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Abstract

In this paper, we consider the minimization of the conditional value-at-risk (CVaR), a
most preferable risk measure in financial risk management, in the context of the well-known
single-period news-vendor problem which is originally formulated as the maximization of
the expected profit, or the minimization of the expected cost. We show that downside
risk measures including the CVaR are tractable in the problem due to their convexity, and
consequently, under mild assumptions on the probability distribution of product’s demand,
we provide analytical solutions or linear programming formulation of the minimization of
the CVaR measures defined with two different loss functions. Numerical examples are also
shown to clarify the difference among the models analyzed in this paper.

Keywords: news-vendor problem, conditional value-at-risk (CVaR), downside risk, mean-
risk model, convex optimization

1 Introduction

Suppose that everyday, facing uncertain demand on a certain product whose value will decrease
by the next day, a manager has to decide how many quantities of the product should be ordered.
The classical news-vendor model offers a solution to this situation by maximizing the daily
expected profit or, equivalently, minimizing the daily expected cost of the product.

In the literature, however, it has been pointed out that maximizing the expected profit is
not satisfactory from practical point of view, and managers in the real world are more concerned
with the other objectives. For example, some try to attain a predetermined target profit as much
as possible. However, such a criterion is still insufficient because it may result in an unacceptably
large loss. To reduce such a risk arising from the variation of the profit, some researchers propose
to minimize the standard deviation of the profit (e.g., [9]), which originates from Markowitz [10].
On the other hand, it is natural that profit above some target level is not regarded as a risk to
be hedged, but more pleasant gain. From this viewpoint, minimizing a downside risk measure
which captures a risk of the profit going down to some target level, is more appealing than
the other risk measures such as the standard deviation. In the literature of the news-vendor
framework, many researchers consider to minimize such downside risk measures as alternatives
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to the expected profit maximization. For example, several researches including Lau [9] and
Lau-Lau [7] examine a model which maximizes the probability of exceeding a predetermined
fixed target profit, whereas Parlar-Weng [13] considers the expected profit in place of the fixed
target. These objectives are very intuitive, but the related optimization problem has no convex
structure, and accordingly, they are very tough to handle for general distribution functions.
Besides, these models seek higher profit, whereas a possibility of suffering great loss is not
considered.

In this paper, we adopt another type of downside risk measure which is called the conditional
value-at-risk (CVaR) in financial risk management, to the single-period news-vendor situation.
The CVaR is known as a risk measure which is coherent ([2]), and consistent with the second
(or higher) order stochastic dominance ([14, 12]). These preferable properties are induced from
some axiomatization of rational investor’s behavior under uncertainty, and thus, these are also
valid to a manager who faces uncertain profit/loss situation as in the news-vendor problem.
In particular, the consistency with the stochastic dominance implies that minimizing the CVaR
never conflicts with maximizing the expectation of any risk-averse utility function ([12]). On the
other hand, some researchers directly treat the risk-aversion through the news-vendor’s utility
function (see Eeckhoudt et al.[3], for example). In practice, utility function is, however, too
conceptual to identify and thus, the use of risk measures has advantage over that of utility
functions.

Moreover, the lower partiality of the CVaR plays an important role in preserving the concav-
ity of the profit or, equivalently, the convexity of the cost. In financial portfolio management as
in [17], the return from an asset portfolio is often represented as a linear function of the portfolio
which is to be determined. This is why the standard deviation results in a convex quadratic
function. On the contrary, the profit in the news-vendor problem is a nonlinearly concave func-
tion of the order quantities. Consequently, minimizing the standard deviation of the profit may
turn into a nonconvex optimization, though many researchers introduce it in order to capture
the profit variation (e.g., [9]) and develop a CAPM by following the modern portfolio theory
(e.g., [1]). In this paper, we show that downside risk measures preserve the concavity of the
profit function by virtue of their lower partiality, and the resulting risk minimization becomes a
convex program.

The structure of this paper is as follows. In the next section, we review the well-known
results of the classical single-period news-vendor problem in which only single product is con-
sidered, and define the total cost of a news-vendor as well as the profit. In Section 3, the CVaR
is introduced in a general form by following [17], and two types of CVaRs are defined by intro-
ducing different loss functions which are called the net-loss and the total cost. By exploiting
the formulation developed in [17], we can achieve closed form solutions of the unconstrained
minimization of the two different CVaRs. In Section 4, we extend the analysis into the mean-
risk framework in which the trade-off between maximizing the profit and minimizing the risk is
considered. When only single product is considered without any constraint, closed form solution
or simple numerical solution method is derived. On the other hand, when multiple products
with many constraints should be dealt with, the problems can be reformulated into equivalent
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linear programs. This fact helps managers analyze the mean-risk trade-off structure in a more
practical setting with numerous linear constraints. Also, some numerical examples are presented
to clarify the difference among the models analyzed in this paper. Finally, we close this paper
with some concluding remarks.

2 News-Vendor Problem in Single Period

In this section, we briefly summarize the classical single-period news-vendor problem for later
comparisons with our results.

