INSTITUTE OF POLICY AND PLANNING SCIENCES

Discussion Paper Series

No. 995

Hypothesis Testing Based on Lagrange's Method: Application to The Uniform Distribution.

bу

Yoshiko Nogami

July 2002

UNIVERSITY OF TSUKUBA Tsukuba, Ibaraki 305-8573 JAPAN

HYPOTHESIS TESTING BASED ON LAGRANGE'S METHOD: APPLICATION TO THE UNIFORM DISTRIBUTION.

YOSHIKO NOGAMI

July 1, 2002

Abstract. In this paper we deal with the uniform distribution as follows: $f(x|\theta)=\theta^{-1} \qquad (0 < x < \theta; \ 0 < \theta).$

The author proposes the tests which essentially have the acceptance regions derived from inverting the conditional minimum-length(CML) interval estimates for the function $\ln \theta$ of the parameter θ based on the Lagrange's method. She proposes the two-sided test for testing the hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ with a positive constant θ_0 . Her test is unbiased. She also propose the uniformly most powerful one-sided test for testing $H'_0: \theta \leq \theta_0$ versus $H'_1: \theta > \theta_0$.

§1. Introduction,

The idea for the relation between the tests and interval estimates is seen in Neyman(1937) and recently, for example, Matusita(1951) and Matubara & Nogam (1982). For the hypothesis testing based on Lagrange's method we refer to Nogami(2002). Let $I_A(x)$ be the indicator function of the interval A such that $I_A(x)=1$ if $x\in A$; =0 if $x\notin A$. Here, we consider to test the parameter \emptyset of the uniform distribution

(1)
$$f(x|\theta) = \theta^{-1} I_{(0,\theta)}(x) \qquad (\theta>0).$$

Let X_1 , ..., X_n be a random sample of size n taken from (1). We apply the similar analysis appeared in Sections 2.3 and 2.4 and Section 3 of Nogami(2002).

In Section 2 we consider the problem for testing the hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ with a positive constant θ_0 . Let $\frac{2}{\pi}$ be the defining property. Let $\theta^* = \ln \theta$ and $Y = \ln X$. We estimate θ^* by the unbiased estimate $U = \overline{Y} + 1 = n^{-1} \sum_{i=1}^{n} Y_i + 1$ and construct the conditional minimum-length (CML) interval estimate for θ^* based on the Lagrange's method. Then, we apply this interval estimate to get the two-sided test and show that our test is unbiased. Let θ be a real number such that $0 < \theta < 1$. For a reference on this problem there is a uniformly most powerful (UMP) test of size θ in Ferguson (1967, p. 213) (as well as Lehmann (1986, p. 111)). However, this test cannot be applied to the test of $H'_0: \theta \leq \theta_0$ versus $H'_1: \theta > \theta_0$ because it takes probability of size θ from the lower tail only.

In Section 3 we propose the one-sided unbiased test of $H_0: \emptyset \le \emptyset_0$ versus $H_1: \theta > \theta_0$. As references for this problem we refer to Mood, Graybill and Boes(1988, p. 424) (as well as Ferguson(1967, p. 213) for a randomized test and Lehmann (1986, p. 111)). Since our test has the same power as that in Mood, Graybill & Boes(1988, p. 424) for $\theta > \theta_0$, our test is also UMP and of size θ .

We call (S_1, S_2) a $(1-\alpha)$ interval estimate for the parameter η if $P_{\eta}[S_1 < \eta < S_2]$ =1-q.

§2. The unbiased two-sided test.

Let $U=\overline{Y}+1$. Let $Y_{(i)}$ be the smallest observation of Y_1, \ldots, Y_n . Let $W=\sum_{i=1}^n Y_{(i)} (=\sum_{i=1}^n Y_i)$ and $V=Y_{(n)}$. We first find the density $h_{W,V}(W,V)$ of (W,V).

Then, we find the density $g_w(w)$ of W. Furthermore, letting $T=2n(\ell^*+1-U)$ we obtain the density $h_T(t)$ of T to get the CML $(1-\epsilon)$ interval estimate for ℓ^* based on U.

