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Abstract

The goal of this paper is to analyze how efficient transportation infrastructure decision-
process mechanisms are when their implementation are subjected to voting process. We
formulate a simple majority voting model where commuters within a linear city, vote
on the level and location of transportation infrastructure. We evaluate three existing
decision-process mechanisms: referendum; representative voting; and welfare-maximizing
policy not only from its locational but also from the efficient point of view.
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1. Introduction

The goal of our study is to contribute to the theoretical literature concerning the welfare
effects of voting decision on choosing a highway location. Current efforts of Japanese govern-
ment to reduce the inefficiencies in transportation policies is the primary motivation in the
conduct of this study.l

We formulate a simple majority voting model to construct highway in a linear city where
residents choose the provision and location of highway through a two-stage voting procedure..
In the first stage, voters vote on the highway length. And in the second stage, they vote on
its location. This two-stage process seems to be natural because the policies for constructing
highway are strongly related to the fiscal policy of governments wherein the length is decided
even before the location is chosen.

To determine the level and location of the transportation infrastructure in the world,
the following decision-process mechanisms are used: (i)} referendum, i.e, all commuters vote
directly on the policy; (ii) representative democracy, i.e., the representatives of the districts
where commuters are based, choose the policy according to the net benefit of their district;
and (iii} welfare-maximizing policy. We compare these mechanisms in the theoretical context.

We now briefly discuss the literature that is related to our study. First, Ohsawa(2000)
considered voters that commute from the homes over a linear city to a single point at a central
business district (CBD), i.e., multiple origin-single destination trips. Qur model differs from
this work in at least two respects. The first difference is that our model deals with multiple
origin-multiple destination trips, so the individual utility of voters are not necessarily single-
peaked. This means that the median voter theorem is of little help. The second difference
is that our model analyzes not only referendum but also representative voting. The districts
are heterogeneous in that they consist of commuters living in different workplaces. On the
other hand, Presson and Tabellini(1994) compared direct and indirect democracy to analyze
the process of determining the capital tax rate. Our model, however, explicitly deals with
the geographical variables.

The plan of our study is as follows: Section 2.1 states our model. Sections 2.2 and
2.3 characterize voting outcomes under referendum and representative voting mechanisms,
respectively. Sections 2.4 examines the welfare-maximizing pqlicy. Section 2.5 compares the
welfare-maximizing with the voting outcomes. Section 3 discusses the main results. For

convenience, all proofs are presented in the Appendix.
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2. Model

2.1. Statement of Model

The model used in this study is similar to that of Ohsawa(2000). There is a line city
Q= [—%, %] where O is fixed at its center, as shown in Figure 1{a). Our model involves
the following assumptions: {al) the homes and workplaces of voters are uniformly and inde-
pendently distributed with frequency normalized at unity over the city, irrespective of their
commuting distances; (a2) the highway use benefit of the commuters is proportional to the
travel distances made; (a3) the highway is provided for free; (a4) a toll-free local road joins
any point in the city, and each voter uses highway and/or the toli-free road; (a5) highway
construction cost per unit distance is constant; (a6) hjghway'construction is financed through
a per-citizen tax.

Assumption (al) implies that the total volume of trips carried is I2. Assumption (al) also
states that the voters are evenly spread with a density I, so the total voters is /2. Assumption
(a2) indicates non-rivalry, i.e, no congestion in the highway. Assumption (a5) leads to no

~economy of scale in highway building. Assumptions (a2) and {(a6) means that commuters’
preferences are systematically related to their home as well as workplace.

We are concerned with Condorcet winners that defeat all other alternatives under pair-
wise and simple majority voting rule, as in Cremer et al.(1985), Alesina and Spolaore(1997),
Ohsawa(2000). To determine the location of the highway, two-stage voting game is exam-
ined. In the first stage, voters select the highway length. After having observed these length,
they vote on the highway location. This two-stage process is solved by backward induction.
For any choice made in the first stage, the highway location is de\f,ermined from the corre-
sponding second-stage voting. Accordingly, in the first stage, the voters make their decisions
anticipating the consequences of their choices on location competition.

The usual way to describe the trip distribution, i.e., the movement of commuters from one
zone to another is to tabulate the number of commuters from one zone to another. We apply
this tabulation to the set of commuters that describes a continium, like Vaughan(1987). As
we consider multiple origin-multiple destination trips, the trip distribution has to be defined
over two-dimensional space [—%, %] X [—%, %], as in Ohsawa(1989). Then any trip between
two arbitrarily points within the city is indicated by one point on the two-dimensional space.