2.1 Notation

First of all, let us introduce notation used in this paper as follows:

N : index set for products, N := {1, 2, ..., n}, where n := |N |
ξi : daily demand for product i (random variable), ξi ∈ IR+

qi : selling price per unit for product i (given)

ci : cost per unit for product i (given)

ri : salvage value per unit for product i (given)

si : shortage penalty per unit for product i (given)

xi : daily order quantity for product i (decision variable).

We assume the following condition through the paper:

Assumption 2.1 ri < ci < qi, si ≥ 0 for all i ∈ N .

In the following, we omit the subscript for simplicity when only single product is considered.

2.2 Profit Maximization and Cost Minimization

With fixed x, the daily profit gained from each product is a random variable defined by

P(x, ξ) := q min { ξ, x } + r max {x − ξ, 0 } − s max { ξ − x, 0 } − c x, (1)

where the third term in the right-hand side represents an artificial penalty for opportunity cost,
and s is often set to be 0.

Let F (η) denote the distribution function of demand of the product, i.e., F (η) := P {ξ ≤ η}.
We note that F (0) = 0. The classical news-vendor model then maximizes the expected profit:

maximize
x

µ(x) := E [P(x, ξ)] =
∫ ∞

0
P(x, ξ) dF (ξ), (2)

where E[·] is the mathematical expectation under the distribution F . When the inverse of the
distribution function exists, an optimal solution of Problem (2) is obtained by solving ∂µ

∂x = 0,
as

x∗ = F−1

(
U

E + U

)
, (3)
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where E := c − r, and U := q + s − c. Even when F does not have the inverse, one can obtain
a solution via a simple numerical calculation ([18]).

On the other hand, the daily total cost is defined by

Q(x, ξ) := E [x − ξ]+ + U [ξ − x]+, (4)

where [Y ]+ := max{Y, 0}. Here, the first term in the right-hand side of (4) represents the cost
for excess order, while the second does the opportunity cost. By noting the relation

P(x, ξ) = V ξ −Q(x, ξ),

where V := q − c = U − s, the minimization of the expected cost is proved to be equivalent to
the maximization of the expected profit:

min
x

E [Q(x, ξ) ] = V E [ ξ ] − max
x

E [P(x, ξ) ] .

Since E,U > 0 from Assumption 2.1, the expected cost is a convex function of x, whereas the
expected profit is concave one, and therefore, both problems are so-called convex program.

In the case where multiple products are considered, we additionally assume that the total
profit (or cost) is just the sum of the ones from each product, i.e., letting P(x, ξ) and Q(x, ξ)
denote the total profit and cost, respectively, we assume

Assumption 2.2 P(x, ξ) =
∑
i∈N

P(xi, ξi); Q(x, ξ) =
∑
i∈N

Q(xi, ξi).

3 Minimization of CVaR in the News-Vendor Problem

In this section, we introduce the conditional value-at-risk (CVaR) for general distribution func-
tions by following Rockafellar-Uryasev [17], and show that the CVaR minimization leads to a
convex problem when the associated loss is represented as a convex function. Also, we examine
the parameter sensitivity of its solution.

3.1 Conditional Value-at-Risk and Its Convexity

Let L(x, ξ) denote the magnitude of the loss which is a random variable for fixed x, and let us
denote the distribution function of L by Φ(η |x) := P {L(x, ξ) ≤ η}. Here, any variable to be
minimized can be adopted as the loss L, and we will apply two different functions as the loss in
the succeeding sections.

For β ∈ [0, 1), we define the β-VaR of the distribution by αβ(x) := min {α |Φ(α|x) ≥ β }.
By definition, we can expect that the loss L exceeds αβ only in (1 − β) × 100%.

Rockafellar-Uryasev [17] introduces the β-tail distribution function to focus on the upper
tail part of the loss distribution as

Φβ(η |x) :=

⎧⎨
⎩

0 for η < αβ(x),
Φ(η |x) − β

1 − β
for η ≥ αβ(x).
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Using the expectation operator Eβ[·] under the β-tail distribution Φβ, we define the β-conditional
value-at-risk of the loss L by φβ(x) := Eβ [L(x, ξ) ]. Denoting the expectation under the original
distribution Φ by E[·], the following relation shown in [17]:

E[L(x) | L(x) ≥ αβ(x) ] ≤ φβ(x) ≤ E[L(x) | L(x) > αβ(x) ] (5)

implies that φβ is approximately equal to the conditional expectation of L which exceeds the
threshold αβ with fixed x.

In order to minimize φβ(x), Rockafellar-Uryasev [17] introduces a simpler auxiliary function
Fβ : IRn+1 → IR, defined by

Fβ(x, α) := α +
1

1 − β
E
[
[L(x, ξ) − α]+

]
, (6)

and shows that Fβ is convex with respect to α. Also, they provide a shortcut to minimizing
φβ(x) as

minimize
� ∈ X

φβ(x) = minimize
(�, α) ∈ X × IR

Fβ(x, α), (7)

where X ⊂ IR a feasible region. This relation shows that the minimal value φβ(x∗) can be
achieved by minimizing the function Fβ(x, α) with respect to x ∈ X and α ∈ IR simultaneously.
Furthermore, it is shown in [17] that, with an optimal solution (x∗, α∗) of the right-hand side
optimization problem, x∗ is an optimal solution of the left-hand side one, and α∗ is almost (or
sometimes exactly) equal to αβ(x∗).

