible solution w ∈ XM , we apply the Local Search procedure starting
with w (LS(w) for short) for further improvement.

The procedure is described as follows.

/** LS(w) procedure **/
〈0〉 (initialization) If w 6∈ XV then find the face F of X containing w in its relative

interior and solve min{dx | x ∈ F } to obtain a vertex v0 ∈ XM ∩ XV , otherwise set
v0 := w. Set k := 0.

8



〈k〉 (iteration k) Solve min{dv | v ∈ NM(vk) } to obtain a solution v∗. If dv∗ = dvk

then stop, vk is the local optimal vertex of (mmF ). Otherwise set vk+1 := v∗, k := k+1
and go to 〈k〉.

Remark 4.7 If w ∈ XM , the face F of X containing w in its relative interior is contained
in XM since XM is a connected union of several faces of X.

4.3. OA method for (mmF )

We describe the OA method for (mmF ) as follows.

/** OA method for (mmF ) **/
〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM∩XV of (mmF ). If NM(w0) =

∅ then stop. (w0 is a unique feasible solution of (mmF )). Otherwise, apply the LS(w0)
procedure to obtain a local optimal vertex x̄0 ∈ XM ∩XV . Solve ζ := max{ ex | x ∈
X, dx 5 dx̄0 − 1 } and construct an initial polytope P 0 k X(dx̄0 − 1) by setting
P 0 := {x ∈ Rn | ex 5 ζ, dx 5 dx̄0 − 1, x = 0 }. Compute the vertex set P 0

V of P 0.
Set k := 0.

〈k〉 (iteration k) Solve min{ ḡ(v) | v ∈ P k
V } to obtain a vertex vk.

〈k1〉 (termination) If either dx̄k = 0 or ḡ(vk) > 0 then stop. (The optimal value of
(mmF ) is ddx̄ke). Otherwise, obtain the point xk

ε ∈ (0, vk) ∩ ∂Ḡε. (Note that
Lemma 4.2 ensures that (0, vk) ∩ ∂Ḡε 6= ∅).

〈k2〉 (update) If xk
ε ∈ X, obtain the point xk ∈ (0, vk] ∩ ∂Ḡ.

〈k2.1〉 If xk ∈ X, meaning xk ∈ XM , then obtain the local optimal vertex
zk ∈ XM ∩XV by applying the LS(xk) procedure, and further obtain the
point zk

ε ∈ (0, zk) ∩ ∂Ḡε. Set x̄k+1 := argmin{dzk
ε , dxk

ε } and P k+1 :=
P k ∩ {x ∈ Rn | dx 5 ddx̄k+1 − 1e }.

〈k2.2〉 If xk 6∈ X, meaning xk 6∈ XM , then set x̄k+1 := xk
ε and

P k+1 := P k ∩ {x ∈ Rn | dx 5 ddx̄k+1 − 1e, l(x) 5 0 }.
〈k3〉 If xk

ε 6∈ X then set x̄k+1 := x̄k and P k+1 := P k ∩ {x ∈ Rn | l(x) 5 0 }.
〈k4〉 Compute the vertex set P k+1

V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 4.8 The function l : Rn → R in Step k2.2 and Step k3 is given by one of the
inequalities ±Ax 5 0 and x 5 c not satisfied by the point vk, i.e.,

(i) l(x) = ejx− cj for some j ∈ {1, . . . , n} such that vk
j > cj, or

(ii) l(x) = sgn(aivk)aix for some i ∈ {1, . . . , m} such that aivk 6= 0, where ai is the ith
row of A, and

sgn(α) =

{
+1 when α > 0

−1 when α < 0.

Lemma 4.9 Let zk be the local optimal vertex obtained by applying the LS(xk) procedure
starting with xk in Step k2.1 at iteration k, and suppose dzk > 0. Then dzk′ < dzk for
iteration k′ such that k′ > k.