This is illustrated in Figures 2, 3, and 4 where the horizontal axis measures the location of

homes of trips, and the vertical axis measures the location of their workplaces. For example,
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the trip starting from home at z; (resp. z2) to workplace at y; (resp. y2) in Figure 1(b) is
represented as a bullet (z,y1) (resp. a circle {(z2,y2)) in Figure 2. We call this distribution

of the homes and workplaces as trip distribution, along the lines of Vaughan(1987).

2.2, Referendum

We study the referendum, where each commuter votes for the highway that creates the
highest net benefit, which is defined as his/her benefit for highway service minus a per-citizen
tax. Accordingly, voters consider only their own economic well-being, where the source of
individual utility is from direct tax and highway travel benefit.

Let 5(> 0) be the highway use benefit per unit distance of each commuter instead of
the local road. Let (> 0) be the highway construction cost per unit distance. Hence, to
construct the highway with length A, a per-citizen tax is imposed on every commuter by %?
If & > §, then the marginal construction cost of each commuter exceeds his marginal benefit.
Hence, for all the voters it is worthless to construct highway, so the do-nothing scheme is
elected unanimously. Accordingly, we confine cur a,ttention-to the case of v < BI2.

For the highway location R C §2, let U{R : z,y) denote the net benefit of the commuter

who travels from the home located at = €  to the workplace located at y € Q.

Lemma 1 Any voting solution under this referendum is necessarily symmetrical with respect

to the city’s center.

The proof is given in Appendix A.1. This symmetrical solution is justified from the viewpoint
of equity. This lemma means that the problem to determine both length and location of
highway reduces to the one to fix the length of a continuous and symmetrical highway.
Accordingly, policy is one-dimensional in spite of the two-dimensional individual differences.

Let Ry be the continuous and symmetrical highway with the length A, i.e., Ry = [—%, %]
Two cases are considered separately corresponding as to whether the commuter passes through
the center or not. By using symmetry, without loss of generality, the individual utility
U(Ry : z,y) for any home at z and any workplace at y can be expressed either by equation
(1) or by equation (2). Forz <0<y < % with |z] <y, (see the trip from z; to ¥, in Figures
1(b) and 2),

Bh — Fh if 0 <h <2|z);

URh:zy) =4 B(5-z) - #h 2] <h<2y (1)
Bly~z)—Fh  if2y<h



For 0 < 2 <y < 4, (see the trip from z, to ys in Figures 1(b) and 2),

—%h 0 < h <22
UBn:z,y) =< B(h—a) - #h if20<h<2y; (2)
Bly—=z) - Fh if2y<h.

Table 1 gives the tabular expression of the utility U(Rp : z,y), and Table 2 express its partial
derivative with respect to the highway length A. Thus, the utility function of a trip is closely
associated with the geographical position of its home and workplace. The utility functions
U(Ry : 21,31) and U(Ry, : 3, y2) versus the highway length are illustrated as dotted and solid
lines, respectively, in Figure 5, where 8 = 4 and v = 1. As illustrated in U(Rp : z1,y1) in the
figure, the utility function (1) for commuters who pass through the center O is single-peaked
with respect to the length h. However, the utility function (2) for commuters who do not pass
through the center cannot always be single-peaked. More precisely, it is bimodal for = # v,
as shown in U(Rj, : 2,y2) in the figure. Therefore, the median voter theorem presented by

Black(1948) is no longer available.

Proposition 1 The length of equilibrium under the referendum h* is given by

peo [ 2, i %ﬁlz < v < 858 g12(x 0.382002);
0, f3B82<y<pIc

The proof is provided in Appendix A.2. The logic behind this proposition is as follows. For low
construction costs with 0 < v < %612, the short-distance commuters do not prefer highway
extension, since this extension cannot increase their accessibility. So they, who corresponds
to diagogally upward elements in Table 3, would unite to discourage highway extension, and
the other commuters would unite to support such extension. The equilibrium condition that
each united commuters consists of just half the total votes indicates that the length has to
be either two thirds of the city length or no change at all. This is illustrated in Figures 3 and
4, respectively, where the area of shaded and unshaded regions are the same. On the other
hand, for high costs with %ﬁﬂ < v £ B2, the commuters who do not pass through the center
do not prefer any highway construction. They are indicated by diagonally upward elements
in Table 3. The equilibrium condition that each united commuters consists of Jjust half the
total votes results in no change at all in the highway length, as shown in.Figure 4, As we
will see in Appendix A.2., if an equilibrium exists, then the length equilibrium has to be two
thirds of the city length for 0 < 4 < §3;2\/_~'_'lﬁ12 and no change at all for 13—7\/'5"1}3!2 <y < B2

