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Abstract

We propose a new, robust Boosting method by using a sigmoidal function as a loss function.
In deriving the method, the stagewise additive modelling methodology is blended with the
gradient descent algorithms. Based on intensive numerical experiments, we show that the
proposed method is actually better than AdaBoost in test error rates in the case of noisy,

mislabeled situation.

Key words: AdaBoost, Machine Learning, Neural Network, Sigmoidal Function, Stagewise

Additive Model.

1 Introduction

Suppose a situation in which a management must solve a decision problem depending on a number
of people whose opinions differ slightly, and their experiences and personal abilities to solve the
problem seem to be almost equal and, as a result, cannot draw a decisive conclusion. To resclve
this situation in order to make a reasonably better decision, is it more efficient to ignore opinions
of these people and relying solely on manager's decision, or to restart the discussion by changing
the team and forming a new ensemble through addition of capable people?

Obviously, the first behaviour is faster but it may not lead to a better decision. On the other
hand, the second one may lead to a better decision since it will provide an iterative improvement
to the solution but it certainly is a slow process and takes much longer time. This is what we
often encounter during decision analysis dealing with data mining. However, we can make a better

_ decision even in the original situation by résorting to the iterative improvement method considering

that a possible better solution is still the outcome of a combination of a set of slightly different



opinions converging toward the genuine better one,

The situation described above is essentially a problem associated with a committee-based deci-
sion making, The aim of this paper is to develop a new robust algorithm for pattern classification
problem by using an analogy to the committee-based decision making, where each individual mem-
ber of the committee corresponds to a classifier. The decision here is to correctly classify data to its
true class label, and we would like to develop a new robust classification method through iterative
improvement of classifiers or committee members.

In view of the above objective in mind, the starting point for the present study would be an
iterative improvement procedure called “Boosting,” which is a way of combining the performance of
many “weak " classifiers to produce a powerful " committee.” The procedure allows the designer to
continue adding weak classifiers until some desired low training error has been achieved. Boosting
techniques have mostly been studied in the computational learning theory literature (e.g., see
Schapire (1990), Freund (1995),‘ Freund and Schapire (1997)) and received increasing attention in
many areas including data mining and knowledge discovery.

While Boosting has evolved over the recent years, we focus on the most commonly used version
of the adaptive Boosting procedure, i.e., " AdaBoost.M1.” (Freund and Schapire, 1997). A concise
description of AdaBoost is given here for the two-category class;iﬁcation setting. We have a set of ¥
trainning data pairs, (@5,%1),... , (=, %),--. ,{@N, ¥w), where 2; denotes a vector valued feature
with 3 = —1 or 1, as its class label or teacher signal. The total number of component classifiers is _
assumed to be M, Then, the output of classification model (i.e., committee) is given by a scalar
function, F(z) = 3% | B fm(2), in which each f,,(z) denotes a classifier producing values £1,
and By are prescribed constants; the corresponding prediction (i.e., decision) is sign(F(z}).

The AdaBoost procedure trains the classifiers fr, (z) on weighted versions of the training sample,
by giving higher weight to cases that are currently misclassiﬁed. This is done for a sequence
of weighted samples, and then the final classifier is defined to be a linear superposition of the
classifiers from each stage. A detailed desciption of AdaBoost.M1. is summarized and given in the

next box, where I(y; # fin(2:)) denotes the indicator function with respect to the event such that



¥; # fm(2:), 1., misclassification event,

AdaBoost.M1. (Freund and Schapire, 1997)

1. Initialize the observation weights wy =1/N, i=1,2,... ,N.

2. Form=12,...,M do:

(a) Tit a classifier fr,(x) to the training data using weights w;.
Sy wil (s # fun(3))
E:‘N;l uy

() Compute 8, = log({1 — err,,,)/{errm)).

