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HYPOTHES S TESTING BASED ON LAGRANGE'S METHCD:
APPLICATIONS TO CAUCHY, EXPONENTIAL AND LCGISTIC DISTRIBUTIONS.

© YOSHIKO NOGAMT

Surmary. This paper proposes the tests which essentially {except for the scale
parameter of the Cauchy distribution) have the acceptance regions derived from
inverting the shortest interval estimates for the parameters based on Lagrange’ s
method, Asg the examples we deal with the problems of hypothesis testing for

the parameters of the Cauchy distribution, the location parameter of the
axponential distribution and the location parameter of the ILogistic distribution.
We shov} that these tests are unbiased. In case of Exponential distributicn we
propose the uniformly most powerful unbiased one-sided test for certain one-
sided hypotheses.



1. Introduction. This paper consists of three parts; in Section 2 we deal
with the Cauchy distribution, in Section 3 we treat the Exponential distribution,
and in Section 4 we deal with the Logistic distribution.

For inferences of the paraweters of Cauchy distribution we refer to Haas,
Bain and antle(1970). There, they used Monte Carlo method to obtain the
distxibutions of the maximum likelihood estimates in order to get interval
gstimates and test the hypotheses. However, thelr methods are too complicated.
For inferences of the location parameter of Exponential distribution we refer to
two uniformly most powerful (UMP) tests in Problem 3 of page 112 of Lehmann(1986).
Our method will give the two-sided test as good as his UMP test in Problem 3(iii).
Furthermore, our test can provide UMP unbiased one-sided test for certain one—
sided hypotheses, but his test in Problem 3(i) cannot. For inferences of the
location parameter of Logistic distribution we refer to Antle, Klimko and
Harkness(1970). There, they presented the interval estimates based on maxinnm
likelihood estimates derived from simulation.

In all three parts of this paper we directly find the tests using the unbi-
ased estimates for the location parameters (or the log-transformed scale para-
meter in Section 2) in the underlined density. Based on i.i.d. observations X,
vers X, From the underlined density the anthor first obtains the interval
estimates of the parameters with the mirnimum lengths by using the method of the
Lagrange’ s maltiplier and then proposes the two-sided tests with the acceptance
regions derived from inverting the (shortest) interval estimates for the
parameters. - We show that these tests are unbiased. Hypothesis testing with the
tests so obtained is called the hypothesis testing based on the Lagrange's
method. The author has been working on inferences based on the Tagrange’ s
method since Nogamd (1992, 1995; See also 2001).

Let ¢ be a real number such that O<g<l. We call {(IJ,,U,} a {1-t) interval
estimate for the parameter 7 if P, [U, <y U, J=1-g¢.

Let, = be the defining property. § shows the end of the proof.

2. Cauchy distribution. Throughout Section 2 we deal with the Cauchy
distribution with the density

(2.1) E(x|, E)=ta M {E3H{x-0)" 1, —moxew



3.

where -« and ¢>0. In Sections 2.1 and 2.2 we assume { is known and in
Sections 2.3 and 2.4 we agsume (| is known
In Section 2 the author uses the sample median for the unbiased estimate of |
and median of log-transformation of |observation —f| for the unbiased estimate
of log, t to get the two-sided tests based on Lagrange’s method. Letting X,
... ,X, be a random sample taken from (2.1) with known ¢ we construct, in Section
2.1, the shortest interval estimate for { and in Section 2.2 propose the unbiased
two~-sided test inverting the shortest interval estimate for fo for testing the
null hypothesis H,:4=0, versus the alternative hypothesis H,:0#0, with some
constant. (. In Sections 2.3 and 2.4 the author uses i.i.d. observations X,
eeo X, from (2.1) with known § to construct an unbiased two-sided test for
testing the hypotheses H,:f{={, versus H,:{#f{, with some positive constant {,.
Throughout. Section 2 it is enough to assume n is odd (i.e. n=2m+l withm a

nonnegative integer) because if n is even, then we discard one cbservation.