First of all we find the density of Y as follows:

(2)
$$g_{Y}(y) = \exp\{y - \theta^*\} I_{(-\infty, \theta^*)}(y).$$

Since , from (2), g_{Y1} , ..., $Y_n(Y_1, \ldots, Y_n) = \exp\{\sum_{i=1}^n Y_i - n\theta^*\} I_{(-\infty, \theta^*)}(v)$, we can find the joint density of W, V, $Z_2 = Y_{(2)}$, $Z_3 = Y_{(3)}$, ..., and $Z_{n-1} = Y_{(n-1)}$ as follows:

(3)
$$h(w, v, z_2, ..., z_{n-1}) = n! \exp\{w - n \ell^*\},$$

for $-\infty \langle w-v-\sum_{i=2}^{n} z_i \le z_2 \le \ldots \le z_{n-1} \le v \le \emptyset^*$. To get $h_{w, v}(w, v)$ we integrate out (3) with respect to z_2, \ldots, z_{n-1} . Then, we obtain

(4)
$$h_{w, v}(w, v) = \{n/\lceil (n-1)\} \exp\{-(n\theta^* - w)\} (nv - w)^{n-2}, \text{ for } w \le nv \le n\theta^*.$$

Taking the marginal density $g_w(w)$ of W we have

(5)
$$g_w(w)=(\Gamma(n))^{-1}\exp\{-(n\ell^*-w)\}(n\ell^*-w)^{n-1}, \text{ for } w \le n\ell^*.$$

Using a variable transformation $T=2n(\theta^*+1-U)=2\{n(\theta^*+1)-W\}$ we get, from (5), the density of T as follows:

(6)
$$h_{T}(t) = (\Gamma(n))^{-1} t^{n-1} e^{-t/2} 2^{-n} I_{\{0, \infty\}}(t).$$

Let r_1 and r_2 be real numbers such that $r_1 \lt r_2$. To find the CML (1-a) interval estimate for θ^* we want to minimize $r_2 - r_1$ subject to

(7)
$$P_{\theta}[r_1 < U - \theta * < r_2] = 1 - \alpha.$$

But, by a variable transformation $t=2n(\theta^*+1-u)$ (7) is equal to

(8)
$$P[t_1 < T < t_2] = 1 - \alpha$$

with $t_1=2n(1-r_2)$ and $t_2=2n(1-r_1)$. Hence, we want to minimize t_2-t_1 subject to the condition (8). Let λ be a Lagrange's multiplier and define

$$t_2$$
L= $t_2-t_1-\lambda$ {} h_T (t) $dt -1+a$ }.

Then, $\partial L/\partial t_1 = 0 = \partial L/\partial t_2$ leads to

(9)
$$h_T(t_1) = h_T(t_2) (= \lambda^{-1}).$$

Taking t_1 and t_2 which satisfy (9) and $\partial L/\partial \lambda = 0$, noticing that $r_1 = 1 - t_2/(2n)$ and $r_2 = 1 - t_1/(2n)$ we obtain the CML (1 - a) interval estimate for θ^* as follows:

(10)
$$(U-1+t_1/(2n), U-1+t_2/(2n)).$$

Hence, by letting $u_1^0 = \theta_0^* + 1 - t_2/(2n)$ and $u_2^0 = \theta_0^* + 1 - t_1/(2n)$ and inverting (10) for θ_0^* our test is to reject H_0 if $U \le u_1^0$ or $u_2^0 \le U$ or $\theta_0^* < V$ and to accept H_0 if $u_1^0 < U < u_2^0$ and $V \le \theta_0^*$.

To check unbiasedness of this test we use (4) and obtain the power of the test as follows:

$$\pi(\theta) = P_{\theta}[U \le u_1^0 \text{ or } u_2^0 \le U \text{ or } \theta_0^* < V]$$

$$=P_{0}[\theta_{0}^{*} < V]+P_{0}[W \le n\theta_{0}^{*}-2^{-1}t_{2}]$$
 and $V \le \theta_{0}^{*}]+P_{0}[n\theta_{0}^{*}-2^{-1}t_{1} \le W]$ and $V \le \theta_{0}^{*}]$

$$\begin{cases} 1 - (1 - \alpha) (\theta_0 / \theta)^n, & \text{for } \theta_0 < \theta, \\ 2n(\theta^* - \theta_0^*) + t_1 & \infty \\ \\ \begin{cases} h_T(t) dt + \begin{cases} h_T(t) dt, \\ 2n(\theta^* - \theta_0^*) - t_2 \end{cases} \end{cases}$$

$$for \; \theta_0 \exp\{-t_1/(2n)\} < \theta \le \theta_0,$$

Hence, $d\pi(\theta)/d\theta>0$ for $\theta_0<\theta$, $d\pi(\theta)/d\theta=2n\theta^{-1}\{h_T(2n(\theta^*-\theta_0^*)+t_1)-h_T(2n(\theta^*-\theta_0^*)+t_2)\}$ <0 for $\theta_0\exp\{-t_1/(2n)\}<\theta<\theta_0$ and $d\pi(\theta)/d\theta<0$ for $\theta_0\exp\{-t_2/(2n)\}<\theta\le\theta_0\exp\{-t_1/(2n)\}$. The second inequality above follows because of (9) and (6). Thus, we have $\pi(\theta)\ge q=\pi(\theta_0)$ for real θ . Therefore, unbiasedness of the test is proved. From the construction it is easily seen from (7) that our test is of size q.

