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A Delayed Renewal Process Approach

Ramén M. Rodriguez-Dagnino, ! Jorge J. Ruiz-Cedillo, ? and Hideaki Takagi *

Abstract

Tracking mobile users in cellular wireless networks involves two basic functions:
location update and paging. Location update refers to the process of tracking the
location of mobile users that are not in conversation. Three basic algorithms
have been proposed in the literature, namely the distance-based, time-based, and
movement-based algorithms. The problem of minimizing the location update and
paging costs has been solved in the literature by considering exponentially dis-
tributed Cell Residence Times (CRT) and Inter-Call Time (ICT), which is the
time interval between two consecutive phone calls.

In this paper we have selected the movement-based scheme since it is eflective
and easy to implement. Applying the theory for the delayed renewal process, we
find the distribution of the number of cell crossings when the ICT is a mixture
of exponentially distributed r.v.’s and the CRT comes from any distribution with
Laplace-Stieltjes transform. In particular, we consider the case in which the first
CRT may have a different distribution from the remaining CRT’s, which includes
the case of circular cells. We aim at the total cost minimization in this case.

1 Introduction

In personal communication networks (PCN), the wireless cells have a limited coverage
range, which means that a user will be crossing through several wireless cells during a
call duration as well as during an Inter-Call Time (ICT), the time interval between two
consecutive phone calls. Each wireless cell crossing may need switching network facilities,
which are necessary in order to maintain connectivity with the network and the location
tracking of the mobile. The performance of PCN is affected by the manner the network
manages the movements of the mobile users not only for handover management during
a call duration but also to track the location of the mobile users during an ICT so that
incoming calls can be delivered to the mobile subscribers.

Typically, for location tracking purposes a mobile service area is partitioned into
several subareas, so-called registration areas (RA) or location areas (LA). One of the
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main challenges of mobility management is to update the registration (or location) of a
mobile in an efficient manner when it moves from one RA to another. The registration
and the call-delivery procedure take place by using the information in the Home Location
Register (HLR) and the Visitor Location Register (VLR) mobility databases. The HLR
is a database used to store all permanent subscriber data, whereas VLR is the database
of the service area visited by a mobile user. The VLR database can overflow when
many users move into the VLR-controlled area in a short period of time. Under this
phenomenon a new mobile user entering this RA fails to register in the database, so it
cannot receive the service, and the subsequent calls to this user may be misrouted.

Three basic schemes for location update are described in [1], namely the movement-
based which updates the location as a function of the number of movements performed
or crosses through different RA’s, the time-based which performs location updates based
on the time elapsed, and distance-based which uses the distance traveled since the last
location update. Akyildiz et al. [2] justify the use of the movement-based location
update policy due to its simplicity, since it does not require each mobile terminal to
store information regarding distances or times, and each mobile terminal only needs to
keep a counter of the number of cells visited. A registration is performed when this
counter exceeds a predefined threshold value.

Recently, Li et al. have considered Cell Residence Times {(CRT) with any probability
distribution and exponentially distributed ICT [3] for a dynamic mobility management
scheme with the movement-based strategy for the location update. They consider the
Joint minimization of the cost of paging (Cp(d)) and the cost of location update (C,(d))
for the hexagonal and mesh configurations as a function of the optimal movement thresh-
old d. A fundamental point in thier analysis is to find the probability mass function (pmj)
of the number of cell boundary crossings during an ICT. This problem is mathematically
equivalent to the problem of finding the pmfof the number of handovers in a Call Holding
Time (CHT), as shown in [2] and [3]. The pmf for the number of cell boundary crossings
in a random interval, namely CHT or ICT, have been derived for many special cases
in several papers for a regular configuration or a single homogeneous wireless platform,
where it is natural to assume the same distribution for the CRT in all the wireless cells;
see for instance (4], [5], [6], [7], [8]. In our approach to finding such a pmf, we have
followed several arguments from renewal theory, in particular that for the equilibrium
renewal process defined by Cox [9]. In [10}, we have extended our previous results to the
case of a delayed renewal process, i.e., a renewal process where the first wireless cell has
a different CRT probability distribution from the remaining cells. Our approach allows
us to extend the Li et al.’s results {3] to the case of circular cell configurations.