2.1. The shortest interval estimate for §. Iet £(x|0)=F(x|0,¢) in (2.1)
with known ¢, Let X, ... ,X, be the random sample of size n(=2m+l) taken from
the density (2.1). ILet X,,, be the i-th smallest cbservation of ¥,, ... ,X,.
We estimate § by Y*¥X,...,. Then, we can easily check E(Y)=f. We first find the
density of ¥ ahd then get the shortest interval estimate for § based on Y.

Let F(xl|8) be the cumulative distribution function (c.d.f.) of X. Then, by
(2.1) we get
(2.2} Fx)=F{xl{)=z"'tan ! ({x-4)/¢) + 27!, for —wmix<m,

Hence, the density of ¥ is of form
(2.3)  gel(yl8)=k(F(y))"(1-F(y))"flyls), £Lfor -m<y«wm

where

k= T (2m+2) /(T (m+1))2.



let r, and r, be real numbers such that r,<xr;, To find the shortest (l-r)

interval estimate for { we want to minimize r,-r, subject to
(2. 4) P, [r <¥—§«<xy]=1-1t.

Iet )} be a Lagrange’ s multiplier. Using a vwariable transformation W=F(Y) we

define
Flr.+f)
Lar,—ry - {| hy (w) dw —1+g}
Fl{r +0)
where hy (w) is the density of W given by
(2.5) b (W) =kw® (1-w) ™, for 0¢w<l,
Then, iL/jr,=0=i1L/3r, leads to
(2.6}  The(Fl{r,+0))E(r,+i 1) =hy (F(r +§))E(x+0)0) (=2"1).
Let. f(1/2) be the positive number such that
fla/2)
(2.7) { he(w) dw = ¢ /2.
Q
Taking
(2.8) F{r,+#)=f{e/2) and F(x;+))=1-f(a/2)

we obtain by (2.2) that r,=-r, (%r) where

{2.9) r=ttan[(2-*'-f(a/2))x]1.



From (2.8) with r,=—r;=r, (2.5) and {2.1), we also have that hy(F{-r+j))=

he (F(r+§))and £(-r+f |0 )=£{r+¢ |§). Thus, when ry=-r =r, (2.6) and ¢L/§1=0 are
satisfied. Therefore, in view of (2.4), the shortest (l1-¢) interval estimate
for § is given by

{2.10) (Y-r, Y+r}.
In the next section we introduce the two-sided test for ¢,

2.2. The unbiased tuv-sided test for §. We consider the problem of testing
the hypotheses H,:0=0, versus H,:0#8#,. Throughout this section we let y,=f8,-r
and y;=0,+r with r given by (2.9). Inverting the interval estimate (2.10) for
#» we obtain the two-sided test which rejects H, if Yef{-w, v, JU{y:,®) and accepts
Hy if ¥Ye(y,,v:). ¥Wow, we show that this test is unbiased and of size ¢.

Define the test acceptance function $(0) of § by

b
(2,11)  §(0)={ gy (yld) dy
Y1
where gy(y|d) is defined by {(2.3). From the construction ${8,)=1—-r. Hence, the
test with acceptance region (y,;,y.) is of size 4. .
To show unbiasedness of our test we want to see that §(§) is maximized at

0=0,; namely,

(2.12)  [A#(0)/88)0ms, =gy (¥1lo)—Gr{yails)=0

and
{él"!t\(ﬂ)/dﬂz]a..ac <Q.

Since from the construction the equality (2.6) with ry=-r,=r and f=f, is ‘
satisfied, it follows from {(2.3) and {2.5) that gy (y l0,)=gv{vsi0o). Hence,
the second equality of {2.12) is satisfied. Thus, it is sufficient to prove
the following theorem:



THEOREM 1., When n=2m+l ond 0<f (u /2)<2°",
(2.13)  [d*} (ﬂ)/dﬂ“]nnao <.

