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Abstract We deal with problems for the placement of a facility in a continuous plane with the
twin objectives of mazimizing the distance to the nearest inhabitant and minimizing the sum
of distances to all the users (or the distance to the farthest user) in a unified manner. For
special cases, this formulation includes 1) elliptic mazimin and rectangular minisum criteria
problem, and 2) rectangular mazimin and minimaz criteria problem. A polynomial-time
algorithm for finding the efficient set and tracing out the tradeoff curve for these bicriteria
models is presented.
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1. INTRODUCTION

It is quite evident that there is an increasing realization and awareness of the need to opera-
tional location models of semi-obnoxious facilities, which have both desirable and undesirable
effects. Carrizosa and Plastria(1999) has good reviews of the existing literature on the semi-
obnoxious facility location. The typical example of such facility is landfills, as pointed out by
Daskin(1995). The landfills should be located from inhabitants as far as possible. At the same
time, they should be located to reduce hauling vehicle miles needed to transport the waste to
the landfill. Thus, decision makers of where to place the landfill face a tradeoff between push
and pull objectives. Other examples are airports, incinerators, power plants, fire stations,
and police stations. However, there are few analytical papers on the semi-obnoxious facilities
location because the standard approaches of convex analysis and computational geometry
can be of little help, as emphasized by Carrizosa and Plastria(1999).

This paper is concerned with a single facility bicriteria location problem in a continuous
plane where the first objective is to locate a facility as far as possible to habitants, and the
second objective is to minimize either the total distance for all users or the distance to the
farthest user. The aim of the paper is to present a unifying algorithm for analytically finding
the efficient set and tracing out the tradeoff curve between these conflicting objectives.

The most related paper by Ohsawa(2000) examined the location problem formulated by
combining Euclidean maximin and minimax criteria. A polynomial-time algorithm is pro-
posed to find the efficient set for this problem, based on the nearest-point and farthest-point
Voronoi diagrams. The present research is a extension of this related paper by introducing
general push and pull objectives. One interesting special case of our formulation is the loca-
tion problem with elliptic maximin and rectangular minisum criteria, where different metrics
are simultaneously used. Another is the location problem with rectangular maximin and
minimax criteria, in which the efficient set may contain areas. The present model consid-
erably extends Ohsawa(2000) such that its framework is much more suitable for analyzing
real-world location decisions.

The paper is organized as follows. Section 2 presents a unifying algorithm for identifying
the efficient set and the tradeoff curve. Section 3 considers the elliptic maximin and rectan-
gular minisum criteria model. Section 4 deals with the rectangular maximin and minimax
criteria model. Section 5 presents the conclusion of the paper. For convenience, all proofs

are presented in the Appendix.



2. UNIFIED BICRITERIA MODEL

2.1. Push Objective

Let Q denote a polygonal study area with n(> 3) sides on a continuous plane. Let 8Q be
the boundary of 2. Let I~ be the index set of distinct inhabitants on the plane who repel
the facility. Let p; répresent the site of the i-th inhabitant. As a push location problem, we
choose a maximin criterion, where a facility is established within 2 in order to maximize the

distance from the facility to its nearest inhabitant. This is represented as

F(x) = min ||x — p;l|, 1
max () = min [lx ~ ps| (1)
where || - || is the distance on the continuous plane. The optimal solution is said to be an

anti-center. We call F(x) push objective in relation with Eiselt and Laporte(1995). The
function F(x) is neither convex nor concave because the contour of F'(x) is given by the set
of locus equidistant from the nearest inhabitants.

The Voronoi polygon associated with p; is defined by Vi = Nger-\(ipix | Ix —pill <
lIx — pkll}- Its boundary is said to be Voronoi edges. The anti-center has to lie on either the
Voronoi edges or the boundary 052, as demonstrated in Shamos and Hoey(1975). We call the
x singular if and only if the contour curve of F(x) through x abruptly changes direction at
X, i.e., it has different tangents at x. Let Sr denote the set of singular points of the contours
of F(x) within Q. It is evident from definition that x is singular if and only if it lies on a

Voronoi edge. Therefore, Sr is given by the set of the Voronoi edges within (2.