(b) Compute erry, =

(d} Setw; ¢ w;-exp[fm Iy # fm(z))), i=1,2,... ,N.

end For

3. Qutput F(z) = sign[znﬂLl B fr ()]

Much has been written about the success of AdaBoost in producing accurate classifiers. Many
authors have explored the use of a tree-based classifier for f,n(2) and demonstrated that it consis-
tently produces significantly lower error rates than a single decision tree. In fact, Breiman called
AdaBoost with trees as " the best off-the-shelf classifier in the world " (Breiman, 1998).

Interestingly, in many examples, the test error seems to consistently decrease and then level
off as more classifiers are added, instead of turning into ultimate increase. It hence seems that
AdaBooSt is resistent to overfitting for low noise cases. However, recent studies with highly noisy
patterns (Quinlan, 1996; Grove and Schuurmans, 1998; Ritsch et al., 1998) depict that it is clearly
a myth that AdaBoost do not overfit since AdaBoost asymptotically concentrate on the patterns
which are hardest to learn. To cope with this problem, some regularized Boosting algorithms
(Mason et al., 1999; Rétsch et al., 1998) are proposed. In this paper, we will take an iterative
impmvemept approach to optimize classifiers to derive a new robust Boosting method that is

resistent against mislabeled noisy patterns.

In the next section, we present the principles of AdaBoost. We also review a technique of



forward stagewise additive modelling in Section 2. Then, in Section 3, we present the sigmoldal
loss function and propose the new robust Boosting method. In Section 4, results of intensive
numerical experiments are presented, and we detail cases with noisy, mislabeled patterns. Section

. & contains some concluding remarks.

2 AdaBoost as Forward Stagewise Additive Modelling

Friedman et al. (2000), and Hastie et al. (2001) have given an interpretation of AdaBoost as a
forward stagewise additive modelling, Forward stagewise additive modelling is a greedy forward

stepwise approach for fitting an additive expansion as follows:

M
Fy(z) = Z Bmb(z;vm), (1)
m=1
where B, m = 1,2,... , M, are expasion coefficients, and basis functions {b{z;¥)} are taken

to be simple functions characterized by a set of parameter vectors 7, For example, in single
hidden layer neural networks, b(w; ) = o(y*x), where o(-) denotes the familiar logistic function,
~ parameterizes a linear combination of the input features, and +%z denotes the vector inner
produet, Such a learning network is trained with a given set of input features and output values
to compute the optimal synaptic weights employing gradient descent methods {e.g., see Koda and
Okano (2000)).

Typically these models are fit by minimizing an appropriate loss function averaged over the

training data, such as squared-error or likelihood-based loss function,

N M
min 3" Ly, 9 Bmb(@i;Ym))s 2)
m=1

{Bmrm N i
where L{y, Fr(z)) denotes the loss function. To solve Equation (2} for a general class of loss func-
tions L{y, F(x)) and/or basis functions b(x; ), computationally intensive numerical optimization
techniques are required in general. The forward stegewise additive modelling is summariz;ed and

given in the following box.



Forward stagewise additive modeling
1. Initialize Fy(z) = 0.
2, Form=1,2,... ,M do:

(a) Compute
N
(Brny ¥ = arg 10in > Ly Fa (22} + (i3 7))
=1
(b) Set Fin(z) = Fin_1(2) + Bmb(T; ¥m).

end For

3. Output sign(F, ()},

Forward stagewise additive modelling approximates the solution to Equation (2) by sequentially
. adding new basis functions to the expansion without adjusting the parameters and coefficients of
those that have already been added. At each iteration m, one solves for the optimal basis function
b{z; ¥) and corresponding coefficient 3y, to add to the current expansion Fp,_1 (). This produces
Fn(z), and the process is repeated until some desired low training error has beer; achieved at the
M-th stage. In the Boosting terminology, b(z;~) would be referred to as the “base learner,” and

Fp(z) the " committee. ”

3 Derivation of Boosting Method Using Sigmoidal Loss Func-
tion

3.1 Sigmoidal Loss Function

Friedman et al. (2000) have demonstrated that the AdaBoost algorithm decreases an exponential
loss function through the forward stagewise additive modelling along the lines that are presented

in Section 2. Figure 1 illustrates various loss functions as a function of the margin value, ¥ - F(x},

ot



<.
o
0
o™
— Exponential
........ Binomfal Deviarnice
R N U N e Misclassilication
2 ~== Support Vector Machine
--------- Squared Error
=—==  Proposed Loss
8
Q <~
-l
9.
]
(=3
o .
o
T ! ! \ :
2 -1 o ! *
yF