PROOF. By {2.11) we have that
(2.14) [dzb(ﬂ)/dﬂzla-aa =[dgy (¥ 10 )/dﬂ]ouoc ~[day (¥ |4 )/dﬂ:}awno .
On the other hand, by (2.3) we have that
(2.15) duy (y[0)/d0=kmf(y ) (dF(y)/A3 ) (F(y) )= * (1-F(y})" " (1-2F(¥))

+R(F(y) )" (1-F(y))"(af(y(§)/dy).
Since from (2.8) and (2.2) (F(yi}lomn, =[1-F(¥s)1o.s, =f{a/2) and dF(y)}/d=—£(y{0)
and since [AF(y,10)/Q010-, =—[QE(y, 10)/A8]onq, =22 ' (£(¥210,))" and £(y,[fo)=
f{v,10y), putting these together leads to
Aoy (¥ 103/80 Jouy = R{E(¥2180))2 (1f (0 /2007 M {f (a /20007t
Am(1-2f (a/2))+2re "' §(a/2) (1~ (e /2))} (20)

and [g¢(y; 10)/Q0)0-q =-[dGy{¥210)/& 1o - By (2.14) we obtain (2.13). 8

In the next two sections we deal with the scale parameter £.

2.3. The interval estimate for t. Let F{x]¢)=£(x|0,¢t) in (2.1) with known
§. Tet X,... ,¥;, be a random sample of size n(=2m+l) taken from the density
(2.1}, In this section we obtain a (1-1) interval estimate for ¢. Putting {*=

log, ¢ we have that

(x|t )= texp(-4* J{il+exp{2(log, |x~0 [-¢*)}}"!,  for -wcx<o.



Letting Z=log, {X~0| and Z,,, be the i-th smallest observation of %,, ... ,2Z,
we estimate t* by USZ (.. ,. We can easily check E(U)=f{*. We first derive the
density of U and find the (l-1) interval estimate for { based on U. To do so
we beforehand find the distribution of 2.

Since x-f=e* for x>f; x—d=-e* for x«); z=-w for x=§, by a variable trans—

formation Z=log.|X~f| the density of 2 is obtained as follows:

(2.16)  qz(z)3qz(z]t)=2r"'e* ¥ {liexpl{2(z~t*)}}~!, -wezw

where —w<¢f*«. We can easily see that g;{z) is symmetric about z={* and the
unimodal function with the mode t*, Letting Q;(zl{) be the c.d.£. of Z we
obtain by (2.16) that ‘

(2.17)  Q(2)=Q.(z]4)=2¢"'tan !{exp(z-{*)}, —wizcom,

Hence, in view of (2,3), the density of U is derived as follows:

(2.18)  gyful{)=k(Qz (u))™(1-Qz (u))qz (uw), -w<u«m,

We now find the {1-¢) interval estimate for t. Iet 5, and s; be real num—

bers such that s,<¢s,. We try to find s, and s; which minimize s,-s, subject to
{2.19) P,[8,¢U-f*<sz]=1-n.

Let | be a Lagrange’ s multiplier. Using the variable transformation W=Q (U) we
define .
Qz (¢*+8y) ’
A=s,-8, -1 1] hye (w) dw ~1+a}
Qe (f*ts,)

vhere hy(w) is given by (2.5). Then, jA/)s,=0=iA/is, leads to



(2.20)  he(Qz(§*+81))az (§*+8, )=he (Qz (§*+8: ) )z (E*+52) (=47').
Taking

(2,21} Qu(§*+s,)=p(a/2) and Q; ({"+s,)=1-4(a/2)

we obtain py (2.17) that

8,"

i

log. (tan{2 'x8{a/2}1}]
(2.22)

a

i

Sy log. [tan{2-'x{1-8(a/2))1].

From {2.21) and (2.5), hw(_Qz(f‘+sl°))=hw(Qz(§*+sz°}). Furthermore, gz (f*+s,°)=
pisin{sf (e /2= tein{r (1§ (2 /2) }1=q; (E*+8,0), Hence, for s,=s,? and g,=s,°
(2.20) and §A/#1=0 are satisfied.” Therefore, noticing U=log.{( |X-§|) (n+13 } and
(2.19) we obtain the {l-g)} interval estimate for ¢ as follows:

(2. 23) (CIX=01) (ne > @xp{=82°}, (I1X~0|) mw 1) €XP{-S;°} ).
In the next section we introduce the two-sided test for i.