However, these solutions may break down. For very low costs with 0 << %ﬂlz, the

short-distance commuters near the city’s bouﬁdary can prefer longer highways than the two



thirds of the city length. So constructing two thirds of the city length for the highway can
not be a Condorcet winner. On the other hand, for moderate low costs with E-_ziglﬁlz <y <
%[ﬂ?, long-distance commuters might prefer constructing short highways than the do-nothing

scheme. Therefore, the do-nothing scheme can not be Condorcet solution.

2.3. Representative Democracy

When there are a large number of voters, democracy has to be a representative voting instead
of a referendum. This is because the number becomes too large to assemble directly. Thus, in
reality, referendum is very rare. It is therefore natural to analyze representative democracy,
where policy choices are delegated to representatives. We examine the representative democ-
racy, where commuters are allocated to m geographically connected districts of equal size,
#, based on their home positions. These districts are numbered in ascending order from the
left extremity of the city, as shown in Figure 1(c). For brevity, let Wi,m, Sim and t; », denote
the location of i-th district, its left and right boundary for the total number of districts m,
e, Wim = [5im, tim] = [(% - %)I, (# - %)l]

We assume that representatives choose the highway location that creates the highest wel-
fare, that is defined as the total of its members’ utility. Hence, the representatives act on the
basis of their maximal welfare. This assumption can be Jjustified because each representatives
can control the utility of corresponding commuters by selecting a highway that creates the
highest net benefit, and by redistributing the earnings among commuters. As the district be-
comes bigger, the winner approaches the welfare-maximizing solution because removing the
heterogeneity between districts would induce voting outcome to be more efficient. However,
at the same time, as the district becomes bigger, so does the cost of redistributing the earn-
ings among commuters within the district. Thus, there is trade-off between decreasing the
social welfare and increasing the redistribution cost. We characterize this trade-off between
election outcomes and district magnitude.

As in the referendum, if v > 8I?, then the do-nothing scheme is selected unanimously.
We, therefore, focus our attention to the case of v < BI*. For highway R C , let V(R : wim)
denote the net benefit of the i-th district. Since the number leaving a given district can be

calculated by summing up all trips emanating from that district, we obtain
V(R:wim) = f U(R : z,y)dydz. (3)
TE€wWi,m JYEQ

For example, V(R : wr,10) and V(R : wg 19) cgn be obtained by integrating U(R : z,y) over



the diagonally upward and downward sloping striped rectangles, respectively, in Figure 2.

Lemma 2 Any voting outcomne under this representative democracy is necessarily symmet-

rical with respect to the city’s center.

The details of this lemma are in Appendix A.3. This lemma states that the problem to
determine highway location leads to the one to fix the length of a continuous highway.

Straightforward but complicated manipulation yields that for —% <5<t é-

@i—_—%l&tﬁlh, for 0 < h < 2s;
V(B [s,8]) = { BE=200=)p, _ 8 (53 — 35h2 4 457), for 2s <h <2t (4)

BE=20(ts)p _ B4 5)(3h2 — 4(t - 5) — 12st), for 26 <A <L
The welfare V(Ry, : wr10) and V(R), : wy 10) are presented as dotted and solid lines, respec-
tively, in Figure 6. As a special ca.sé, when the district consists of a point located at z,

then

V(R : {2} = eromp, for 0 < h < 2a;
he B Mh B(h? —4a?), for2z<h <L

This implies that V(R : {}) increases with the distance from the center, and V(Ry : {z}) is
downward convex with respect to h. Combining this observation with equation (3) means that
i) outlying districts can obtain higher welfare V(R : [s,t]) at the expense of districts near
the center; ii) differentiating from the individual utility U(Rj, : z,y), the welfare V(R), : [s, ¢])
is also single-peaked with respect to the length A.