In the following, we consider two different loss functions as L: one is defined by −P(x, ξ)
and called the net loss of the profit, while the other one is the total cost Q(x, ξ). For the two
loss functions, we can show that the corresponding CVaR becomes a convex function.

Proposition 3.1 ([17]) The function (6) is convex if the loss function L(·, ξ) from IRn to
(−∞,∞] is convex.

Proof. See [17]. �

Since both the net loss, −P(·, ξ), and the total cost, Q(·, ξ), are convex functions with fixed
ξ under Assumptions 2.1 and 2.2, the CVaR minimization problems using these functions are
convex. In the following, we call them the net-loss CVaR minimization and the total cost CVaR
minimization, respectively.

It is worth noting that this proposition is also valid for a class of downside risk measures
including the below-target return defined by E[[t − P(x, ξ)]+] for fixed target t ∈ IR ([4]), and
maximal loss maxξi

−R(x, ξ) when ξ has finite supports ([19]).

Proposition 3.2 ([15]) Let g be a convex function from IRn to (−∞,∞], and let γ be a convex
function from (−∞,∞] to (−∞,∞] which is non-decreasing with γ(∞) = ∞. Then, h(x) =
γ(g(x)) is convex on IRn.
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Figure 1: Nonconvexity of Standard Deviation of P

Proof. See [15], for example. �

From this proposition, we see that minimization of any non-decreasing convex risk measure is
formulated as a convex problem, and at the same time, the lower partiality of the risk measures
seems crucial for the convexity in the risk minimization for the news-vendor problem. In fact,
the variance (or equivalently, the standard deviation) of the net loss or the cost function can
have a non-convex structure. Figure 1 shows an example of the non-convexity with respect to x

of the standard deviation of profit P in the two-product case where the underlying distribution
has finite supports.

3.2 Unconstrained Minimization of CVaR for Single Product

In this subsection, we consider the case dealing with only single product without constraint,
i.e., X = IR, and present analytical results of the CVaR minimization problems with two loss
functions. In addition, let us assume for simplicity that there exists the inverse of the distribution
function F , and let us denote its density by f .

a) The Net-Loss CVaR Minimization First, we define the net-loss by −P, and adopt it
as the loss function L, so that a manager can consider the profit lower than αβ.

The minimization of (6) with L = −P is represented as the following convex program:

minimize
x ∈ IR, α ∈ IR

p(x, α) := α +
1

1 − β

∫ ∞

0
[−P(x, ξ) − α ]+ f(ξ) dξ. (8)

Note that the integral part of the objective in (8) can be expanded as∫ x

0
[−{V ξ − E (x − ξ ) } − α ]+ f(ξ) dξ +

∫ ∞

x
[−{V ξ − U ( ξ − x ) } − α ]+ f(ξ) dξ. (9)

Then, consider the following three cases (see Figure 2):
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0

Figure 2: Three Cases in Minimization of Net-Loss CVaR

〈〈 case 1. α < −V x 〉〉 The integral part (9) becomes

∫ x

0
[−{V ξ − E (x − ξ ) } − α ] f(ξ) dξ +

∫ ∞

x
[−{V ξ − U ( ξ − x ) } − α ] f(ξ) dξ.

From the first-order condition of Problem (8), one has a solution (x∗, α∗) satisfying x∗ =
F−1

(
U

E+U

)
and α∗ < −V x∗, only when one sets β = 0.

〈〈 case 2. α ∈ [−V x,Ex) 〉〉 When s > 0, the integral part (9) becomes

∫ Ex−α
E+V

0
[−{V ξ − E (x − ξ ) } − α ] f(ξ) dξ +

∫ ∞

Ux+α
U−V

[−{V ξ − U ( ξ − x ) } − α ] f(ξ) dξ,

while the second integral vanishes when s = 0. From the first-order condition, one has a
solution (x∗, α∗) defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗ =
E + V

E + U
F−1

(
U( 1 − β )

E + U

)
+

U − V

E + U
F−1

(
Eβ + U

E + U

)
,

α∗ =
E (U − V )

E + U
F−1

(
Eβ + U

E + U

)
− U (E + V )

E + U
F−1

(
U( 1 − β )

E + U

)
.

It is easy to see that this solution (x∗, α∗) satisfies α∗ ∈ [−V x∗, Ex∗) under Assumption
2.1. Also, we note that this x∗ includes the solution in the previous case when β = 0.

〈〈 case 3. α ≥ Ex〉〉 When s > 0, the integral part (9) becomes

∫ ∞

Ux+α
U−V

[−{V ξ − U ( ξ − x )} − α ] f(ξ) dξ,

while the integral part is 0 and, thus the problem has no bounded solution when s = 0.
By differentiating this equation, we observe that this case has no optimal solution.