Proof: It suffices to show that dzk+1 < dzk. By the construction of P k+1 we have
P k+1 j {x | dx 5 ddx̄k+1 − 1e }. Since xk+1 ∈ (0, vk+1] j P k+1 and zk+1 is obtained by
LS(xk+1), we have

dzk+1 5 dxk+1 5 ddx̄k+1 − 1e.
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Since we assume that dzk > 0, we have 0 < dzk
ε < dzk by the choice of zk

ε . Therefore in
Step k2.1

ddx̄k+1 − 1e < dx̄k+1 = min{dxk
ε , dzk

ε} < dzk.

Combining the two inequalities yields the desired result.

Theorem 4.10 The OA method for (mmF ) works correctly and terminates after finitely
many iterations.

Proof: (correctness) If NM(w0) = ∅ at the initialization step, we can conclude from the
connectedness of XM that w0 is a unique feasible solution of (mmF ) and hence solves the
problem. When the algorithm terminates in Step k1, the optimal value of (mmF ) is equal
either to zero by Assumption 1.2 (iii), or to ddx̄ke by Theorem 4.6. So the optimal value
is obtained whenever the algorithm terminates.

We suppose that the algorithm has not yet terminated at iteration k, i.e., dx̄k > 0 and
ḡ(vk) 5 0, and show that each step of the algorithm can be done. Lemma 4.2 ensures
that there are points xk

ε ∈ (0, vk) ∩ ∂Ḡε and zk
ε ∈ (0, zk) ∩ ∂Ḡε, in Step k1 and Step k2.1,

respectively. Since 0 ∈ int Ḡ and vk 6∈ int Ḡ, there also exists a point xk ∈ (0, vk] ∩ ∂Ḡ.
When xk

ε 6∈ X, clearly vk 6∈ X, and hence the function l : Rn → R of Remark 4.8 can be
found in Step k3. To show that the function l : Rn → R is found in Step k2.2 we have
only to show that vk 6∈ X. Suppose the contrary, i.e., vk ∈ X. By the assumption that
ḡ(vk) 5 0 and the fact that ḡ(x) = 0 for all x ∈ X, we have ḡ(vk) = 0, i.e., vk ∈ ∂Ḡ,
and hence vk ∈ X\int Ḡ = XM . This implies xk = vk ∈ XM by the choice of xk, which
contradicts that we are currently at iteration k2.2. Therefore we have seen that vk 6∈ X in
Step k2.2.
(finiteness) Suppose that the polytope P ν at iteration ν meets the condition

P ν j X and P ν ∩XM = ∅, (4.7)

after updated either in Step k2 or in Step k3, and consider the next iteration. Since vν is
chosen from P ν , we have vν ∈ X\XM and consequently ḡ(vν) > 0. Then the algorithm
stops at Step k1. Therefore we have only to prove that (4.7) holds within a finite number
of iterations. Note first that both Step k2.2 and Step k3 are done at most a finite number
of times. Indeed, the polytope, say P k′ , when 2m + n cuts l(x) 5 0 have been added
to the initial polytope P 0, is contained in X. Therefore vk′ as well as xk′

ε lies in X, and
hence we obtain that xk′ = vk′ ∈ XM in the same way as in the former part of this proof.
Therefore we come to neither Step k2.2 nor Step k3 after iteration k′. Namely, Step k2.1
followed by Step k4 repeats itself after iteration k′. For iteration k with k = k′ + 1,
we have xk ∈ XM . We then locate zk ∈ XM ∩ XV by applying the LS(xk) procedure
and obtain a point zk

ε ∈ (0, zk) ∩ ∂Ḡε. If dzk = 0 for some k = k′ + 1 then we set
x̄k+1 := zk

ε since dzk
ε = dzk = 0 5 dxk

ε . Then the incumbent value dx̄k+1 becomes
zero, and hence the algorithm stops in Step k1 at the next iteration. If dzk > 0 for all
k with k = k′ + 1, we see that dzk+1 < dzk for all k = k′ + 1 by Lemma 4.9. Since
|XM ∩XV | is finite, we eventually obtain a point zν−1 ∈ XM ∩XV such that dzν−1 5 dz
for all z ∈ XM ∩ XV . Also we have dzν−1

ε < dzν−1 by the choice of zν−1
ε . The polytope

P ν is then defined as P ν := P ν−1 ∩ {x | dx 5 ddx̄ν − 1e }, where x̄ν satisfies that
dx̄ν = min{dxν−1