2,4, Unbiased tuo-sided test for ¢. We consider the problem of testing the
hypothesis H,:{={, versus the alternative hypothesis H,:{#{,. Let U be as
defined in Section 2.3. Throughout this section we let u,=t,*+s5,? and u,=f{,*+s,°
with s,%and s, given by (2.22). Inverting the interval estimate (2. 23) for !,
we obtain the two-sided test which rejects Hy if U€(-w,u, JU[u;,w) and accepts H,
if Ue{u,,v;). We show that this test is unblased and of size 4.

Define the test acceptance function §,({¢) of ¢ by

Az
(2.24) 4. (8)=( gu(ul{) du
. u

where gy{ull) is given by (2.18). From the construction #,(}(,;)=1-1. Hence,



the test with acceptance region {(u,,u,) is of slze g.
To show unbiasedness of our test we want to see that §,({) is maximized at

t=ty; namely,

(2. 25) [dh(f)/d‘f]e-eo =t "t {gu{i lte) ~Gu(u2ife)}=0
and
[d"‘h(i)/dEzle-ed <0.
From the coﬁst.ruction (2.I20) with {*+s, and t*+s, replaced by u, and u,, respect-
ively holds. Hence, we obtain by (2.18) and (2.5} that gy(u, lés}=gy{u;lie).

‘Therefore, the second equality of (2.25) holds. Thus, we need to show the
following theoram:

THEOREM 2. When n=2m+l1 and O<p (0 /2)<2°',
(2.26)  [d41()/dE? Jems, <0

PROOF. By (2.24) and (2.25) we have that
(2.27) (&% (§)/QE Jemy =bo™* {[dgu(u [§)/QT4-e, _[dgLr(uzlﬁj/dE]e-ec, 1.
But‘, by (2.18), and in view of (2.15) and dQ;(u)/d{=-{"'qz(u) we have that

dgy (|} )/t =~km¢ = (qz (1) )2 (Qz (u))™~* (1-Qz (u) )=~ (1-2Q; (u))
+R(Qy (1)) (1-Qz (u) )= (dag (u) /4t ).

Since dq (u)/di=a(rt)"ten=*" (e? =) ~1){l+exp{2(u-")}}"2, we have that
[4z (up ) /df T4 -, =(260) 7' sin(20f (1/2))=-{dqz (u,) /A Je -, - From (2.21) and

(2.16) we also have that [Q{u, )]e-eo:l‘[Qz (uz)]a—;c =p (¢/2) and [@z(u, )]e-ec =
o lsin(rg (e /2) ) ={qg; (u, )]e_';o .  Putting these together leads to
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(2.28)  (dgu(Wai§)/9E ey,
=km(x*¢o )" tsin? (xf (0/2) ) (1§ (e /2))" " (f(a/2))" 4 (1-28 (a/2))
th(f(e/2))2(1-p(a/2) )™ (2nto )~ 'sin( 22 (¢ /2))

and {dg,(u; [ )/dElews, =[dgy (uy | ) /dE Jemyy Therefore, noticing that
sin(2z8{a/2))»0 for 0cf({a/2)<2"! we have that (2,28)>0. Hence, in view of
{2.27), (32.26) holds.1

3. The Exponential distribution. Let I,(x) be an indicator function so that
for a set A I,(x)=1 if xsd; =0 if x$A. Throughout Section 3 we congider the
problem of hypothesis testing with respect to the location parameter § of the
Exponential distribution with the density

(3. 1) F{x|g)sbte x-07b T ., o (x)

where ~o<}« and b»>0. In Sections 3.1 and 3.3 we assume b is known and in
Section 3,2 we deal with unknown b.

