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Abstract

We consider single-server queues with exponentially distributed service times
in which the arrival process is governed by a semi-Markov process (SMP). Two
service disciplines, processor sharing (PS) and random service (RS), are investi-
gated. We note that the sojourn time distribution of a type ! customer who meets
upon his arrival k customers present in the SMP/M/1/PS queue is identical with
the waiting time distribution of a type ! customer who meets upon his arrival k+1
customersa present in the SMP/M/1/RS queue. The Laplace-Stieltjes transforms of
the sojourn time distribution for an arbitrary customer in the SMP/M/1/PS queue
and the waiting time distribution for an arbitrary customer in the SMP/M/1/RS
queue are derived. We also consider a special case of the SMP in which the inter-
arrival time distribution is determined only by the type of the next arrival.

Key words: Queues; semi-Markov arrival process; processor sharing; random ser-
vice; sojourn time; waiting time

1 Introduction

We study queueing systems with a single server in which the arrival process is governed
by a semi-Markov process (SMP). The service time follows exponential distribution and
the capacity of the waiting room is infinite. Two service disciplines are considered:
(i) processor sharing (PS), i.e., when there are k customers in the system each receives
service at rate 1/k, and (ii) random service (RS), i.e., when the server becomes available,
the next customer to enter service is chosen at random among all waiting customers. The
systems described above are denoted by SMP/M/1/PS and SMP/M/1/RS, respectively,
throughout the paper. .

The processor sharing discipline is the limiting case of the round robin discipline
as the quantum of service time approaches 0; it is a reasonable service discipline in
the performance modeling of computer and communication systems., Since Coffman,



Muntz and Trotter [2] first analyzed an M/M/1/PS queue, several queueing systems
with processor sharing service have been studied, for example, an M/G/1/PS queue
[9, 13}, a GI/M/1/PS queue [6, 10) and a GI/G/1/PS queue [11]. A survey of works on
processor-sharing queues prior fo 1987 is given by Yashkov [14], who cites many other
references. To the best of our knowledge, however, there are no studies on queueing
systems with semi-Markov arrivals and processor sharing discipline.

Ramaswami [10] finds the first two moments of the sojourn time distribution in a.
GI/M/1/PS queue (he notes an error in [2]). Cohen [4] points ont that the sojourn
time distribution of a customer who meets upon his arrival & customers present in a
GI/M/1/P8S queue is identical with the waiting time distribution of a customer who meets
upon his arrival k+1 customers present in a GI/M/1/RS queue. We note that the same
relation exists between the SMP/M/1/PS queue and the SMP/M/1/RS queue. This is
the motivation that we analyze two queueing systems SMP/M/1/PS and SMP/M/1/RS
together in this paper.

The rest of this paper is organized as follows. In Section 2 we define the semi-Markoy
arrival process and review some results about the queue size distribution before arrivals
in SMP/M/1 queues. In Section 3, the Laplace-Stieltjes transform of the sojourn time
distribution for an arbitrary customer in the SMP /M/1/PS queue is derived. The waiting
time distribution of an arbitrary customer in the SMP/M/1/RS queue is analyzed in
Section 4. A special case of the SMP is investigated in Section 5.

2 Preliminaries

2.1 Semi-Markov Arrival Process

‘The semi-Markov arrival process can be described as follows [1]. There are L types of
customers numbered 1 through L. Customers arrive at time epochs 0 =Ty < Ty < T} <
... . Then A, =T, —T,1, n > 1, is the interarrival time, and we set Ay := 0. Let
8™ denote the type of a customer arriving at epoch 7T,. For a given sequence of arrival
epochs, all interarrival times are mutually independent. It is assumed that 4,,; and
S+1) depend only on S, i.e.,

P{S™MD =, 4,4y < #1508, 4y, ..., A} = P{SPH) =, A, < 1|SMY,
I=1,...,L;t>0. (1)

Let
U (£} 1= P{S"™D = m, Ay < 88 =1}

be the probability that the arrival process moves from state ! to state m in time t. We
note that a;,(00) is the probability that the arrival of a type ! customer is followed by
- the arrival of a type m customer. Let us introduce the Laplace-Stieltjes transform (LST)
of ayn(t) by