2 Probability Distribution for the Number of Cell
Crossings

Let N(t) denote the number of renewals (or cell crossings) in a fixed interval (0, t), and let
us suppose that the interrenewal times occur according to a sequence of random variables
{1, Ts,...,T;,. ..} with probability density functions (pdf) fr.(t) whose Laplace-Stieltjes
Transform (L.-S.T.) is denoted by f7.(s). Now, let T, be a random variable representing
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the ICT. Let us assume that T, is independent of the random variables T;;i = 1,2, .. ..
In fact, the sequence of random variables {T},75,...,T;,...} represents the CRT’s of
a call in wireless cells. Hence, N(7,) is a random variable which gives us the number
of cell crossings in the random interval (0,7.). As defined by Cox [9], we have an
ordinery renewal process when all the random variables 7;;¢ = 1,2,... come from the
same distribution. We have an eguilibrium renewal process when {715,T3,...,T;,...}
come from the same distribution ¥ (), and T is the excess life (or residual life} of the
random variable T. This case seems to be the appropriate model for a single homogeneous
wireless platform, as it has been established in {4] and considered in [3] as well. On the
other hand, when the random variable T} comes from a different distribution, say Fr, (t),
and {13,T3,...,T;,...} come from the same distribution Fr,(t), we have the modified
or delayed renewal process [9]. This is just the process that we will use to model the
circular configuration in this paper.

We will present our analysis by considering the hyperexponential distribution for the
ICT, and the CRT for T; corresponds to the distance from an arbitrary point in a circle
to its perimeter in an arbitrary direction if the user moves at a constant speed, and
the CRT for T5,Tj,... corresponds to the length of a segment of a straight line that
crosses the circle in an arbitrary direction [11], {12]. We will call this case the circularly
distributed CRT.

Let us denote by N(T.) the number of cell crossings during a random ICT. Then, the
probability generating function (pgf) of the number of cell crossings during the random
interval T, is given by

Cnery(e) = [ Cwolts2) fr(t) dt 1
where fr,(t) is the pdf of the random variable T, and Gn) (2, 2) is the pgf of N(t).

An interesting relationship does exist between the pgfs of N(t) and N(T.) in the
special case of k-Erlang()) pdf for the ICT, which is expressed as follows:

(2)

e o\
Gur)(2) = E=1) (_E) {GN(t)(S, z)} s

here L= 25 (5) + (2~ 1S3, 6)

—zfr(s)+ (2 — r (8

Gyin(s, 2) = L Ti
vo(5:2) S[L - 2159
is the L.-S.T. of Gy (t, 2) for the modified renewal process, as shown by Cox [9], page
38.
We will assume that the ICT random variable 7, is well modeled by a mixture of

exponential pdfs, say

M
fr.@t) =Y pire (3)

i=1
where M p; = 1. Then the generating function for the number of cell crossings in the
random interval 7, is given by

¥ 1—zf;,(x.-)+(z—1)f;~1(x.-)] "

M
G = ,‘/\,‘ Gi s
v () = 2pd {Gi(e )} | =3 T 275 (%)
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where T. = ©°M, p;T.; is the mixture of M exponentially distributed random variables
T.; with mean value E[T] = 1/A; (i = 1,2,..., M). It follows from equation (4) that
the pmf of the number of cell crossings during an ICT is given by

1- 2 —1 Pafrl (,\ ) ; =0
PIN(T,) =4 = (5)
T )N - SRR 5 =12,

We can obtain several interesting cases by specifying the L.-S.T. of the pdf for both
types of CRT’s, as it is shown in the following subsections.

2.1 Exponentially Distributed CRT

Let us assume that the time of residence in the first cell is exponentially distributed with
mean value E[T}] = 1/4,, and that the CRT for the remaining cells is also exponentially
distributed with mean value E[T;] = 1/y,. Then the corresponding L.-S5.T.’s are given

by
Ky
* = — paand 6
fT,(s) s+#r’ r 172 ( )
Hence, the pmf in equation {3) reduces to
E;—l Di 1:_"; ; £=0
PIN(T,) ={] = (7)

za_lp,(,::;;,)(H:,,i)(lr,;,..)‘-‘ Ce=1a

where p,; = E[TL)/E[T] = pefXiforr=1,2and i =1,2,..., M.