We concentrate on only the cases of m = 2,6, 10, 14,-.., i.e., m = 41 — 2 for any natural
number ¢ because the median ideal point is unambiguously defined. Making use of the median
voter theorem, the median-voter equilibrium is given by the ideal point of the ( ) th
district. This ideal point can be derived by differentiating the welfare V (Rj : w;ﬂiﬂ’m) with
respect to h, and then putting the derivative equal to zero, and solving the resulting equation

for A.

Proposition 2 The length of equilibrium under representative democracy for m districts

h%(m) is given by

-3 #0<y< @2g2,
h®(m) = (m-2)l+\/(m—2122+32m(12—27/ﬂ), fg 2612 < 4 < 1612
0, if & m? <y < B2,

The proof is given in Appendix A.4. Five length h°(2), h°(6), h°(10}, h°(14), and h°(cc) are

presented in Figure 7, respectively. This prop%sition and this figure give a casual relationship



runuing from construction cost to length equilibrium. We recognize from the proposition and
this figure that the length declines continuously with the cost for 0 < v < % Bi?, irrespective
of the number of districts m, as we would expect.” To be more precise, the length decreases
linearly for low construction costs, while it decreases more slowly for high construction costs
than for the low ones. When v = %ﬁlz, then A°(m) = mZ%?g = %slf,;ﬁ'm. Accordingly, in the
case of m > 2, however, the length equilibrium jumps to zero at v = 8%

There are four points worth noting. First, this proposition implies that Eizm > Samta ..
This would mean that if highway is constructed through voting, then it has to exceed the
boundary near to the center O of the median districts W2 m and w LT that is to say, it
covers completely the districts w:_n_ihg Flm W Imtd

Second, it follows from Proposition 2 that in the smallest district case, i.e., m = oo,
h°{o0) < %l for0 < v < '32£ On the other hand, consider a simple optimization problem to
locate two point facilities in the interval {2 such that the total travel cost from commuters’
homes to either facilities is smallest. The optimal solutions are given by ——;i~ and ;i-. Interest-
ingly, this proposition means that any length equilibrium is inside qﬁartiles indicating that
it has to be inside the segment between these solutions.

Third, we show an example that the voting outcome may not be the solution where both
the length and location of the highway are simultaneously voted on. If [ = 1, m = oo and

B =1, then the welfare for the highway [a, ] at the point —1 <z < £ is:.

%((b——a)2+(1-2b)(b-—a))—'y(b-—a}, for -1 <z <g
V{a,b]: {z}) = -%-((z —aa+z+1)+(b—z)(1-b-z))—v(b—-a), fora<z <
7((b—a)? + (14 2a){b— a)) — (b —a), forb<z < 3.

There.is a U-shaped relationship between district position and welfare. If v = é—?, then
h°(occ) = R L However, a cycle appears over the three alternatives [——%,O], R 1 and R L. As
shown in Figure 8, {—§,0} beats Ry, Ry beats Ry, and Ry beats [—%,0], meaning that no
Condorcet winner exists.

Finally, it is interesting to observe that the voting outcome may please more than half of
the districts. It follows from the welfare (4} that the ideal point of the district at x can be
I- ?31[ Thus, combining this with Proposition 2 yields that the Condorcet winner pleases the

ideal point of [ — %}5 locations, more than half districts.

2.4. Soctal Optimum

In a planning issue, highway is built such tha7t the total net benefits of commuters is max-



imized. If the city is divided into two districts, then the corresponding Condorcet winner
coincides with the welfare-maximizing policy. The substitution of m = 2 into Proposition 2

yields

Proposition 3 The welfare-mazimizing length h* is given by

h..={\/Tz =2(v/B), if0<y< 3Bl

0, if 462 <y < B2,
In comparison with the result in multiple origin-single destination trips in Ohsawa(2000),
the optimal length here contains square roots, so it is concave downward with respect to the
construction costs. This may reflect multiple origin-multiple destination trips.
This proposition can be illustrated in another way. The flow of volume distribution crossed
at the point is decreasing with its distance to the center. This means that the social optimum
location has to be a single piece and symmetrical with respect to the center. Substituting

™ = 2 into social welfare (4) yields the following welfare-maximizing problem:

mox  W(h)=2V(Rs: [0, L]) = 8 (M) — h. (5)
h>0 2 6

Since the first term on the right-hand side is the total benefit due to highway service and
 the second term is the total cost, the optimal length is determined based on the trade off
between the marginal benefit and cost. In differentiating W (h) with respect to h and placing
the derivative equal to zero, and then solving the resulting equation for 4 yields Proposition
3.