O (8) = fo i e dayn (2).
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Hereafter we use matrix A(s) 1= {oyn(s)}. It is noted that A(Q) = {am(c0)} is
stochastic matrix; thus

A(O1=1,

where 1 := [1,...,1]T (T denotes transpose). If & := [m,...,mz] is the stationary
distribution of the stochastic matrix A(0), we have

mA0)=nx, wl=1L (2)

Without much loss of generality, we assume that the Markov chain {§™;n =0,1,2,...}
is ergodic. For a real number s > 0, if Am(s) denotes the eigenvalue of the matrix A(s)
with the maximum absolute value, then [1, eq.(9))

d
- 3
a=—gm)|_ ©
is the mean interarrival time defined by
L a0 :
Q= Zm Z / tdaym (). (4)
=1 m=1v0

2.2 Queue Size Distribution Immediately before Arrivals in
SMP/M/1 Queues -

Similar to GI/M/1 queues [10], due to the memoryless property of exponentially dis-
tributed service times, the queue size distribution immediately before arrivals in the
SMP/M/1/PS queue is the same as that in the corresponding SMP/M/1 queue with
FIFQ service discipline, Here we review some results about the SMP/M/1/FIFO queue
from [1], whick will be used in studying the sojourn time distribution in the SMP/M/1/PS
queue. Let u be the service rate.

The following result is a special case of the theorem by Cinlar [1], which is funda-
mental to analyze SMP/M/1 queues. '

Theorem 1 The equation
det[zI — A(s+ p— pz)] =0 (5)

has ezactly L roots, v1(s),ya(s),. . .,vL(s) within the unit circle |z| = 1 if R(s) > 0,
where I denotes an L x L identity mairiz, _ ‘

This theorem is the matrix version of Lemma 1 in Takécs {12, p.113] for a GI/M/1 queue,
and it can be proved by application of permutation theory and Rouché’s theorem (7, 8].
We denote the distinct roots of (5) by v} (s), y®s),..., ¥ (s) with M < L.

For analyzing SMP/M/1 queues, we impose the following assumption which is the
same as the one in [1].



Assumption 1 All the elementary divisors [5, p.142] of the matriz Als + pu — puy®(s)]
corresponding to the eigenvalue YW (s) are of the first degree, i=1,..., M.

We note that the multiple eigenvalues are not ruled out. The matrix Afs+ p — py@(s)]
may have elementary divisors not of the first degree if they correspond to other eigen-
value than 4 (s). If we denote by g;(s) the left-hand eigenvector corresponding to the
eigenvalue ;(s), we have

gi(s) (o)l — Als+p— (@} =0 i=1,...,L (©)

We collect all the eigenvectors corresponding to the eigenvalues v1(s),...,7z(s) into an
L x L matrix G(s), i.e.,

G(s) = [g1(s), &2(s), - - - g1 (8)]" (7)

Let I'(s) denote an L x L diagonal matrix with diagonal elements v1(s), 12(s), .. ., 1(5)-

We next consider the Markov chain {(X™, $(™M);n =0,1,2,...}, where X (») denotes
the number of customers seen by nth SMP arrival. The following result is cited form
Ginlar [1, Theorem 5], which gives the queue size distribution immediately before arrivals
in the SMP/M/1/FIFO queuve. Thus it is also the queue size distribution immediately
before arrivals in the SMP/M/1/PS queue.

Theorem 2 Under Assumption 1, all states of the Markoy chain {(X™, $M));n =
0,1,2,...} are ergodic if ap > 1. In this case

ol = tim P{X®™ =, 8™ =1}; £k=0,1,2,...; I=12,...,1L, (8)
n—co
exist and are independent of the initial distribution. Letting wy, = [w,(:),wf), . .,w,(f‘)]
we have '
wy, =G I - TG k=0,1,2,..., 9)

where I' :=T(0) end G := G(0).
We rewrite (9) in scalar form as

L
o =Y fifm k=0,1,2...; m=1,2,..,1I, (10)

=1

where (3 is the [th element of the row vector
Bi=wG1I1~T), (11)

Y = 4;(0), and gy, is the element of the matrix G at the /th row and the mth column.