We note that there is a UMP-size \mathfrak{q} test in Ferguson(1976, p. 213) (as well as Lehmann(1986, p. 111)) for this problem. The power of this test is the same as (11) for $\theta_0 < \theta$. However, since most of the time we have $\exp\{-2^{-1}t_2\} < \mathfrak{q}^{1/n}$, our power for $\theta_0 \exp\{-t_2/(2n)\} < \theta < \theta_0 \mathfrak{q}^{1/n}$ is no better than Ferguson(1976, p. 213). However, As I stated in Section 1, this (his) test is not applicable for the test of $H'_0: \theta \le \theta_0$ versus $H'_1: \theta_0 < \theta$. In the next section we show that our test of $H'_0: \theta \le \theta_0$ versus $H'_1: \theta_0 < \theta$ is UMP and of size \mathfrak{q} .

§3. The UMP one-sided test.

In this section we first consider the test of $H'_0: \emptyset \le \emptyset_0$ versus $H'_1: \emptyset_0 < \emptyset$. As in Section 2 we let $\emptyset^* = \ln \emptyset$, $U = \widetilde{Y} + 1$ and $V = Y_{(n)}$. We furthermore define $u_2^* = \emptyset_0^* + 1 - t_1/(2n)$ where t_1 here is defined by

(12)
$$P[T < t_i] = a.$$

Then, our one-sided test is to reject H'_0 if $u_2^* \le U$ or $\theta_0^* < V$ and to accept H'_0 if $U < u_2^*$ and $V \le \theta_0^*$. From Section 2 we can easily get the power of the test as follows:

$$\pi(\theta) = P_{\theta}[u_2 * \leq U \text{ or } \theta_0 * < V]$$

$$= \begin{cases} 1-(1-a)(\theta_0/\theta)^n, & \text{for } \theta_0 < \theta \\ 2n(\theta^*-\theta_0^*)+t_1 \\ \vdots & h_T(t) \text{ dt, } & \text{for } \theta_0 \exp\{-t_1/(2n)\} < \theta \le \theta_0 \\ 0 \\ 0, & \text{for } 0 < \theta \le \theta_0 \exp\{-t_1/(2n)\}. \end{cases}$$

Since $d_{\pi}(\theta)/d\theta>0$ for $\theta_0<\theta$ and $d_{\pi}(\theta)/d\theta=2n\theta^{-1}h_T(2n(\theta^*-\theta_0^*)+t_1)>0$ for $\theta<\theta_0$, $\pi(\theta_0)=g\leq\pi(\theta)$ for real θ such that $\theta_0<\theta$. Hence, this test is unbiased. It is immediate from (12) that our test is of size g.

Historically, there is a randomized test in Ferguson(1976, p. 213 #7(c)) which is better than our test in the sense of the power. However, it is more natural to compare our test with the test appeared in Mood, Graybill & Boes (1988, p. 424) which rejects H_0 if $V > \theta_0 (1-\alpha)^{1/n}$ and accepts H_0 if $V \le \theta_0 (1-\alpha)^{1/n}$. This test has the same power as our power for $\theta_0 < \theta$. Hence, our test is also UMP and of size α .

§ 4. Remark.

The term "interval estimate" used in this paper is due to Fabian & Hannan (1985).

REFERENCES

- Fabian, V. & Hannan, J. (1985). Introduction to Probability and Mathematical Statistics., John Wiley & Sons.
- Ferguson, T. S. (1976). Mathematical Statistics-a Decision Theoretic Approach.

 Academic Press.
- Lehmann, E. L. (1986). Testing Statistical Hypotheses., 2nd ed., John Wiley & Sons.
- Matubara, N. & Nogami, Y. (1982). (Translation into Japanese) Statistical Hypothesis Testing. (SAGE publication by R. E. Henkel), Asakurashotenn
- Matusita, K. (1951). Fundamental Theory of Statistical Mathematics (in Japanese).

 Asakura-shotenn.
- Mood, A., Graybill, F. A. & Boes, D. C. (1988). Introduction to the Theory of Statistics., 3rd. ed., McGraw Hill Int. Ed.

- Neyman, J. (1937). Outline of a theory of statiastical estimation based on the classical theory of probability., *Philosophical Transactions of the Royal Society A.*, 236, 333-80.
- Nogami, Y. (2002). Hypothesis testing based on Lagrange's method: Applications to Cauchy, Exponential and Logistic distributions., Discussion Paper Series No. 988, Inst. of Policy & Planning Sciences, Univ. of Tsukuba, May.