Based on i.i.d. observations X,, ... ,X, from {(3.1) the author considers,
in Sections 3.1 and 3,2, to test the hypothesis H,:0=§, versus the altermative
hypothesis H, :0#{, with some constant §,. In Secticon 3.1 we construct the
two-gsided test which is unbiased., To do g0 we find the shortest interval
estimate for § using an unbiased estimate Y=§—l(=n‘12?_lx.m1) fFor } and
construct the acceptance region derived from inverting this interval estimate
for 3. In Section 3.2 we compare our test in Section 3.1 with two UMP tests
in Problem 3 of Lehmann(1986). In Section 3.3 we derive the one-sided test for
testing the hypothesis H' ,:020, versus the alternative hypothesis H',:0<0), and
show that this test is UMP unhiased and of size g.

3.1. An unbiased tuo-sided test for 0. Let X,, ... ,X, be a random sample
of size n taken from (3.1) with known b. We consider the problem of testing



11,
the hypotheses H,:0=0, versus H,:0+#0,. We first derive necessary distributions
to find the shortest interval estimate for {.

As an estimate for § we take ¥Y=X-l. We can easily check E(Y)=0. Let X,
be the i~th smallest observation such that X,,; $X(5, ¢ ... §¥(ny. We find the
joint density of variables W=X ,, + .,. +X(n (=ZX,+ ... +X,), V=X, , Z:=X (),
Zn-1=X(n-1y a8 Follaws:

g(W, V, B3, %3, +0s s Zp-i0)= _rn!b““e' fw-ne) /b,
for B§V§Zgé Z3é PR ézn—léw“z?:}j_zl

0, otherwise.

Integrating out the above density with respect to =, through z,_, we get the
ioint. dengity of (W, V) as follows:

{3.2) gl(w, v|0)=)(n/T (n-1))b e w-0d} /b (yny)n-2  for §Sviw/n«u
o, otherwise.

Taking the marginal density of W and furthermore, letting t=2(w-ni}/bD we have
the density of T so that

(3.3) I {Q)=(1/T(n))e t/Her im0 o (L)
which is the chi-square density for 2n degrees of freedom.
Let r, and r, be real numbers such that r,«r,. To find the shortest (l-u)

interval estimate for § we want to minimize r,-r, subject to

(3. 4} Po [, <Y-f <y ]=1-q.
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Bui, by a variable transformation t=2n(y+l-¢)}/b (3.4) is eguivalent to
(3.5} PlL, «T<t; =11,

vhere t,=2n(r,+1)/b for i=1, 2. Hence, we want to minimize t,-t, subject to the
condition (3.5). ILet y be a Lagrange’ s mzltiplier and define
t-!
L~t;-t, -r{{ hy(t) dt -l+g}.
t'L
Then, iL/jt,=0=yL/it, leads to

(3.6) he (L }=he (ta) (=r71).

Taking t, and t, which satisfy (3.6) and jL/71=0, noticing that t,«T=2n(¥+l-{)/b
<t; and letting t;=bt,/(2n) and t,=bt,/(2n) we obtain the shortest (l-y) inter-
val estimate for § as follows:

(3.7) (Y+1-t,, Y+l-t,).

Hence, by inverting (3.7) for #, our test is to reject H, if ¥&0,+t;-1 or
Rlo+ty~l or Vi, and to accept Hy if f,+t;-1¢¥<f,+t,-1 and V2§,. Here, we
emphasize the necessity of having the set {V<j,} in the rejection region. To
check unbiasedness of this test we obtain the power function as follows:

£(0)= P, [¥$0,+ts—~1 or f§,+t,—15Y or V<, ]
(1-(1-0)exp{-n(4,-0 ) /b}, for 0<i,
P[O(TS_tl—Zn(ﬂ—ﬂq)/b]+P[t2—2n(ﬂ“ﬂa)/b<T]; for 6ﬁsﬁ<'ﬂn+t‘3

(3. 8) »
P[te—zn(a—ao)/b<T}; for ﬂa+t;,Sﬂ <ﬂq+t4

1, for fqt,50.