2.2. Pull Objective

Let I be the index set of distinct users on the plane who attract the facility. Let g
represent the site of the i-th users. As a pull location problem, we consider both minisum-type
and minimax-type. In the first type, a facility is set up within the study area {2 in order to
minimize the sum of distance for all the users. Its formulation is

g OW=3 lx-al )

In the second type, a facility is set up within Q in order to minimize the distance from the
facility to the farthest user. This can be formulated as follows:

min G(X)—z—gggcllx - 3)



We call G(x) pull objective in line with Eiselt and Laporte(1995). It is evident from (2) and
(3) that the function G(x) is convex in both types. In this paper, in order to formulate the
~pull location in a unified manner, these two solutions are both said to be center. Let Sz
denote the set of singular points of the contours of G(x).

The farthest-point Voronoi polygon associated with q; is defined by W; = ﬂkeﬁ\{i}{x |
lx—pill = ||x—px||}. Its boundary is said to be farthest-point Voronoi edges. In the minimax-
type, the center has to lie on either the farthest-point Voronoi edges or the boundary 8Q: see
Shamos and Hoey(1975). Also, x is singular point of the contour of G(x) if and only if it lies
on a farthest-point Voronoi edge: see Ohsawa and Imai(1997). Thus, in the minimax-type,
Sc is given by the set of the farthest-point Voronoi edges within Q.

In contrast with the minimax-type, the analytical expression of the optimal solution in
the Euclidean distance minisum-type cannot be known so far. Therefore, it seems to be

impossible to define the set Sg in a unified manner that encompasses ariy kind of metric..

2.3. Efficient Location

Let us examine a bicriteria problem produced by combining the push and pull objectives.
We say that for any two distinct points x,y € Q, x dominates y if and only if F(y) < F(x)
and G(y) > G(x), with at least one strict inequality. The point x is said to be efficient
(Pareto-optimal) if and only if there does not exist y € Q which dominates x. The set of the
efficient points, denoted by E*, is called the efficient set. This set determines the options
from which decision makers choose. In the objective space generated by the push and pull
objectives, the locus corresponding to the efficient set is said to be the tradeoff curve. This
curve is readily comprehensible by the decision-makers, and it provides a base for location
choice decisions. -

Let pr(x) and pg(x) be the radius of curvature of the contour of F'(x) and G(x) through
x, respectively. Throughout the rest of this paper, let a* be an efficient anti-center and c*

be an efficient center, respectively.

PROPOSITION 1 If pr(x) < pg(x) for any x € Q\ (SpUSg), then 1) the tradeoff curve
can be defined over every value between F(c*) and F'(a*); and 2) E* C Sp U Sg U 892.

Note that 2\ (Sp U Sg) indicates the set of sites within £ except singular points. The proof
of this proposition is provided in Appendix A.1.
The second claim of this proposition impli'?s that it is sufficed to search for a quite small



(possibly one-dimensional) region Sr U Sg U 8. Combining this with the first claim yields

the assertion that the tradeoff curve coincides with the lower envelope of the collection of the

curves corresponding to Sp U Sg U 812 between F(c*) and F(a*), where F(x) is measured

along the horizontal scale and G(x) along the vertical. This leads directly to the procedure,

which extends the technique proposed by Ohsawa(2000):

Step 1. In geographical space, construct Sp U Sg U 0Q.

Step 2. In objective space, draw the loci (F(x), G(x)) corresponding to Sp U Sg U 0.

Step 3. In the objective space, find the lower envelope of the loci between F(c*) and F(a*).

Step 4. In the geographical space, determine the links corresponding to this lower envelope.
In order to check that the inequality pp(x) < pg(x) for any x within Q\ (Sr U Sg), we

need a full geometrical characterization of contours of both push and pull objectives. We

shall give a precise account of this inequality for two seemingly unrelated bicriteria problems.

3. ELLIPTIC MAXIMIN AND RECTANGULAR MINISUM CRITERIA

3.1. Push Objective

As pointed out in Karkazis and Papa.dimitriou(1992), Plastria and Carrizosa(1999), the odor
and noise cannot spread according to road maps. The odor and noise come from the wind
and the nuisance depends on from what direction the wind blows. For example, in seaside
towns a wind blows down a mountain in the morning, but a wind blows from the sea in
the afternoon. In order to express the effect of wind, we introduce the elliptic distance into
the push objective, as in Plastria(1992). The elliptic distance between the facility x and the
inhabitant p; is defined as

I = il = \/r(z: — 2)% + 2\ (=i — 2) (% — ¥) + plv: — V)%
with xp > A2. Since the three parameters , A and p specify the elongation in two direction
and a rotation of an ellipse, this distance can take account of a variety of direction and
velocity of the wind by changing these parameters. As a special case, if K =1, A = 0 and
p =1, then the elliptic distance reduces to the Euclidean one.