Here, we summarize the discussion above.
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Proposition 3.3 Assume that there exists the inverse of the distribution function of the product
demand. Then, the problem (8) with β ∈ [0, 1) has an optimal solution (x∗, α∗) defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x∗ =

E + V

E + U
F−1

(
U( 1 − β )

E + U

)
+

U − V

E + U
F−1

(
Eβ + U

E + U

)
,

α∗ =
E (U − V )

E + U
F−1

(
Eβ + U

E + U

)
− U (E + V )

E + U
F−1

(
U( 1 − β )

E + U

)
.

(10)

In particular, when β = 0, any α∗ with α∗ ≤ −V x∗ also satisfies optimality.

In particular, when the artificial penalty s is set to be 0, i.e., V = U , one has the following
result:

Corollary 3.4 Under the same assumption as in Proposition 3.3 with s = 0, one has an optimal
solution (x∗, α∗) defined by

x∗ = F−1

(
U

E + U
( 1 − β )

)
; α∗ = −Ux∗. (11)

In particular, when β = 0, any α∗ with α∗ ≤ −Ux∗ also satisfies optimality.

From these proposition and corollary, we see that the difference between the solution x∗ given
by (10) or (11) and the classical one (3) depends on two parameters s and β. In particular, from
Corollary 3.4, we see that it is only the coefficient in the argument of the inverse F−1 when
s = 0, whereas when s > 0, it may be much more complex. However, this CVaR minimization
gives a simple generalization of the classical problem since the solution with β = 0 is equal to
that for the classical one with any s ≥ 0. This consequence is consistent with the definition of
the β-CVaR.

b) The Total Cost CVaR Minimization Next, we consider the total cost Q as the loss L.
By minimizing the β-CVaR defined on the total cost, a manager may avoid an unduly large cost
which consists of the excess order cost and the opportunity cost.

The corresponding problem is then represented as

minimize
x ∈ IR, α ∈ IR

q(x,α) := α +
1

1 − β

∫ ∞

0
[Q(x, ξ) − α ]+ f(ξ) dξ. (12)

Similarly to the previous discussion, we consider three cases by taking into account that the
integral part of the objective in (12) can be transformed into∫ x

0
[E (x − ξ ) − α ]+ f(ξ) dξ +

∫ ∞

x
[ U ( ξ − x ) − α ]+ f(ξ) dξ. (13)

We can calculate this integral by considering the following three cases (see Figure 3).

〈〈 case 1. α < 0 〉〉 The integral part (13) becomes∫ x

0
{E (x − ξ ) − α } f(ξ) dξ +

∫ ∞

x
{U ( ξ − x ) − α } f(ξ) dξ.

From the first-order conditions of Problem (12), one has a solution (x∗, α∗) satisfying
x∗ = F−1

(
U

E+U

)
and α∗ < 0, only when one sets β = 0.
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0

Figure 3: Three Cases in Minimization of Total Cost CVaR

〈〈 case 2. α ∈ [0, Ex) 〉〉 The integral part (13) becomes

∫ x− α
E

0
{E (x − ξ ) − α } f(ξ) dξ +

∫ ∞

x+ α
U

{U ( ξ − x ) − α } f(ξ) dξ.

From the first-order condition, one has a solution (x∗, α∗) defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗ =
E

E + U
F−1

(
U( 1 − β )

E + U

)
+

U

E + U
F−1

(
Eβ + U

E + U

)
,

α∗ =
EU

E + U

(
F−1

(
Eβ + U

E + U

)
− F−1

(
U( 1 − β )

E + U

))
.

We note that this x∗ includes the solution in the previous case when β = 0.

〈〈 case 3. α ≥ Ex 〉〉 The integral part (13) becomes

∫ ∞

x+ α
U

{U ( ξ − x ) − α } f(ξ) dξ.

By differentiating this equation, we observe that this case has no optimal solution.

Therefore, we obtain the following proposition.

Proposition 3.5 Assume that there exists the inverse of the distribution function F of the
product demand ξ. Then, the problem (12) with β ∈ [0, 1) has an optimal solution (x∗, α∗)
defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x∗ =

E

E + U
F−1

(
U( 1 − β )

E + U

)
+

U

E + U
F−1

(
Eβ + U

E + U

)
,

α∗ =
EU

E + U

(
F−1

(
Eβ + U

E + U

)
− F−1

(
U( 1 − β )

E + U

))
.

(14)

In particular, when β = 0, any α∗ with α∗ ≤ 0 also satisfies optimality.