Figure 1: Loss functions for two-category classification

including the exponential loss function. When all the class labels are nol;‘ mislabeled and hence
data is error-free, the result of correct classification always yields a positive margin since y and
F(2) both share the same sign while incorrect one yields negative margin. The loss function for
Support Vector Maciline is also shown in Figure 1, which is a statistical learning method to train
kernel-based machines with optimal margins by mapping training data in a higher dimension.

Shown also in Figure 1 is the misclassification lass, L(y, F(z)) = I(y - F{z) < 0), where
I{y F(z) < 0) denotes the indicator function with respect to the occurence of the incorrect events,
i.e, y-F(z) < 0, which gives unit penalty for negative margin values, with no penalty for positive
ones (1.e, correct decisions), Note that the misclassification loss is a discontinuous step function.
In this way, the decision rule becomes a judgement on a zerc-one loss function.

The exponential loss function exponentially penalizes negative margin obserbations or incorrect
decisions. At any péint; in the training process, the exponential criterion concentrates much more

influence on observations with large negative margins, This is considered as one of the reasons



why AdaBoost is not robust for noisy situation where there is misspecification of the class labels in
the training data. Since the misclassification loss concentrates and uniquely influences on negative
margin, it is far more robust in noisy setting where the Bayes error rate is not close to zero,
which is especially the case in mislabeled situation. Here we would like to propose a loss function
which takes account of limited influences from larger negative margins in a proper manner and,
accordingly, robust against mislabeled noisy training data,

Mean-squared approximation errors are well-understood and used as a loss function in statis-
tics area. Unlike the misclassification loss which considers only the misclassified observations, the
minimum squared error (MSE) criterion takes into account the entire training samples with wide
range of margin values, Hence, if MSE is adopted, the correct classification but with y - F(z) > 1
incurrs increasing loss for larger values of [ F(z)]. This makes the squared-error a poor approxima-
tion eompared to the misclassification loss and not desirable since the classification results that are
“excessively " correct are also penalized as much as worst (extremely incorrect) cases. Other func-
tions in Figure 1 can be viewed as monotone continuous approximations to the misclassification
loss. Friedman et al. (2000) derived “ LogitBoost ” based on a binomial deviance loss.

Actual misclassification loss is not eontinuous and therefore we propose the following continuous

function to approximate the misclassification loss,

Ly, F(@)) = oy 8

This is a sigmoidal function where o denotes the appropriate positive gain. Note that the proposed
loss function (3) is mirror symmetric to the familiar logistic function with respect to the vertical
axis located at y- F(z) = 0, i.e., zero margin axis. Then, an optimizaton of Equation (3) by using

the stegewise additive modelling can be formulated as follows:

N
(BimyYm) = exgmin} ) Liys, Fn-(@s) + Bb(wi; 7)),

i=1
N
) 1
- e ‘2.‘#‘; L+ exp(ags(Fn(zi) + Bb(zi;7))) W

where b(z; ) denotes an appropriate base learner such as neural network. It should be noted that



the solution to Equation (4) is very difficult to obtain in general, since it involves simultaneous

optimization with respect to the two model parameters, § and .