3 Sojourn Time in the SMP/M/1/PS Queue

We now derive the sojourn time distribution in the SMP /M /1/PS queue. Let us focus on
a ta.gged customer of type I who finds k other customers in the system upon his arrival.
Let S (t) denote the sojourn time distribution of this tagged customer. We define

Aim(j, t) = [)t %?ie“"”da;m(m) (12)

as the probability that exactly j customers are served during the interarrival time of two
successive arrivals of type ! and type m customers when the interarrival time is less than
t.

Lemma 1 The functions 5’,(:) (t) satisfy the following relations

L k1
(l) sz+1f[ im a!m(m)]#(( )1)| e "dg

m=1 3—1

k+1-j
+ZZD T L A (G, ) * ST () 1=1,2,...,L; k=0,1,2,.
mm=l je=

(13)

where A (j,8) * ST (1) denotes the convolution of Am(j,1) and S (1),

Proof. Our proof extends the method of Ramaswami [10]. Depending on the situation
whether the tagged customer ends his service before or after the next arrival, we have

s = 150 () + 250 ), (14)

where 1.5‘,5') (t) is the probability that the tagged customer, being type ! and finding &
other customers present, ends his service before the next arrival and has a sojourn time
less than ¢, and 25‘(‘}( t) is the probability that the tagged customer, being type ! and
finding k other customers present, ends his service after the next arrival and has a so J ourn
time less than t.

For 1;5',g (t), due to the memoryless property of the exponentially distributed service
time all customers present at time z have the identical distribution for the residual
sojourn time, If there is a departure in a short time interval (z, z + Ax], each customer
present at time x has the same chance to depart. Thus if at least J customers end their
services before the next arrival, the probability that the tagged customer is the jth to

leave the system is
k
I1\j-1) 1

J—'(k—i-l) k4L
J




Conditioning on the type of the next arrival and the number of departures before the
next arrival we have
L k1

800 =35 17 [lom(oo) - an@E a9

m=1 j=1

For 28,?) (t), the probability that the tagged customer is not one of the j customers
who depart from the system before the next arrival is

(5)

i) k+1-j

(k+1)"' E+1 7
J

Conditioning on the length of the interarrival time, the type of the next arrival, and the
number of departures before the next arrival we obtain

1 k+1—3j
Zslg(,)(t ZE k41 A-‘m J:t) *Sk(‘.r:]). J( ) (16)
m=1 j=0
Substituting (15) and (16) into (14) gives (13). |
Let us introduce the generating function of the LST of .S’,g) () b
o (z,8) = Zaa) 25 1=1,2,...,L, | (17)
k=0
where
o0
o) (s) = fo e tdsP (), k=0,1,2,.... (18)
Letting the column vector o(z,5) := [6™(z,5),6®(z,5),...,0®(z,5)|T we have the

following theorem:

Theorem 3 The vector o(z,s) satisfies the differential equation

ihd ( ) 4 p
2l — A(s+ z +o(z,s 0) —~ A(s+ p — pz)|.
el = Als+ p—pal =g =+ 038 = g Ty A ~ Al a - pe)]
(19)
Proof. Let us introduce the notation
o0
»W(z,8) 1= Z(k + l)a,(:) (), (20)
k=0
It is easy to verify that
U]
Y9z, 5) --aﬂ (z,5) + ?ib-(;‘?’_sl (21)



Taking the LST of (13}, multiplying by (k + 1)2*, and summing over £ = 0,1, 2,.
obtain

L
mz,s = a am(]—a s+ u—puz
"/} ( ) (1-—-z)(s+p-uz)r§[l() lm( H 1”')]
3 Z (s + 1 = )™ (3, 8) ~ o™ (2, 5)). (22)
m.—.l
Substituting (21) into (22) yields
00 (2, 5) 0] H
g 002 8) = @ —z)(s-}-,u ) Z[atm 0) = cum(s + p — p2)]
30("") (2, 3)
+Eazm(3+ﬂ“ pE)—p = (23)
m=1
Rewriting (23) in matrix form gives {19). w