Downside Risk-Averse News-Vendor Minimizing CVaR 10

0

20

40

60

80

100

120

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

β

o
p
t
im
a
l 
o
r
d
e
r
 q
u
a
n
t
it
y
 x

Net-Loss

Total Cost

0

20

40

60

80

100

120

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

β

o
p
t
im
a
l 
o
r
d
e
r
 q
u
a
n
t
it
y
 x

Net-Loss

Total Cost

(a) (E,U, V ) = (60,60, 50); N(100,202) (b) (E,U, V ) = (60,30, 20); N(100,202)

0

20

40

60

80

100

120

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

β

o
p
t
im
a
l 
o
r
d
e
r
 q
u
a
n
t
it
y
 x

Net-Loss

Total Cost

0

20

40

60

80

100

120

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

β

o
p
t
im
a
l 
o
r
d
e
r
 q
u
a
n
t
it
y
 x

Net-Loss

Total Cost

(c) (E,U, V ) = (30,60, 50); N(100,202) (d) (E,U, V ) = (30,60, 50); N(100,102)

Figure 4: Optimal Solutions of CVaR Minimization with Two Loss Functions

By comparing solutions (10) and (14) of the two CVaR minimization, we observe that the
solution (x∗, α∗) of the total cost CVaR minimization (12) can be far different from that of
the net-loss CVaR minimization (8), which does not holds in the classical problem in which
maximizing the profit and minimizing the cost are equivalent (see the results in Section 2).
However, this CVaR minimization (12) also provides a generalization of the classical maximizing
profit model because this solution with β = 0 is the same as the solution (3), which is consistent
with the definition of the β-CVaR.

Figures 4 (a) to (d) illustrate the differences among the three optima (3), (10) and (14)
when s is set to be 10, i.e., V = U − 10, and ξ follows a normal distribution under a couple of
parameter settings. Noting that the solution with β = 0 is equal to the classical one (3), we see
from Figures 4 (a) to (d), that the net-loss CVaR minimization implies less order quantity than
the classical one and the difference becomes larger as β gets higher, while the optimal solution
of the total cost CVaR depends on parameters E and U . In particular, when E = U holds as in
(a), the solution (14) is independent of β, and accordingly, equal to the classical solution, and
when E < U holds as in (c) and (d), two solutions with different loss show reverse trends with
β. From Figures 4 (c) and (d), we see that the the difference between two solutions becomes
smaller as the variance of normal distribution decreases.
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3.3 Sensitivity Analysis

Here, we analyze the parameter sensitivity of the solutions obtained so far. Table 1 summarizes
the sign of the partial derivative of the optimal solution x∗ with respect to parameters, q, c, r, s

and β. From this table, we see that all the signs of the sensitivity to c, r and s remain the same
as that of the classical model, whereas those to β and q can differ from model to model.

The signs of ∂x∗
∂β for the net-loss and the total cost CVaR minimization depend on the

underlying distribution because for the net-loss CVaR minimizer (10) with s = U − V > 0, one
has

∂x∗

∂β
=

1
(E + U )2

(
E(U − V )

f ( F−1(G2))
− U(E + V )

f (F−1(G1) )

)
,

where G1 = U( 1−β )
E+U and G2 = Eβ+U

E+U , and for the total cost CVaR minimizer (14), one has

∂x∗

∂β
=

E U

(E + U )2

(
1

f ( F−1(G2 ))
− 1

f (F−1(G1) )

)
.

To illustrate how the shape of distribution affects the derivatives, let us consider the S-D distri-
bution ([6]) whose distribution and density functions are defined, respectively, by

F (η) =

{
d − { ( a − η )/b } 1

l , for η ∈ [H1, a),

d + { ( η − a )/b } 1
l , for η ∈ [a,H2],

and

f(η) =
1
b l

∣∣∣∣ a − η

b

∣∣∣∣
1−l

l

, for H1 ≤ η ≤ H2,

where a, b, d, l,H1 and H2 are constant with b > 0, l > 0 and d ∈
[
{(a − H1)/b}1/l , 1 − {(H2 − a)/b}1/l

]
.

For the net-loss CVaR minimizer, one then has
∂x∗

∂β
< 0 for l = 1,

⎧⎪⎪⎨
⎪⎪⎩

∂x∗

∂β
≥ 0 if d ∈ [(1 − ν)G1 + νG2, (1 − θ)G1 + θG2)

∂x∗

∂β
≤ 0 if d < (1 − ν)G1 + νG2 or d ≥ (1 − θ)G1 + θG2

(for l > 1),

and ⎧⎪⎪⎨
⎪⎪⎩

∂x∗

∂β
≥ 0 if d ∈ [(1 − θ)G1 + θG2, (1 − ν)G1 + νG2)

∂x∗

∂β
≤ 0 if d < (1 − θ)G1 + θG2 or d ≥ (1 − ν)G1 + νG2

(for 0 < l < 1),

where ν := B1/(1−l)/(B1/(1−l) − 1), θ := B1/(1−l)/(B1/(1−l) + 1) and B := U(E+V )
E(U−V ) . On the other

hand, for the total cost CVaR solution, one has
∂x∗

∂β
= 0 for l = 1,

∂x∗

∂β
> 0 if d <

G1 + G2

2
;

∂x∗

∂β
≤ 0 if d ≥ G1 + G2

2
(for l > 1),
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Table 1: Sign of Partial Derivative of Each Minimizer
∂x∗

∂q

∂x∗

∂c

∂x∗

∂r

∂x∗

∂s

∂x∗

∂β

net-loss CVaR (s = 0) (11) + − + 0 −
net-loss CVaR (s > 0) (10) case-by-case − + + case-by-case

total cost CVaR (14) + − + + case-by-case

Classical (3) + − + + 0

and

∂x∗

∂β
≥ 0 if d ≥ G1 + G2

2
;

∂x∗

∂β
< 0 if d <

G1 + G2

2
(for 0 < l < 1).