\

Hence, dx(f)/d) <0 for §<fo; dr(0)/d0=2nb ! {he (ty—2n(d~4,)/D)-he (L, ~2n(0~0,)/D)}
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>0 for .80 40,+ty because of (3.6} and (3.3), and Az (8)/d1>0 for fo+ta50 <fq+t,.
Since ' (#,)=0 by {(3.8) and r{0,)=t, we have that z(f)zs for real §. Thus,
unbiasedness of the test is proved.

Furthermore, we note that (3.8) for ¢4, is equal to f*(a,) with a, and =z,
replaced by § and §,, respectively in problem 3(ii) of Lehmanmn({1986).

In the next section we compare our test with two UMP tests; one from

Problem 3(i) and the other from Problem 3(ii) of Lehmann(1986).

3.2, mother [MP tup-sided test. In this section we assume a, and a, in
Problem 3 of Lehmann({1986) to be ¢ and §,, respectively and consider to test
the hypotheses Hy:l=0, versus H, :0#0,. Let V=X , as in Section 3. 1.

We first consider the solution of Problem 3(i). Let §,=0y,-n"'blog.s. We
obtain the UMP two-sided test to reject H, if V¢, oxr #,5V and Lo accept H, if
to8V¢t,. Hence, the power function of this test is equal to (3.8) for f«<b,
and is larger than (3.8) for (»0,. However, we cannot construct the one-sided
test for testing the hypotheses Hf ,:02), versus H' ;:§<f, from this approach,
because the test takes the probability of size § from upper tail only. In the
next section we show that our one-sided test is UMP unbiased size-t for testing
the hypotheses H', versus H' ; when b is known.

Secondly, we consider Problem 3(iii). Here, we assume unknown b. The two-
sided test introduced in Problem 3(iii) is to reject Hy, if U=(V%00)/(zf-1xi—nv)
$C, or zC, where C, and C; are some constants. From Section 3.1 we can propose

ancther two-sided test which rejects H, if

(3.9)  8=(¥+l-04)/(21- X, ~nV) $Cs or 3C4

where Y=X-1 as in Section 3.1 and C, and C, are some constants. From the
definition of ¥ we have the relation S=U+n~!'. Therefore, from Problrm 3(iv} of
Lehmann(1986), the two-sided test (3.9) is also UMP size—g test of testing

Hptl=0, versus H, :(+d,.

3.3. The IMP one-sided test. In this section we congider to test the
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hypotheses H ,:028, versus ®' ,:0<), based on a random sample X,;, ... ,X, from
(3.1) with known b Iet ¥, Vand T be as defined in Section 3.1. Let tg=
bt;/(2n) where t; is given by

Ls

{  hef{t) dt=q.

a
Gur test is to reject Hy 1f Y0,+ts-1 or V¢i, and to accept H, if f,+ty~1<Y
and §,§V. Let gy, v{y,vid) be the joint density of (¥,V). Then, from (3.2)
and the relation gy, v (¥, vi#)=g(n(y+l),vit)n we can easily get the power
function of above test as follows:

1(0)= Py [¥S$0o+ts—1 Or Vedo]

f1-(1-q¢ )exp{-n(f,~0 ) /D}, for # <,
=4P[0«T ¢t ~2n(8 -, ) /D1, for fo80 <fq+tg
0, for 0,+L;50

Since dx{f)/A1<0 For §«<f,+ts and hence z(0)2e=x(0o) for §<f,, our test is 'un—
biased, of size 1 and furthermcre UMP because of Problem 3(1i) of Lehmann{l988&).