3.2 Proposed Boosting Algorithm

In this study, the optimizaton involved in Equation (4) is approximately executed by using an
analogy to the one that is typically employed in numerical optimization. In general, the approx-
imation of functicns using input-ouput relations may be converted to a parameter optimization
problem by selecting an appropriately paraﬁeterized model, However, we take a “ nonparametric”
approach without assuming any parameterized models and hence we apply numerical optimiza-
tion procedures in function space. The readers are referred to Friedman (2001) for details of the
approximation techniques,

The empirical loss in using F(z) to predict ¥ on the training data is given by

N
LV = 3" Iy, Fzm). (5)

i=1

This empirical loss is well-defined and clearly is a function of the modelling parameters, i.e., 8
and 4. Let ¥ = {F(z1),...,F{=:),... ,F(zn)} be considered as " parameters ' to approximate
the continuous function F(z) at each of the N data points z;. Then, minimization of Equation (3)
can be viewed as a numerical optimization problem and hence gradient descent msthods can be
effectively applied. In the present stagewise additive modelling formulation, at the m-th iteration

stage, the components of the gradient g, evaluated at F = F,,,_) are given by

= [313(%17'(31;'))]
OF (%) | ploiy=Fomes (i)

(6)

The gradient, g, € RY, is defined only at the training data point z;, whereas our ultimate goal
is to generalize the output of classification model, F'(z), to new unknown data & not represented
in the frainning samples. This task may be achieved by using relevant function approximation
techniques through linear or nonlinear superpositions of functions defined at data points. By

superpositions, however, even though the class label y is binary-valued, F(z) outputs a continuous

value, not 1. This resembles the noisy version of the Bayes discriminant analysis where the



conditional mean of y takes continuous values for binary-valued y and offers a fair amount of
flexibility needed for generalization capability. Hence, the proposed approach may be robust when
it is applied to noisy situations with mislabeled events.

In order to fit negative gradients, —g,,, method of least squares minimization is employed here,
From Equation (6}, we compute the components of negative gradient, §im, utilizing the proposed

loss function (3) as follows:

. a 1 ] ayieayip(mi) (7)
y. = mg. — - S = T R A D .
im im 9F (zy) 1+ goui (=) Pl =Fm1(z0) (1 4 ecw:F(xi))2 (o) Fon3 (24
Using Equation (7}, method of least squares minimization can be formulated as
N
Ym = 8rg rr};n Z[ﬂim - b(mﬁ 7)]2v (8)
t==1
for an appropriate base learner b(z; 7).
At data point z;, the gradient descent algorithm yields the following adaptation rule:
Yim = Yi(m—1) T 0im = Yipm—1) — BmPim = Yigm-1) + BmFim, (9)

where the “ correction ” term 8y, is generally a function of the input feature z;, its class label,
and the current state y;pn..1), and Bm (> 0) denotes the learning parameter that is used for a
generalization of gradient features at the m-th stage. Note that 8., is adjusted after the entire

training set is classified. Then, for unknown z, Equation (9} can be generalized as
Fn(2) = Fin_1(2) + Bmb(®; Ym), (10)

where b{z;¥y) denotes the optimal base learner obtained from Equation (8).
In view of our ultimate target F(z) = y, Fy(x) is initialized to § = 4 YN, v, the mean value
of 1. This concludes the derivation of the algorithm and the proposed method can be summarized

as follows,



Proposed Method
1. Initialize Fo(z) = § = & Soh, vi

2, Form=1,2,...,M do:

_ _ ayieayip(m‘)
(a) yim - (1 + eay‘-F(m))2

Fzi)=Fm-~1(m)
N

(b) ym =erg min > i — bl

fanl

(C) Fn(z) = Frn1(2) + Brnb(%; Yin)
end For

3. Output sign(Fm(z)).

For the appropriate choice of 8, the usual care and considerations associated with the gradient
descent algorithm, i.e., Equation (9), apply here. Since the present Boosting method involves a
gradient numerical search in order to generalize gradient features, the solution provided by the

method may be a local minimum and not necessarily a global optimal one.

4 Numerical Experiments

In this section, numerical results are presented and, especially, the robustness of the proposed
method are analyzed and compared with that of AdaBoost. We focus our attention to classification
results for mislabeled (i.e., noisy) and correctly labeled (i.e., noiseless) cases. The back-propagation
neural network with single hidden layer is used as a base learner for both AdaBoost and the
proposed met;hod.l Since a muiltilayer neural network has heen shown to be éble to define an
arbitrary decision function, with a flexible a.rchitecture in terms of the number of hidden units, it
‘thus offers the potential of ideal base learner for the experiments.