ε , dzν−1
ε } < dzν−1. This means that P ν ∩ (XM ∩XV ) = ∅. Since XM is

a connected union of several faces of X, we see that dzν−1 5 dx for all x ∈ XM . Therefore
we conclude that P ν ∩XM = ∅.
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We illustrate the OA method for (mmF ) in Figure 3, in which we use a two-dimensional
general polyhedron X = {x ∈ R2 | Bx 5 b, x = 0 } for B ∈ Rm×2 and b ∈ Rm

because the set of feasible flows X = {x ∈ Rn | Ax = 0, 0 5 x 5 c } is unsuitable for
illustration. We obtain a local optimal vertex x̄0 ∈ XM ∩XV and set up an initial polytope
P 0 (See (a)). It is easy to enumerate all vertices of P 0 because this polytope is simply given
by P 0 := {x ∈ Rn | ex 5 ζ, dx 5 dx̄0 − 1, x = 0 }. We obtain a point v0 minimizing
ḡ(v) over P 0

V , and a point x0
ε ∈ (0, v0) ∩ ∂Ḡε (See (b)). We see that x0

ε 6∈ X, and hence
set x̄1 := x̄0 and cut off v0 from P 0 (See (c)). Using P 0

V , we compute P 1
V . In the next

iteration, we obtain points v1, x1
ε and x1. Since x1 ∈ XM , we apply the LS(x1) procedure

to obtain a point z1, and obtain a point z1
ε ∈ (0, z1) ∩ ∂Ḡε (See (d)). We find a point

z1
ε ∈ X\int Ḡε such that dz1

ε < dx1
ε. We then set x̄2 := z1

ε and construct P 2 by adding the
cut dx 5 ddx̄2− 1e to P 1 (See (e)). Because ḡ(v) > 0 for all vertices v of P 2 (See (f)), we
terminate at the next iteration with the optimal value ddx̄2e.

5. Further Works

The OA method provides the optimal value but may fail to provide an optimal solution
of (mmF ). Finding an optimal solution is still a hard task even when its value is known,
however, the following lemma affords a clue to the way of finding an optimal solution.

Lemma 5.1 Let ε ∈ (0, 1), x∗ε be an ε-optimal solution of (mmF ) and

∆ε = { ξ ∈ Rn | Aξ = 0, ξ = 0, eξ 5 ε }. (5.1)

If x∗ε + ξ̄ is an integer vector for some ξ̄ ∈ ∆ε then x∗ε + ξ̄ is an optimal solution of (mmF ).

Proof: (feasibility) Let x∗ = x∗ε + ξ̄ and y∗ be an optimal solution of max{ ey | y ∈
X, y = x∗ }. Note that

ex∗ is integer, (5.2)

ex∗ε 5 ex∗ 5 ey∗, (5.3)

and also

ey∗ is integer, (5.4)

since X ∩ {y | y = x∗ } inherits the integrality property of X.
Suppose we have the inequality

ey∗ < ex∗ε + 1. (5.5)

Then by (5.3) and (5.5) together with the integrality of ex∗ and ey∗ we see that ex∗ = ey∗.
Hence ḡ(x∗) = ey∗ − ex∗ = 0, meaning that x∗ ∈ XM .