Let o(s) denote the LST of the sojourn time for an arbitrary customers. It follows
that

L o
o(s) = Z Zw,(cm)a,(cm)(s). (24)

m=1 k=0

Substituting (10) into (24) yields

oo L
ofs) = ZZZﬁmm‘T: ) (s) = ZZﬁzyzma( Ny, 8)
m=1 k=0 1=1 =1 m=l
2
=Y Beo(ws), (25)
=1

where g is the [th row of the matrix G. Thus the mean sojourn time ¢ of an a.rbitrafy
customer is given by

o= Eﬁzgl [ o8 )] s (26)

=1

Theorem 4 The mean sojourn time of an arbitrary customer in the SMP/M/1/PS
queue is given by

. .
o= EWG“‘I(I -T)'G1. (27)
Proof. Let us introduce the column vector

vi(s) 1= L—%a(z, s)] i=1,2,...,L.
z=y :
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Evaluating both sides of (19) at z =y yields

[l — A(s + p— py)lvils) + o, 8) = = (Si RSy [A(0) — A(s + p — pm)].
' . (28)

Differentiating (28) with respect to s and taking the limit as s approaching 0+ gives

L= A= i)+ [qrotns)| = -IHOZEEZr )

T )

where we have used

w(0) = [(%d(z,O)} = [zg; (1%;)]27 1= ot (30)

Recall that g; is the left-hand eigenvector of the matrix A(u— pyi) corresponding to the
eigenvalue «;. It follows that

gl ~ Ay — py)] = 0.
Multiplying (29) by g; on the left gives

0 _ &l
8 [?9?7(% 8)] wmpo | HL=Y (1)

Using (11) and (31) in (26) gives (27). O

4 Waiting Time in the SMP/M/1/RS Queue

We proceed to analyze the SMP/M/1/RS queue. In this system the service time follows
exponential distribution with rate u, the arrival process is governed by a semi-Markov
process described in Section 2, and the service discipline is random. The random service
discipline is described as follows: at the end of a service the next customer to be served
is selected at random among all the customer present in the queue. Since the order of
service does not influence the unfinished work of the system, the queue size distribution
is independent of the order of service. Hence, the queue size distribution immediately
before arrivals in the SMP/M/1/RS queue is identical with that in the corresponding
SMP/M/1/FIFO quene,

Let W()( t) denote the waiting time distribution of a tagged customer of type I who
finds & + 1 other customers in the system upon his arrival. We then have the following
lemma. .

Lemma 2 The functions Wé') (t) satisfy the relations

L k41 t . f—1
ppz)i~t
[aim (00) — aim (2)] e " dz
= L et e
+§:§: “"A,,,,g,t)* WiR L@ 1=1,2...,L; k=0,1,2,...,
m=1 j=0 .

(32)



where A, (5,t) is defined in (12}, and * denotes the convolution.

Proof. The proof is similar to that for Lemma 1 in Section 3. ' O

Remark Comparing Lemma 1 and Lemma 2 we note that the sojourn time distri-
bution for a type ! customer who meets upon his arrival k customers present in the
SMP/M/1/PS queue is identical with the waiting time distribution of a type I customer
who meets upon his arrival k£ + 1 customer present in the SMP/M/1/RS queue. This is
an extension of the relation between the GI/M/1/PS queue and the GI/M/1/RS queue
mentioned by Cohen (4].

Let us introduce the generating function of the LST of W(‘) (¢) by

wl(z, ) = Zw,(:) (s)2%,

E=0
where

wi(s) = /L; e"’tdW,?)(t).

With the same method as deriving (19) we get the following theorem:

Theorem 5 The vector w(z, s) := [w(z, 5),w(z, 5), ..., w2, 9)]T satisfies the dif-
ferential equation

1= A i) bl ) = (s A = Al )
K ‘ )

Let w(s) denote the LST of the waiting time distribution for an arbitrary customer.