From the above results, we see that the sensitivity with respect to β depends on the param-
eters determining the shape of the S-D distribution. In particular, the skewness parameter d is
crucial for the solutions above. Also, we can see that the sign of the derivative with respect to
q of the net-loss CVaR minimizer with s > 0 depends only on parameters d and l.

4 Mean-CVaR Models and LP Formulation

Since the Markowitz’s seminal work, the trade-off between risk and return has been considered
in various situations by using mathematical optimization techniques. This trade-off model is
known as the mean-risk model (see [11], for example), which is formulated as the optimization
of a composite objective consisting of the expected return and a certain risk measure ρ(x):

maximize
�

E [P(x, ξ) ] − λρ(x)

subject to x ∈ X,
(15)

where X a convex set representing some constraints on the portfolio x, and λ ≥ 0 a trade-
off parameter, or the minimization of the risk while the return is kept at least as large as a
predetermined target:

minimize
�

ρ(x)

subject to E [P(x, ξ) ] ≥ µ,

x ∈ X,

(16)

where µ is the minimum level of the expected profit. It is known that the both formulations
give the same efficient frontier, which is a graph of Pareto efficient pairs of expected return and
some risk measure ρ, when the expected return is a concave function of x while the risk is a
convex one. Exploiting the results in the previous section and applying this framework to the
news-vendor problem by using the CVaR measures φβ as the risk ρ, the corresponding mean-risk
models (15) and (16) with ρ(x) = φβ(x) are convex programs, and consequently, result in the
same efficient frontier.
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4.1 Unconstrained Mean-CVaR Models for Single Product

a) Mean-Net-Loss CVaR Model First, we consider the unconstrained mean-risk model
using the net-loss CVaR for single-product case as in the previous section. The problem is then
represented by

maximize
x, α

∫ ∞

0
P(x, ξ) f(ξ) dξ − λ

(
α +

1
1 − β

∫ ∞

0
[−P(x, ξ) − α ]+ f(ξ) dξ

)
. (17)

By the same reasoning in the net-loss CVaR minimization, we consider the following three
cases. Throughout the below analysis (except for propositions), we omit the case of λ = 0, since
the mean-risk model is equal to the profit maximization (2).

〈〈 case 1. α ≤ −V x 〉〉 Let h(x) := µ(x) − λ p(x, α). Since one has the following first-order
condition:⎧⎨

⎩
∂h
∂x = −

(
1 + λ

1−β

)
{(E + U )F (x) − U} = 0

∂h
∂α = −λ

(
1 − 1

1−β

)
= 0,

(18)

only when β = 0 holds, one has a solution (x∗, α∗) satisfying (3) and α∗ ≤ −V x∗.

〈〈 case 2. α ∈ (−V x,Ex) 〉〉 When s > 0, we have the first-order condition:

⎧⎨
⎩

E
{
F (x) + λ

1−β F
(

Ex−α
E+V

)}
+ U

{
F (x) + λ

1−β F
(

Ux+α
U−V

)}
= U

(
1 + λ

1−β

)
,

F
(

Ux+α
U−V

)
− F

(
Ex−α
E+V

)
= β.

Then, an optimal α is given by

α∗ = Ex∗ − (E + V )F−1(A(x∗) ), (19)

where x∗ solves the equation:

(E + V )F−1(A(x)) + (U − V )F−1(A(x) + β) − (E + U )x = 0, (20)

where A(x) := 1−β
λ

{
U

E+U ( 1 + λ ) − F (x)
}

.

〈〈 case 3. α ≥ Ex 〉〉 We have a solution (x∗, α∗) defined by

x∗ = F−1

(
U

E + U
(1 + λ)

)
; α∗ = (U − V )F−1(β) − U x∗. (21)

Considering the condition α ≥ Ex, β and λ should satisfy the relation

F−1

(
U

E + U
(1 + λ)

)
≤ U − V

E + U
F−1(β). (22)

Therefore, for λ > 0 and s > 0, we can find an optimal solution through the following steps:

1. If β = 0, then (x∗, α∗) satisfying (3) and α∗ ≤ −V x∗ is a solution.
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2. If β and λ satisfy the relation (22), then (x∗, α∗) satisfying (21) is an optimal solution.

3. Otherwise, search x satisfying Equation (20), and α defined by (19).

In particular when we assume s = 0, we can obtain a closed form solution of Problem (17),
by similar discussion to the first one in the previous section.

Proposition 4.1 For s = 0, β ∈ [0, 1) and λ ≥ 0, the mean-CVaR model (17) has an optimal
solution (x∗, α∗) defined by

x∗ = F−1

(
U

E + U
· 1 + λ

1 + λ ( 1 − β )−1

)
; α∗ = −Ux∗.