The inequality (5.5) is seen as follows. Let y∗ε be an optimal solution of max{ ey | y ∈
X, y = x∗ε }, and let ξ∗ = y∗ε − x∗ε. We see that Aξ∗ = Ay∗ε − Ax∗ε = 0, ξ∗ = 0 and
eξ∗ = e(y∗ε − x∗ε) = g(x∗ε) 5 ε, and hence ξ∗ ∈ ∆ε. Then ey∗ε = e(x∗ε + ξ∗) 5 ex∗ε + ε <
ex∗ε +1. The point y∗ is a feasible solution of max{ ey | y ∈ X, y = x∗ε }, since y∗ ∈ X and
y∗ = x∗ = x∗ε + ξ̄ = x∗ε. Then we see that e(y∗ε−y∗) = 0, and hence ey∗ 5 ey∗ε < ex∗ε +1.
(optimality) We show that x∗ solves (mmF ). Clearly, dξ̄ 5 eξ̄ since d 5 e and ξ̄ = 0.
For any v ∈ XM ∩XV , we see that g(v) 5 ε, and v is an integer vector by the integrality
property of X. Since x∗ε = x∗− ξ̄ is an optimal solution of (mmFε), we have dx∗ε 5 dx for
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Figure 3: An example of the OA method for (mmF )
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all x ∈ X such that g(x) 5 ε, and hence dx∗ε 5 dv for all v ∈ XM ∩XV . Then we see that
dx∗ = dx∗ε + dξ̄ 5 dv + eξ̄ < dv + 1. Since both x∗ and v are integer vectors, we have
dx∗ 5 dv for all v ∈ XM ∩XV .

Since the dimension of X is n−m, it would be desirable to reduce the number of variables
that we have to handle in the algorithm. Yamamoto-Zenke explains an idea in [34], however,
with the proviso that it does not work generally. Computational experiment should be
carried out to improve the efficiency of the algorithm in this paper.

Appendix

Proof of Theorem 2.1
Proof: (i) The extended gap function ḡ(x) of (2.2) is given by the optimal value of

(PG(x))

∣∣∣∣∣∣∣

max
y,t

ey − ex− β̄t

s.t. Ay = 0, 0 5 y 5 c,
y + t = x, t = 0,

whose dual problem is

(DG(x))

∣∣∣∣∣
min

π,α,β
αc− βx− ex

s.t. (π, α, β) ∈ Ω̄,

where

Ω̄ = { (π, α, β) ∈ Rm+2n | πA + α− β = e, α = 0, 0 5 β 5 β̄ }.

For any x ∈ Rn, (DG(x)) is feasible, e.g., take π = β = 0 and α = e, and has the finite
optimal value. By the duality theorem of linear programming, for any x ∈ Rn, (PG(x))
also has the finite optimal value, and hence ḡ(x) is finite for any x ∈ Rn.
(ii) Let x be a point in the domain of g. By the similar observation in (i), the gap function
g(x) of (2.1) is given by the optimal value of

(DG(x))

∣∣∣∣∣
min

π,α,β
αc− βx− ex

s.t. (π, α, β) ∈ Ω,

where

Ω = { (π, α, β) ∈ Rm+2n | πA + α− β = e, α, β = 0 }.

If β̄ is so large that every vertex v of Ω satisfies v 5 β̄ then we have ḡ(x) = g(x) by the
theory of linear programming. Replacing π by π1 − π2 with π1, π2 = 0 and introducing a
slack variable vector γ = 0, Ω is rewritten as

Ω =








(π1)>

(π2)>

α>

β>

γ>




(
A> −A> I −I −I

)




(π1)>

(π2)>

α>

β>

γ>




= 1,




(π1)>

(π2)>

α>

β>

γ>




= 0





.
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Let v be a vertex of Ω. Then it is a basic solution of the system defining Ω, i.e., v =
(wB, wN) = (B−11,0) for some nonsingular n × n submatrix B of (A> −A> I −I −I).
Since the incidence matrix A is totally unimodular, so is (A> −A> I −I −I). Therefore
the matrix B−1 is composed of −1, 0 and +1, and hence B−11 5 n1. This completes the
proof.

Proof of Theorem 3.1
Proof: Suppose that x̄ ∈ D\intH is not an optimal solution of (CDC), i.e., there exists
y ∈ D\intH such that py < px̄. Clearly, y ∈ D(px̄) and h(y) = 0. If h(y) > 0 then y is
not contained in H, and hence y ∈ D(px̄)\H. By the regularity assumption, if h(y) = 0,
i.e., y ∈ ∂H then we can take y′ ∈ Nδ(y) ∩ D such that py′ < px̄ and h(y′) > 0 for a
sufficiently small δ > 0, where Nδ(y) = {y′ ∈ Rn | ‖y′ − y‖ < δ }, and hence we see that
y′ ∈ D(px̄)\H.
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