2.2 Circularly Distributed CRT

The hexagonal geometry for the wireless cells has been approximated by circles with
radius R by Hong and Rappaport [11] and by Yeung and Nanda [12]. They have derived
the CRT distributions under the assumptions that the mobiles are uniformly distributed
in the system and that the mobiles move in straight lines with direction uniformly dis-
tributed over [0, 27). The pdf of the random variable Z,, the distance from an arbitrary
interior point to the boundary of the circle, is given by equation (46) in Hong and
Rappaport [11] as
2 I z\? <y <
a0 = ;|- (5) s 0<z<2m

where R is the radius of the equivalent circle. Hence, the CRT in the first wireless cell is
given by the random variable T;, = Z,/V, where V is the velocity of the mobile, which we
will assume to be a constant in the rest of this paper. In fact, this is a typical assumption
also made in [11] and [12]. Under this assumption of constant velocity, we can obtain
the kth moment of T; about the origin as follows:

E[Tf]) = szk / &R - (z/2)2dz—\/_r(( 22) (QR) ;. k=1,2,... (8)



where I'(z) is the gamma function.
We should remember that if we have a random variable X with pdf fx(z), then its
L.-S.T. fx(s) can be expanded as a function of the moments of X as follows:

Fils) = 3 (<1 B ©)

This formula is also discussed in Cox [9], page 9. Now, by using equations (8) and (9),

we can obtain
M,

f(x) = ,?‘ D k. (10)
where (k+l)
_ k-1 NEe T 2 . _E[Tc,:] _ 744
M, = 7* (Z) r(s+2) PLi=Bm) T 8RA (11)

Similarly, the pdf for the random variable Z,, the distance from an arbitrary point
on the boundary of the circle where the mobile enters into a cell to another point on the
boundary where the mobile exits from the cell in a straight line, is given by equation
(61) in Hong and Rappaport [11] as follows:

2
=———; 0<:z<2R
fa) = = 0525
Then the CRT for this cell is given by 7> = Z,/V, and its kth moment is given by
| =2 k
E{Tﬂ:—(-%(%) . k=12, (12)
VAT (42)
Hence, by using equations (9) and (12), we obtain the following expansion:
fr () = 2:( 1t pé (13)
where -
-1 p(k2 _
PO o R w1 (14)

*r(s+1) P2i = BTy ~ 4RX

3 Costs of Location Update and Paging

The expected cost C,(d) of location update per call arrival is assumed to be

oo (k+1)d-1
Cu(d)=U E k Z P[N(T,) = ¢ (15)
k=1 t=kd

where d is the movement threshold for the location update, and U (> 0) is the cost for
performing an update which takes into account the wireline bandwidth utilization and
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the computational cost for updating. Substituting equation (5) into equation (15} we

can obtain o : oot
A
Culd) =U ) _pifr. (M) g
D=V pi O 1
Now, let us assume that the cost for polling a cell is P° (> 0). Since the circular
configuration has the same number of neighbors as the hexagonal configuration, then
the expected paging cost Cy(d) per call arrival is given by

(16)

C,p(d) = P°[1 + 3d(d — 1)}
The total cost, say CT'(d), is given by
CT(d) = Cu(d) + Cp(d)
This cost function can be optimized with respect to d by taking CT(d)/0d = 0, which

reduces to the following equation for d:
L7, Q)1 In 7, (A)]
(L — (£, (A)]4)?

Similarly to the analysis of Li et al. [3], it can be shown from the second derivative
8°CT(d)/8d? = 0 that CT(d) is a convex function.