4. The Logistic distribution. In Section 4 we deal with the Logistic distri-

bution whose density is given as follows:
(4. 1) E(xjp)=b te x-2 “b{ltarp{~{x~-§ )/B}}"2, For -w(x«w

provided that -w<§«w and b»0. Here, we assume b is known.

et X, ... ,%, be a random sample of size n taken from (4.1). Throughout
Section 4, as in Section 2, it is enough to assume n is odd (i.e. n=2m+l with m
a nonegative integer). Let X,,, be the i-th smallest observation of X,, ... ,%X,.
We estimate | by the sample median Y=X,,.)). Then, we can easily check E(Y)={4.
We find, in Section 4.1, the shortest (l-g) interval estimate for # using ¥ and
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derive in Section 4.2 the two-sided Lest. for testing the null hypothesis H, 1§:=i,
versus the alternative hypothesis H, :0+§, for some constant §, by inverting the
shortest (1-¢) interval estimate for §,. We show that this test is unbiased

and of size g.

4.1. The shortest interval estimate for . Let Y= 4., . We first find
the density of ¥ and obtain the shortest (l-g) interval estimate for §.
Let F(x|§) ba the c.4.f. of X. Then, by (4.1) we get

(4_. 2) F(X)SF(x|) )={1+e™ tx=02 /b}-1 for -mox<m,

The density of ¥ is the same form as {2.3) with F(y) and f(x]f¢) given by (4. 2)
and (4.1), respectively.

et ¥, and ry be real numbers such that r, «r;. We go through the same
preocess as that from the second line above {2.4) till (2,.7). Taking r, and r,
which satisfy (2.8) with F(Y) given by (4.2), we obtain r,=-r,(%r,) where

(4.3) ra=blog. {{1-§(a/2))/8(e/2}}.

We define W=F(Y) and hy(w) by (2.5). 'Then, we have that hy (F({-r,+f))=hs (F{r,+t))
and furthermore f(-x, +8|4§)=E{r,+8 (). Thus, when r;=—xr, =r,, {(2.6) and $L/91=0
are satisfied. Therefore, in view of (2.4) the shortest (1-¢) interval estimate
for ¢ is given by

(4. 4) {Y-1,, Y4r, ).
In the next section we introduce the two-sided test for §.

4.2, The unbiased tuo-sided test for . We test the hypotheses Hy:0=8,
versus H;:0#f,. ILebl Y be as defined in Section 4.1. Throughout this section
we let y,=0,~r, and yy=f,+r. with r, given by (4.3). Inverting the interval
estimate (4,4) for t, we obtain the two-sided test which rejects H, if YE

(-0, v, I (y:,2) and accepts Hy, if ¥Ye(y,,y:). Now we show that this test is
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unbiased and of size g.

Define §(4) by (2.11) where gy{y|d} 1s given by (2.3) with F(y) defined by
(4.2). From the construction $(f,}=1-g. Hence,

region (y,,y:) is of size «.

the test with the acceptance

To show unbiasedness of our test we want to see that (2.12) and (2.13) hold.
Since from the construction the egquality {2.6) with ry=-r,=r, and §=§, is
satisfied, it follows from (2.3) and (2.5) that gv{v, |8, )=g¢v(y:10,). Hence, the
second equality of (2.12) is satisfied. Thus, it is sufficient to prove the
following theorem:

THECREM 3. When n=2m+1 and 0<f (e /2)<2*,
(4.5) [E¥@)/DB?]omg, <0,

PROOF., From (2.11) we have (2.14). By (2.3) we also have (2.15).

Since
Af(y|§)/d)=br2e (78 /b (lagm (y=®) /By (14 (-0 /by=3

, we have that
[Af(y2 18)/A0Taug =b= ! (1-2 {0 /2))E(¥z |80 )=-[Af (¥, 18)/A8)0.s, . From (2.8) and
(4.2) we also have that [F(yi)lo-q EB(G/2)=1-[F(Y2)]D-"D and £(y, 100 )=E(yz1(80)

=b" 18 (a/2)(1-§(a/2)). Applying these and the fact that dF(y)/dBé—f(ylﬂ) to
(2.1%5) leads to :

(O (Y2 10)/A8)0ms, =Kb2(1=f (a/2))°" 1 (f (a/2))7 " (1~2f (0 /2)) (mt1) (50)

and (dgy (vy [0)/d8)oms, =—({dFr(y2[0)/d0], -0, - Therefore, in view of (2.14), (4.5)
holds. 1
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