For numerical experiments, data (with 2% mislabeled case) is generated as follows:

10



1. Generate uniformly x = (&1, %) € x = [-4,4] x [-4,4];
2. assign ¥ =sign{F(x)), where F(x) = 3 — 3sin(z1);
3. sort |F(x;)| by descending order;

4, sample randomly 2% from top 20% examples;

5. flip sampled examples in Step 4.

In Step 2, note that F(x) == @ — 3sin(z;) is used as a nonlinear decision function. In Figure
2(a) noiseless original data is shown while Figure 2(b) shows 2% mislabeled, noisy data. As easily
observed, misslabeled data is scarce in the vicinity of the decision boundary.

The number of training and test data are 1000 each. The experiments of the noiseless case in
which no mislabeled data is contained on the same dataset are also conducted. As for the neural
network used as a base learner, the number of units in hidden layer (i.e., hidden units) takes the
values, 8, 5, and 10, respectively. Note that the computational complexity of the present method
can be scaled by the number of hidden units in the neural network. Iteration number of the weak
learner, which is referred to as round (number), is 200. The gain parameter of the proposed loss
function, o, is set to 1, and # = 1 is assumed for computational simplicity.

We plot in Figures 3-5 the learning (error minimization) curves for 2% mislabeled data, The
rurmber of hidden units is 3 for Figure 3, 5 for Figure 4, and 10 for Figure §, respectively. In each
figure, (a) shows AdaBoost training and test error rates, (b) training and test error rates of the
proposed method, and (c) comparison of test error rates of AdaBoost and the proposed method.
On test error rates, we may note that the proposed method is‘superior to AdaBoost except in
the case where unit size (i.e., number of hidden units) is 3. The performance of the proposed
method is better than that of AdaBoost as the number of hidden units increases, This trend may
be accounted for in terms of the complexity of the base learner. Recall that the basic role played
by the base learner in the proposed method is a superposition (generaliiation) of the gradients
defined only at data points, Therefore, it is desirable that the complexity (i.e., unit size) of the

weak learner is sufficiently large in order to fit and capture its gradient features,

11



Figures 6-8, on the other hand, illustrate the results for noiseless (0% mislabeled) cases, in which
AdaBoost outperforms the proposed method on the average. Note that, however, the performance
of the propesed method improves as the number of hidden units increases. Of particular significance
is Figure 8(c), where the proposed method gradually catches up the performance of AdaBoost for
the case with unit size 10.

Figures 9 and 10 compare the changes of test error rates in terms of the unit size of neural
network in 2% inislabeled and error-free cases, respectively. In Figures 9 and 10, (a) shows Ad-
aBoost, and (b) t;lle proposed method, The peformance of the proposed method becomes better as
the number of hidden units increases. On the other hand, the AdaBoost error is always fluctuating
for both noisy and error-free cases and there is no clear trend of performance improvement with
respect to the increase of unit size. Figure 9(a) indicates that the performance of the most complex
AdaBoost with unit size 10 is worse for 2% mislabeled case. This implies that the complex learner

may not be very appropriate for AdaBoost in noisy, mislabeled situation.

5 Conclusion

‘We developed and derived a new, robust Boosting method against mislabeled, noisy data. The
stagewise additive modelling methodology is blended with the gradient numerical search algorithms
and ig used as a design principle. The new formulation uses the smoothed zero-one sigmoidal
loss function suitable for gradient descent algorithms. Performance of the proposed method was
compared with that of AdaBoost through intensive numerical experiments, The proposed method
is robust compared to AdaBoost especially in mislabeled, noisy cases. In noiseless (0% mislabeled)
cases, if the complex neural network (where the number of hidden units is large) is used as a base
learner, similar performance equivalent to that of AdaBoost is attained for the proposed method.
It should be no‘ted that the performance of the method dépends on the complexity of the base

learner (i.e., neural network).
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Figure 9. Comparison of test errors with respect to the number of hidden units for 2% mislabeled data
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Figure 10. Comparison of test errors with respect to the number of hidden units for 0% mislabeled data