U3 miH () +3Po(2d—1) =0 a7

4 Numerical Results

For numerical examples, we will consider the following three cases: (i) exponentially dis-
tributed ICT and exponentially distributed CRT as in [3] (EE), (ii) hyperexponentially
distributed ICT and exponentially distributed CRT (HE), and (iii) hyperexponentially
distributed ICT and circularly distributed CRT (HC). A number of parameters charac-
terize the behavior of the optimal threshold. We will compare this behavior when each
parameter is changed while the others remain fixed. We will take as a reference the
following parameters: U = 100, py = p» = 0.5, p; » = 3p1,1. In order to observe the effect
produced over the optimal threshold, we will change one by one these parameters, and
P? will be always fixed to 1.

In Figures 1 and 2, we show the behavior of the optimal threshold d as a function of
the mobility ratio for location update cost U = 100 and 15, respectively. The EE case
(dashed line in Figures 1 and 2) is the one studied in [3}; however, our definition of the
mobility ratio

__ Expected value of ICT
P *= Expected value of CRT

is the inverse of theirs. Thus, in our plots we have better resolution for large values
of p. In addition, we can observe that the optimal threshold d becomes larger as p
is increased. We should also mention that the HE and the HC cases depend on four
relative mobility ratios (p;.1, P12, 21 and, pa ), while the EE case depends only on the
mobility ratio p defined in equation (18). It is rather complicated to extract a global

(18)
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mobility ratio for the HE and the HC cases; therefore, we have decided to use p; ; as our
independent variable on the plots. This is obviously not a global mobility ratio as the
one defined in equation (18); however, our definition of the realtive mobility ratios helps
to understand the behavior of the optimal threshold d when different parameters of the
model are changed.

14}
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Figure 1: Optimal threshold as a function of the mobility ratio for I/ = 100.
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Figure 2: Optimal threshold as a function of the mobility ratio for U = 15.

Apparently in Figure 1, the HC (solid line) and the HE (dash-doted line) cases seem
to merge. However, this is only a plotting effect caused by the semi-logarithmic scale.
In fact, the difference between these two lines remains almost constant in a linear scale.
This can be observed in Figure 2.



We now study the HC case in which the total cost equation depends on the following
parameters: the mixing probabilities (p; = p,p; = 1 — p), the location update cost U,
and the four mobility ratios (py1, P12, P21, P22)- It can be seen that p;; = %pz,,- in this

case.
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Figure 3: Optimal threshold in the HC case as a function of the mobility ratio and
mixing probabilities p.
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Figure 4: Optimal threshold in the HC case for several values of A; and A,.

The behavior of the optimal threshold d, for the HC case, when the mixing proba-
bilities are changed while all the other parameters remain fixed, is shown in Figure 3.
It can be observed that the optimal threshold grows faster when p; > p;, and that the
growing speed of the optimal threshold depends on the mixing probability p. We also
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note that the size of the steps is slightly increased. In Figure 4 we observe the behavior
of the optimal threshold when the ratio é := p; »/p;, is changed whereas all the other
parameters remain fixed. This is equivalent to changing the values of A\; and A,.

The effect produced by changing the ratio 4, affects the growing speed of the optimal
threshold as well. A comparison between Figures 3 and 4 shows that the effect produced
by changing & is much stronger than that produced by changing p. Not only is the
growing speed of the optimal threshold affected by 4, but also the length of the steps is
changed. For instance, a small d ratio results in very long steps, whereas large values of
d yield relatively short steps.

10
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Figure 5: Optimal threshold in the HC case for several values of U.

In Figure 5, we show the behavior of the optimal threshold when different update
costs U are used, whereas all the other parameters remain fixed. The effect produced by
changing U is similar to that produced when § is changed. We can also observe that the
size of the steps is changed as a function of U, but this effect is not so strong as the one
produced by changing 4.

5 Conclusions

Our definition of mobility ratio describes the mobility a user has, thus a large value of p
means high user mobility. Hence, the results obtained above are in accord with intuition,
since a higher mobility ratio will require a higher value of the optimal threshold. We have
shown that the EE model of [3] has some limitation to capture the total cost behavior
of the HC case. By making the comparison with the HE case, we have shown that not
only the ICT distribution but also the CRT distribution is important to be specified in
order to have a correct measure of the cost as a function of the mobility ratio.
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