In particular, when λ = 0 or β = 0 holds, any α∗ with α∗ ≤ −U x∗ also satisfies optimality.
Moreover, for λ ∈ [0, E+U

E β − 1
)
, a solution (x∗∗, α∗∗) defined by

x∗∗ = F−1

(
U − λE

E + U

)
; α∗∗ = E x∗∗ − (E + U )F−1( 1 − β )

also achieves the optimal value. In this case, so does a solution (x̂, α̂) satisfying x̂ = (1− t)x∗ +
t x∗∗ and α̂ = (1 − t)α∗ + t α∗∗ for any t ∈ (0, 1).

Proof. When s = 0 holds, we consider the following three cases.

〈〈 case 1. α < −Ux 〉〉 Noting that s = 0 is equivalent to U = V , we have the same result with
the general one.

〈〈 case 2. α = −Ux 〉〉 From the first-order condition, we have a solution (x∗, α∗) defined by

x∗ = F−1

(
U

E + U
· 1 + λ

1 + λ
1−β

)
; α∗ = −U x∗.

〈〈 case 3. α > −Ux 〉〉 By exploiting Proposition 3.3, we have a solution defined by

⎧⎨
⎩ x∗ = F−1

(
U−λE
E+U

)
,

α∗ = E x∗ − (E + U )F−1(1 − β).

Combining with the condition α∗ > −Ux∗, this is valid only for λ < E+U
U β − 1. Note that

the optimal solution set is convex since the problem is convex, then the result follows. �

b) Mean-Total Cost CVaR Model The analysis of the mean-risk model using the total cost
CVaR can be conducted in a similar manner. For single product case, the model is formulated
as follows:

maximize
x, α

∫ ∞

0
P(x, ξ) f(ξ) dξ − λ

(
α +

1
1 − β

∫ ∞

0
[Q(x, ξ) − α ]+ f(ξ) dξ

)
. (23)

In this analysis, we omit the trivial case of λ = 0.
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〈〈 case 1. α ≤ 0 〉〉 By similar discussion to the case 1 in the proof for Proposition 3.5, only
when β = 0 holds, one has a solution (x∗, α∗) satisfying (3) and α∗ ≤ 0, since one has the
first-order condition (18).

〈〈 case 2. α ∈ (0, Ex) 〉〉 We have the first-order condition:

⎧⎨
⎩ E

{
F (x) + λ

1−β F
(
x − 1

E α
)}

+ U
{
F (x) + λ

1−β F
(
x + 1

U α
)}

= U
(
1 + λ

1−β

)
,

F
(
x + 1

U α
)− F

(
x − 1

E α
)

= β.

Then, an optimal α is given by

α∗ = E
{
x∗ − F−1(A(x∗) )

}
, (24)

where x∗ solves the equation:

E F−1(A(x)) + U F−1(A(x) + β) − (E + U )x = 0. (25)

〈〈 case 3. α ≥ Ex 〉〉 We have a solution (x∗, α∗) satisfying

x∗ = F−1

(
U

E + U
(1 + λ)

)
; α∗ = U F−1(β) − U x∗. (26)

Considering the condition α ≥ Ex, β and λ should satisfy the relation

F−1

(
U

E + U
(1 + λ)

)
≤ U

E + U
F−1(β). (27)

Therefore, for λ > 0, we can find an optimal solution through the following steps:

1. If β = 0, then (x∗, α∗) satisfying (3) and α∗ ≤ 0 is a solution.

2. If β and λ satisfy the relation (27), then (x∗, α∗) satisfying (26) is an optimal solution.

3. Otherwise, search x satisfying Equation (25), and α defined by (24).

4.2 Constrained Mean-CVaR Models for Multiple Products

In this subsection, we address how to compute an optimal solution when multiple products are
considered with multiple constraints which are given as a system of linear inequalities.

Suppose that the probability distribution is given by a finite number of scenarios. Let K de-
note a finite set of scenarios, and let P{ξ = ξk} = pk for k ∈ K where ξk := (ξk,1, ξk,2, ..., ξk,n)�.
Moreover, X is supposed to be a polytope given by X := {x |Cx ≤ b } where C ∈ IRm×n and
b ∈ IRm. Then, using the net-loss CVaR, the mean-risk model (15) with ρ = φβ is formulated
as

maximize
�, α

∑
k∈K

pk P(x, ξk) − λ

(
α +

1
1 − β

∑
k∈K

pk [−P(x, ξk) − α ]+
)

subject to x ∈ X,

(28)
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which is equivalent to the linear program (LP):

maximize
�, α, �,�, �

∑
k∈K

pk

∑
i∈N

Vi ξk,i −
∑
k∈K

pk

∑
i∈N

Ei wk,i −
∑
k∈K

pk

∑
i∈N

Ui zk,i − λα − λ

1 − β

∑
k∈K

pk vk

subject to vk ≥ −
∑
i∈N

Vi ξk,i +
∑
i∈N

Ei wk,i +
∑
i∈N

Ui zk,i − α, vk ≥ 0, k ∈ K,

wk,i ≥ xi − ξk,i, wk,i ≥ 0, k ∈ K, i ∈ N,

zk,i ≥ ξk,i − xi, zk,i ≥ 0, k ∈ K, i ∈ N,

x ∈ X.

(29)

Proposition 4.2 Let (x∗, α∗,v∗,w∗,z∗) be an optimal solution of (29). Then, (x∗, α∗) is also
optimal to (28), and the optimal values of both problems meet.