We consider the following maximin problem under the elliptic distance as a push objective:
= mi - pille 4)
max F(x) = min [x - pille (

The corresponding singular point set Sp is defined by the elliptic distance Voronoi edges

within . An example is presented in Figure 1,4where five inhabitants p1, - - , P5 are indicated



by bullets within a square study area. In this figure, the directions of the major semi-axes
make 45° angle with the z-th axis, and the magnification in the direction of the major
semi-axis is twice as large compared to the magnification in the direction of the minor semi-
axis. As demonstrated in Scheike(1994), these edges are constructed through the method
to delineate a classical Voronoi diagram and an affine transformation. This means that Sg
includes O(|I*]|) line segments. The anti-center a* is also indicated by an asterisk in Figure
1. It is evident from the definition of the elliptic distance that any contour is identified by
the boundary of the union of |[I™| ellipses centered on p;’s, as presented in this figure.

3.2. Pull Objective

The rectangular distance is applicable to a grid of streets where travel occurs along an
orthogonal set of roads. We may assume without loss of generality that the direction of
travels in the rectangular distance is parallel to the coordinate axes. Hence, the rectangular

distance between the facility x and the user q; can be defined as
llx = qll1 = |z — 2| + |y — yl.

As a pull objective, we introduce the following rectangular minisum criterion:

mme) ZIIX qill1- (5)

iel+
The vertical lines through q;’s are numbered 1, -+, |I*| from left to right, and the horizontal
lines through q;’s are numbered 1, -- -, |I™| from bottom to top. These lines divide the whole
region into (]I + 1)2 blocks. This situation is shown in Figure 2, where five users q1,-- -, Qs
are indicated by small circles within the same study area with Figure 1. As indicated by
Francis and White(1974), if |I*| is even, then the solution is identified by an intersection
point of the (n + 1)/2-th horizontal and the (n + 1)/2-th vertical lines. Otherwise, it is
defined by the block which is delimited by vertical lines n/2 and n/2+ 1 and horizontal lines
n/2 and n/2+1. For example, the solution c* is designated as an asterisk in Figure 2. Francis
and White(1974) also showed that the contour of G(x) within each block is made up of only
a line, as presented in the figure. Thus, the singular point set Sg is defined by n horizontal

and n vertical lines within Q.

3.3. Efficient Location



Let us study the location problem obtained by combining the objectives (4) and (5). This
model is applicable to semi-obnoxious facilities such as incinerators and landfills. Dioxin dis-
charged by incinerators is subjected to meteorological condition. Fuel consumed by garbage
vehicles is proportional to their distances travelled. Both the pollution emission and the fuel
consumption should be reduced from environmental point of view.

Any elliptic curve has finite radius of curvature, while any line has infinite radius of
curvature. This indicate that pr(x) < pg(x) for any x € Q\ (Sr U Sg).

PROPOSITION 2 The efficient set associated with elliptic mazimin and rectangular min-

isum criteria can be found in O(n|I~||I*|logn|I~||IT]) time.

See Appendix A.2 for derivation of this proposition. It should be noted that if |[I*] is even,
then the center is given by a block, but the efficient center is defined by one point of the
boundary of the block. ' '

The tradeoff curve and the efficient set corresponding to Figures 1 and 2 have been solved
- by our procedure. The tradeoff curve consists of three discontinuous parts. This is indicated
by the curve joining z; and zs; the curve joining z3 and z4; and the curve joining z5 and zg
in Figure 3 where the graphs corresponding to Sg, Sg and 9 are designated by the thin,
broken and thick segments in connection with Figures 1 and 2. The efficient set consists of
four discontinuous pieces, as indicated by bold segments in Figure 4. It should be noted that
the network in Figure 3 has the same topological structure with the network SpUSgUO< in
Figure 4. This is due to continuity. As the decision-makers weight the relative importance of
the pollution emission to the fuel consumption, the alternative to be selected moves from the
center ¢* towards the anti-center a* through vi,vs,---,Vve. In order to confirm the process
of the jumps that occur in the geographical space, Figure 4 exhibits four ellipses by dotted
segments: the smallest ellipse passes through v, and v3; two immediate ellipses pass through
vs and vg, respectively; and the largest ellipse passes through vz and vs.