Conditioning on the number of customers present in the system immediately before the
arrival of the arbitrary customer and his type, we obtain

w(s) = E @™ + Z Zw(m)w,(cm)l (34)

- m=0 m=1 k=1
Using (10) in (34) gives
' L L L o L
w(s) = 3D Bgm+ >, Y B ul™ (s)
m=l [=1 m=1 k=0 I=1
L L L _
= Y Y Bom+ YD Bigmnw™(y, 5)
I=1 m=1 I=1 m=1
L L
= ) Bel+) Bmgw(ns). (35)
=1 =1
Therefore the mean Waiting time w of an arbitrary customer is given by
0
w=- Zﬁmgz [etns)| (36)
6 5=0+



Theorem 6 The mean waiting time of an arbztmry customer in the SMP/M/I/RS
queue 18 given by

w= éwG‘l(I ~T)-'rG1. (37)
Proof. With the same method as deriving (31} we obtain

0 gl
B =8l . -12..,L (38)
B [3 wlon, s )LM (1 — )2

Using (11) and (38) in (36) gives (37). 0

5 Special Semi-Markovian Arrival Processes

In this section we consider the sojourn time in the SMP/M/1/PS queue and the waiting
time in the SMP/M/1/RS queue in a special case of the semi-Markov arrival process.
Namely, we assume that the interarrival time distribution is determined only by the type
of the next arrival, i.e., A(s) = 1{au(s), @a(s), ..., ()], where

ay(s) := f e~ dP{ST) = Ao <HS™Y 1=1,2,..., L
4]

1t is then easy to verify that
det[AI — A(s)] = AL~[A — a(s)]

and that A[A — (s)] is the minimal polynomial [5, p.89} of A(s), where

o(s) :_—-/ﬂ e "dP{Ap4 < t[S(”;} = Zaz(s)

i=1

Let us first consider the sojourn time in the SMP/M/1/PS queue for this special
semi-Markov arrival process. If Assumption 1 is satisfied, the roots of the equation
det[zl — A(s + p — pz)} = 0 are m(s) = 1e(s) = - > = y1-1(s) = 0 and z(s) = 7(s),
where «y(s) is the root of the equation z — a(s 4+ p — p2) = 0 within the unit circle
|z2| = 1. Here we write y for 4(0). Therefore I' becomes a diagonal matrix with the
diagonal elements 0,0,...,0,v. We note that the left-hand eigenvector of A(p — pv)
corresponding to the eigenvalue v is

gr = [oa(p — py), aé(u — )y an (i — p)l,

which is the last row of the matrix G. The last column of the matrix G~ is (1/9)1,
which is the right-hand eigenvector corresponding to . It follows that

G-1(I-T)"'G1

10



1/y 10 . 0
1y {01 . 0
1/y 00 .. /-7
1
1
X : H :
a(p — py) onlp — py) op(p—p) | [ 1
[ alp-p)  ealp— ) ar(p — py)
I—n 19 1—9
aalp—pr) calh = p) ar{p — )
= 1—9 : 1—v 1—v
ofp—py)  oaln=p) 1 4 onlp—py
1—4 1—v 1—v
1
L 9
1= 71, (39)
where we have used G~1G = I. Substituting (39) into (27) gives
1 .
= ——-. 40
W=7 o)

We remark that if the number of types of customers is one for which the LST of the -
interarrival time distribution is a(s), then (40) reduces to the mean sojourn time in a
GI/M/1/PS queue given by Equation (8) in [10, p.440].

We also look at the waiting time in the SMP/M/1/RS queue for the special semi-
Markov arrival process as described above. In the same way as deriving (39), we get

GM(I-I)'TGL= 1. (41)
1—7
Using (41) in (37) yields

_
=y | (42)

‘Hence, if there is a single type of customers for which the LST of the interarrival time
distribution is a(s), (42) is reduced to the mean waiting time in the GI/M/1/RS queue.
This queue is treated in Cohen's book [3, p.443], but he does not comment on this
reduction in [4].
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