INSTITUTE OF POLICY AND PLANNING SCIENCES

Discussion Paper Series

No. 1004

A Comment on Section 4 of D.P.1002

by

Yoshiko Nogami

August 2002

UNIVERSITY OF TSUKUBA Tsukuba, Ibaraki 305-8573 JAPAN

筑波大学図書館

A comment on Section 4 of D. P. 1002.

Yoshiko Nogami

Abstract. In this paper the author considers the same problem as that in Section 4 of D. P. 1002 (Nogami(2002)) and shows an improved procedure of testing the hypothesis $H_0: \ell=\ell_0$ and the alternative hypothesis $H_1: \ell\neq\ell_0$ with some constant ℓ_0 .

Comment. Let us consider the same problem as that in Section 4 of Nogami(2002). Let X_1, \ldots, X_n be a sample of size n taken from (1) of Nogami(2002). Let $\delta_0 = \delta_1 + \delta_2$ and $c = \delta_2 - \delta_1$ (>0) as in p. 2 of Nogami(2002). Let $X_{(1)}$ be the i-th smallest observation of X_1, \ldots, X_n and define $Y = 2^{-1} (X_{(1)} + X_{(n)} - \delta_0)$.

Instead of T in (6) of Nogami(2002) we use

(1)
$$S=(Y-\theta)/\{(n+1)(n-1)^{-1}Z/\sqrt{2(n+1)(n+2)}\}$$

where $(n+1)(n-1)^{-1}Z$ is an unbiased estimate for c. Making a variable transformation $S=\sqrt{2(n+1)(n+2)}T$ for $h_T(t)$ in p. 7 of Nogami(2002) we obtain

$$h_s(s) = \sqrt{(n+1)/(2(n+2))} \{(n-1)^{-1}/(2(n+1)/(n+2)) | s|+1\}^{-n}, \quad \text{for } 0 \le |s| < \infty.$$

Let $\mathfrak g$ be a real number such that $0 < \mathfrak g < 1$. We call (U_1, U_2) a $(1-\mathfrak g)$ interval estimate for the parameter $\mathfrak g$ if $P_{\mathfrak g}[U_1 < \mathfrak g < U_2] = 1-\mathfrak g$. To get the conditional (or restricted) minimum-length $(1-\mathfrak g)$ interval estimate for $\mathfrak g$ we shall find real numbers r_1 and r_2 $(r_1 < r_2)$ which minimize $r_2 - r_1$ subject to

(2)
$$P\{r_1 < S < r_2\} = \begin{cases} h_S(s) & ds = 1-a. \end{cases}$$

Letting) be a real number we define

$$r_2$$
L= r_2 - r_1 - λ {} h_s (s) ds -1+ α }.
 r_1

By Lagrange's method, $\partial L/\partial r_1=0=\partial L/\partial r_2$, which leads to

(3)
$$h_s(r_1) = h_s(r_2)(=\lambda^{-1}).$$

we have

$$r=(n-1)/(n+2)/(2(n+1))(a^{-1/(n-1)}-1).$$

Thus, in view of (1) and (2) the conditional minimum-length (1-a) interval estimate for \emptyset is as follows:

(4)
$$(Y-r[\{n+1, Z/\{(n-1)\}\}], Y+r[\{n+1, Z/\{(n-1)\}\}]).$$

Therefore, to test the hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ we invert (4) with respect to $\theta = \theta_0$ and get the following acceptance region of our two-sided test.

(5)
$$-r < (Y-\ell_0)/[(n+1)Z/((n-1)/2(n+2))] < r.$$

Here, since $\lim_{x\to\infty} \frac{(x+3)/\{2(x+2)\}}{2(x+2)} = 2^{-1/2}$ and $\lim_{x\to\infty} x(\mathfrak{q}^{-1/x}-1) = -\log_{\mathfrak{q}} \mathfrak{q}$, it follows that as $n\to\infty$ $r\to -2^{-1/2}\log_{\mathfrak{q}} \mathfrak{q}$. Hence, the acceptance region (5) is more natural than that with \mathfrak{t}_0 appeared on the 5-th line from the bottom in p. 7 of Nogami(2002).

REFERENCES.

Nogami, Y. (2002). Hypothesis testing based on Lagrange's method: Application to the uniform distribution (II)., Discussion Paper Series No. 1002, Institute of Policy and Planning Sciences, University of Tsukuba, August.