The minimization of the net-loss CVaR with an expected profit constraint, i.e., (16) with ρ(x) =
φβ(x), is also transformed into an LP. The problem is formulated as follows:

minimize
�, α

α +
1

1 − β

∑
k∈K

pk [−P(x, ξk) − α ]+

subject to
∑
k∈K

pk P(x, ξk) ≥ µ,

x ∈ X,

(30)

which is equivalent to the LP:

minimize
�, α,�,�, �

α +
1

1 − β

∑
k∈K

pk vk

subject to
∑
k∈K

pk

∑
i∈N

Vi ξk,i −
∑
k∈K

pk

∑
i∈N

Ei wk,i −
∑
k∈K

pk

∑
i∈N

Ui zk,i ≥ µ,

vk ≥ −
∑
i∈N

Vi ξk,i +
∑
i∈N

Ei wk,i +
∑
i∈N

Ui zk,i − α, vk ≥ 0, k ∈ K,

wk,i ≥ xi − ξk,i, wk,i ≥ 0, k ∈ K, i ∈ N,

zk,i ≥ ξk,i − xi, zk,i ≥ 0, k ∈ K, i ∈ N,

x ∈ X.

(31)

As easily guessed, the other variants using the total cost CVaR can be also transformed into
equivalent linear programs. In fact, only getting rid of the constant term, − ∑

i∈N
Vi ξk,i, from the

constraint:

vk ≥ −
∑
i∈N

Vi ξk,i +
∑
i∈N

Ei wk,i +
∑
i∈N

Ui zk,i − α, vk ≥ 0, k ∈ K,

which is the first constraint of Problem (29) and the second constraint of Problem (31), we can
obtain the two kinds of mean-risk models with the total cost CVaR.

The advantage of LP formulation is overwhelming since it can deal with a huge number of
constraints and variables, and consequently, it is expected to provide a well-approximating opti-
mal solution when any explicit solution cannot be achieved in such a case that many constraints
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on multiple products should be dealt with. In addition, even when one cannot achieve any closed
form solution, we can figure the distribution as a histogram in an approximate manner.

Figures 5 (a1) to (e2) show histograms of optimal distributions of the profit P and total
cost Q via several models discussed above when single product is considered and one thousand
scenarios of its demand are drawn from a normal distribution N(150,452). In spite of the
normality of the demand distribution, every optimal distribution of profit or total cost is much
skewed and, accordingly, different from the normal one because of nonlinearity of the profit or
the total cost. Also, we can observe some interesting difference among proposed and classical
models. From Figures (a1), (a2), (c1) and (c2), we see that the resulting optimal distributions
through the classical expected profit maximization and the cost CVaR minimization show similar
shapes. From (b1), we see the net-loss CVaR minimization achieves an optimal profit distribution
with small dispersion though it results in smaller expected or maximal profit than the classical
solution or the cost CVaR minimizer. We note that the empirical probability that the daily profit
becomes negative with net-loss CVaR is only 0.1% which corresponds to one scenario among
thousand, while the probability with the classical model is 1.4%. The mean-risk models achieve
the medium distribution of those through the mean maximization and the CVaR minimization.

Figure 6 shows the convex efficient frontiers of the mean-net-loss CVaR model with different
βs. Another advantage of the use of such LP formulations is efficient computation of the frontier
by using the dual simplex algorithm. This fact helps a manager capture the profit-CVaR trade-
off relation.

Figure 7 shows the CPU time spent in solving the LP with |N | = 3 and |K| = 1, 000, 750, 500
scenarios which are drawn from a multivariate normal distribution. Computation is conducted
on a personal computer with Pentium4 processor (1.6GHz) and 256M bite memory, and Xpress-
MP (ver.2003G) for Windows is used for solving linear programs. From the figure, we see that
the CPU time becomes smaller as β gets closer to 1.0. This fact provides a tailwind in practice
because from a viewpoint of risk management, large loss is often more concerned with, and large
β, say 0.95 or 0.99, should be thus taken.

5 Concluding Remarks

In this paper, we adopt two kinds of the conditional value-at-risk measures to the classical
single-period news-vendor problem. This measure captures a risk of the profit going down to a
certain level in a predetermined significance, and its minimization or related constraints have
a convex structure. It is shown that its convex structure plays an important role in seeking
optimal solutions to problems which include the CVaR measure in objective and constraints.
In particular, one can achieve a closed form solution in single-product case when no constraint
is imposed. Even with multiple constraints represented by a polyhedron, one can compute a
solution by solving a linear program, if distribution of demand is given by a finite number of
scenarios. By exploiting these computational advantages, we can apply this risk measure into
more complex problems.

The excess cost, QE := E[x − ξ]+, or the opportunity cost, QU := U [ξ − x]+, can be also
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applied as the loss L and preserve the convexity since these are convex functions with fixed ξ.
Since there have been many extended researches of the news-vendor problem, applications of
the CVaR to various settings are future works.
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Figure 5: Histograms of Optimal Distributions of Profit and Total Cost
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