We see from Proposition 2, 3 and Figure 7 that enlarging the districts shifts the Condorcet
winner to the welfare-maximizing length. However, the Condorcet winners and welfare-
maximizing solution significantly differ even for small number of districts. Thus, we can
.:malytica.lly characterizes the trade-off between the size of redistribution programs and the
electoral outcomes.

In addition, on referring to Figure 7, the voting mechanisms supplies shorter highway than
the welfare-maximizing policy for low construction costs, and it also provides longer highway

for high construction costs. It is straightforward to verify that if v = 3812 = 0.375812, then

h®(m) = h*, irrespective of m. Also, routine calculation shows that for f'z—;glﬁlz <7y< ipe

d 1o _ 8 s e . d 1o . . .
HA(m) = /e ey This indicates that b (m) is increasing in m, i.e.,

h°(m) becomes flatter with m. Combining these two results means that 4°(m) gets away

from the welfare maximizing length A* with m.



2.5. Comparison
Along the study of Hansen and Thisse (1981}, Labbé (1985), length of equilibrium and welfare-
maximizing length are compared. The length under the referendum ~* in Proposition 1, the
length under representative democracy h°(co) in Proposition 2, and the welfare-maximizing
length h* in Proposition 3 for 0 < v < %ﬁlz are shown in Figure 9, using thick, thin,
and broken segments, respectively. Note that these three lengths are the same for 1817 <
v. This figure shows how the length equilibrium is still short of the welfare-maximizing
policy. We see from this figure that i} although Condorecet winner always exists under
representative democracy, no winner may exist under the referendum; and ii) although the
length equilibrium under the representative democracy depends on the construction cost, the
-length under the referendum is independent of it. Thus, referendum differs entirely from the
representative democracy. This is illustrated in the following points. The length equilibrium
under referendum is said to be restricted to two options, i.e., no change at all or two thirds of
the city length. The nonexistence of Condorcet winners results from this limitted options. On
the other hand, under the representative democracy, since the welfare of the median district
contains the benefit enjoyed by the commuters going to their workplaces over the city, the
length equilibrium changes according to the change in construction cost.

Next, let us compare these outcomes based from viewpoint of social welfare. The social
welfare W(h*),W(h°{oc)), and W(h*) can be evaluated by substituting the results in Propo-
sitions 1, 2 and 3 into the social welfare (5). They are plotted in Figure 10 with respect to the
construction cost using thin, thick and broken segments, respectively, as in Figure 9. Natu-
rally, W(h*} is above W{h*} and W (h°{o0}), irrespective of construction costs. This figure
reveals how the voting processes are inefficient in the provision of highway construction. In

particular, W (h°(o0)) < 0 for large construction costs.

3. Conclusions and Future Studies

Transportation infrastructure resulting from voting process is of interest from policy maker’s
viewpoint. We thus, formulated a majority voting model where commuters within a linear
city vote on the level and location of transportation infrastructure. Then, we evaluated
Condorcet winners under the process of referendum and of representative democracy not just
from the locational but also from the efficiency point of view.

The main result of our study are threefolcb First, we proved that when the construction



cost is expensive, the voting generates a decision in which longer highway is constructed
than the welfare-maximizing length. Likewise, when the construction cost is cheap, shorter
highway than the welfare-maximizing length is constructed. Second, we demonstrated that
highway construction under referendum significantly differs with that under representative
democracy. Finally, we revealed how much the welfare under representative democracy is
improved, as the districts become larger.

For future studies, it would be interesting to examine geographically discontinuous dis-

tricts such as Gerrymanders,
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Mathematical Appendix
A.1. Proof of Lemma 1
First, let us verify that any discontinuous alternative R is defeated by the symmetrical con-

tinuous alternative Rig. Two alternatives R = [—~4, —&] U &, L] and Ry are compared in
8

Figure 11. This figure indicates the domain with U(R : z,y) < U(Rz : z,y), and the one with
U (R%L rz,y) > U(R: z,y) as the diagonally upward and downward sloping striped regions,
respectively. We recognize from this figure that the area with U/ (R%_: cz,y) <UR:z,y) is
greater than the area with U(R:z,y) > U (R%g : z,y) by the two shaded squares. The same
holds for any discontinuous alternative.

Second, let us prove that any asymmetrical continuous alternative R is defeated by the
symmetrical continuous alternative R|p. Two alternatives B = [—, {] and R%J_ are compared
in Figure 12, where the domain with U(R : z,y) < U(R;;_; : z,y) and the one with U(R%( :
z,y) > U(R: z,y) in Figure 12 are indicated by the diagonally upward and downward sloping
striped regions, respectively. We see from this figure that the area with U(R%: cx,y) < U(R:
z,y) is greater than the area with U(R : z,%) > U (R% : z,y) by the two shaded rectangles.

The same holds for any asymmetrical continuous alternative. O

A.2. Proof of Proposition 1 |

First, let us demonstrate that if a Condorcet winner exists, it has to be either i) R%; for
0 < 7 < 3BI3 or ii) the do-nothing scheme for 1812 < v < Bi%. It follows from Table 3
that if 0 < v < 4812, then [{(z,y) € Q| LU(Ry : 2,y) > 0} = & & {(z.,9) € VJz,y <
~2Y + H(z,y) € 92| - A<y <B4 {(z,y) € 02 < 7,9} = !23 & h=0o0rh=2,
Simple calculation shows that [{{(z,y) € QQ|U(R_251_ cx,y) 2 Ulg:z,9)} 2 % < {{z,y) €
QQ|R33_1 cz,y) > 0} > % e i‘:iﬁﬁﬁ_ Therefore, if 0 < v < 5123@612, then h* = %l; and
if s%ﬁ BlP<~v< %612, then A* = 0, provided that a Condorcet winner exists.

It follows from Table 4 that if 1612 < v < BI%, then {(z,y) € Q}LU(Ry : z,y) 2 0} =
Sollenee s -58 <+ @y e Py < -4 5 <o} =45 & h=0 Henee
h* =0, provided that a Condorcet solution exists.

Next, let us examine the existence of Condorcet winners. Consider the length Ry for
3-Bg12 < 4 < BI%. Note that A(h,y) = |{(z,y)|U(Bs : z,y) ~ U(Ro : z,9)} — & =
(%) h— (%)21‘12 +2 (L:zﬁ)z - % = h [(1 - %7,2—) % - (1 - %1) l]. There are three cases,
depending on . If 3%5[3!2 <y <ipe theillﬂ(h,7) <0&h< %}5%’}1. Therefore, Ry



with A < %‘}g%”}t beats Ry, so Ry can not be Condorcet winnner. If 1812 < v < 522512,
then A(h,v) <0 & h =0, so Ry beats R, for any h. If 3@[3!2 < v < BI2, then Alh,v) <
0eh> 'g—fr(,z—:%%ll > 1, so Ry beats Ry, for any h(< h).

Finally, let us examine R% for 0 < v < 33251312. Ifo<y < bﬁm? then A(h, 7 =
{= WU : 2,y) > U(Ry : z,y)}| -£ = (g—}) (h—%) A ¥ [ gy
(3h —21) (3h -~ 4] + 20%). Hence, the inequality A(k,y) > 0 for any h creates a range of

7 for which an Condorcet winner exists. Therefore, if —ﬁl < 'y, then Rza is equilibrium.

Otherwise, no Condorcet winner exists. O

A.8. Proof of Lamma 2
Without losing generality, throughout the appendix, we assume that B=land!=1.

First,- for a given candidate R C ) we verify that in the case of m = o0, there exists a
candidate R with [&| = |R| and V(R:{z})) > V(R : {z}) for ¥z € Q such that 1) R is a
single piece, or 2) R C -50 (RC [0, 3 i

Consider two disjoint pieces of R, R; = [g1 — &, ¢ + %] and Ry = [g2 ~ %,90 + Z] such
that g1 — % <0 < g2+%. For§ > 0, define ¢’, = g, +4, g = 92—26, R =g ~%,9'1+9%),
Ry = [¢'y—% ,§'2+%] and € = ) +c,, respectively. Note that if § = 0, then ¢'; = g1, ¢'5 = g,
R{ = R; and R} = Ry. In addition, the centroid of R} and R) coincides with that of R; and
Ry, ie, § = 98t929%  Then as § increases, g’ 1 increases and g’y decreases, so both R{ and R,
move towards §. Accordingly, it is sufficient to show that V(RIUR, : {z}) > V(R1URy : {z}).
It follows from welfare (4) that

V(R URy: {z})

(-—CQ) e for -3 <z < ¢ -

(§- ‘41—9‘1“329'2‘!‘32)"'}’5 forgy -3 <z<g +%
= (2+c1gl——c292) — e for ¢, +3 <z <gy -2

(z"&—gz+clgl+w) 7 forgy-g<a<gri+ g
(§+¢eg) - forg, +2 <z <l

Differentiating V(R] U R} : {z}) with respect to & yields

-2{(¢'1-%) forg) -4 <<y +%

d 2¢ forg, + 4 <zx<q,—

—V(RIUR;: {z}) = 1 giT3 = 92

ds ( 2 {}) %(g’2+%) forg.rz_gzzsm<gf2+gzz
0 otherwise.

Hence, -%V(R’IURJ; : {z}) > O because¢; > 0, ¢/, -% < 91—% <0O0and g3+ % > g2+ % > 0.
Thus, we see that for Vz € @, V(R{ UR} : {a:l}g is not decreasing in 4.



Second, for a given candidate R, we prove that Rz defeats R in the case of m = oc.
Based on the first claim, it is sufficient to show that R|p| defeats R. Define a = [R|. Let §
be the centroid of R. Without loss of generality, we may assume that § < 0. Our analysis

can be divided into two cases: case I: R C [~3,0]; case & R is a single piece.

In the first case, we get that for —§ < ¥z, V(R: {z}) < V(R: -8y =1(5 - 9; -3+
) e < (§ - —) va = V(Rq : 0) < V(R, : {z}), where the second inequality strictly

holds since § < —2. This means that R, defeats R. In the second case, it follows from § < 0
that for 2 <Vz, V(R: {2}) = (2 +a§) —va < (&) —va=V(Ra: {z}). For g+ 4 <Vz < §,
VR {z})=(§+0ag) ~va< (-5 + @+ 5 —71e=V(Ra: 9+ 8) < V(Ra: {a}). For
-2 <Ve<g+3% V(R:{z}) = ————g + %) — fya<(————+sf: ) —va=V{(R,: {z}).
Thus, V(R : {2}) < V(R, : {z}) for —2 < Vz, meaning that R, defeats R

Finally, it follows from equation (3) that this lemma holds for any number of districts m.

A.4. Proof of Proposition 2

Differentiating V' (Rp, : [,£]) one and two times with respect to h yields

(BE-2(tms) for 0 < h < 2s;

: 2
QK'("%};[—W = { B=20=9) _ B(p2 _gsh), for 25 < h < 24
"@}ﬂ—l ’gt—s)h for 2t < b < I;

for 0 < h < 2s;
(h—2s), for2s < h <2t

(t—5), for2t<h<l

62V(Rh : {Sst]) ﬁ
ah? 3
2

Solving 2ledl) — ¢ yields

l—%%, 1f0<’y<(——t)ﬁl2
h=13s+/TH2t-a) - 29/B)I, if (§-¢) 8% <v <63
0, if 381% < v < BI%.

If follows from the median voter theorem that the length equilibrium is given by the ideal

point of the (——i—) th district. Substituting s = B=2] and £ = Zt2{ into the above equation

yields the required equation. O
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Figure 2: Trip Distribution
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Figure 5: Utility Functions under Referendum
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Figure 6: Welfare Functions under Representative Democracy
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Figure 7: Comparison of Condorcet Winners under Representative Democracy
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Figure 8: Cycle over Three Alternatives
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Figure 9: Comparison of Qutcomes Based on Location
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Figure 10: Comparison of Qutcomes Based on Social Welfare
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Figure 11: Continuous Alternative beats Discontinuous Alternative

Figure 12: Symmetric Alternative beats Asymmetric Alternative
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Table 1: Values of U(R, : z,y)

h<a —h<z<h z<—h
h<y Bh—gh  B(-z+%)- 3k ~%h

~h<y<h|B(y+3)-%h  Blu-o|-gh B(-y+E) -
y < —h ~%h B(z+4) - gh Bh — 4k

Table 2: Values of £U(Ry : z,y

h 3Ss ~f<z<} 2<%
2S5y |B-F  §-3% -
“1<y<i|i-%  -F  £-3
vs-% | - §-% B-%

Table 3: Sign of £U(Ry : z,y) for 0 < v < 1602
3

U(R
T —i<z<i

%5 3 5_%
5<y + + =
—f<y<i| + - +
y< -4 - + +

Table 4: Sign of £U(¢: z,y) for 1612 < v < 812
0<z <0
O<y| + -
ys0] - +
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