In order to understand how wind direction and velocity affects the efficient set, we consider
two other elliptic distances for the same inhabitant and user distributions: 1) the Euclidean
distance, and 2) the elliptic distance where the directions of the major semi-axes make 135°
angle with the z-axis, and the magnification is the same with the original distance. The
corresponding efficient sets are presented by bold segments in Figures 5 and 6, respectively.
Comparing these figures with Figﬁre 4 implies that the effect of wind has a serious influence

on the efficient sets from geographical point oé view.



Our procedure is applicable to the elliptic maximin and minimax bicriteria problem, where
the inhabitant set coincides with the user one. In this situation, Sr is defined by the ellipﬁic
farthest-point Voronoi edges. Since the elliptic distance to the farthest user is larger than

the one to the nearest inhabitant, we have the inequality pr(x) < pg(x).

4. RECTANGULAR MAXIMIN AND MINIMAX CRITERIA
4.1. Push Objective

Instead of the elliptic distance, we introduces the rectangular distance into a push objective:
max F(x) = min [x — pifls, (6)

Therefore, the singular point set Sr is defined by the rectangular Voronoi edges. Note that if
the line through two inhabitants is positioned at 45° angle with the coordinate axes, then the
rectangular bisector between them is not a unique boundary but rather areas, as indicated
by Lee(1980). When we use the actual inhabitants’ sites, they are in general position. So we
assumme that the line thrbugh any two inhabitants cannot make 45° angle with the coordinate
axes. As shown in Lee(1980), these edges are O(|I~|) line segments. Figure 7 provides
an example of the rectangular Voronoi diagram associated with five inhabitants pi,---,ps
within a square study area. The anti-center a* is also indicated by an asterisk in this figure.
Any contour of this objective function is given by the boundary of the union of [I*| squares

centered on p;’s positioned at 45° angle with the coordinate axes, as shown in the figure.

4.2. Pull Objective

Under the rectangular pull objective, we adopts the minimax-type:
i = - qill1. ' 7
min G(x) = max [[x ~ qfly (M

As examined in Elzinga and Hearn(1972), the solution to this optimization problem is iden-
tified by the center of the smallest square such that 1) it contains all the users g;’s; and 2)
its four sides all make 45° angle with the coordinate axes. In general, the center c* cannot
be uniquely defined. The singular point set Sg is given by the rectangular farthest-point
Voronoi edges within the study area 2, as examined in Ohsawa and Imai(1997). Analoguous
to the inhabitants’ sites, we assume that the line through any two users cannot make 45°

angle with the coordinate axes. It is worth n/pting that there are at most four rectangular



farthest-point Voronoi polygons, i.e., at most five Voronoi edges. In addition, these edges
are linear. Figure 8 indicates the rectangular farthest-point Voronoi diagram associated with
five users qi,---,qs within the same study area with Figure 7. As displayed in Figure 8,
any contour of the rectangular minimax criterion is a rectangle rotating 45° angle with the
coordinate axes. The center is defined by a line segment joining ¢} and ¢}, which appears as
a shaded line. Two smallest enclosing squares rotating 45° from the coordinate axes centered

on c} and cj are also drawn by dotted segmehts.

4.3. Efficient Location

Combining the objectives (6) and (7) yields a bicriteria model, which is rectangular version
of Ohsawa(2000). This model seems to be applicable to semi-obnoxious facilities such as fire
stations and police stations. Inhabitants want to be located farther from such a facility
because of unpredictable traffic congestion and noise. On the other hand, the distance from
a facility to the farthest user should be small from the equity viewpoint.

Since the contours of F(x) and G(x) are both linear, i.e., pr(x) = pg(x), we cannot
directly apply our procedure to this model. Specifically, the procedure can trace out the
exact expression of the tradeoff curve, but it can produce only a portion of the efficient set.
The efficient set may consist of not only line segments but also areas. An equidistant line from
their nearest inhabitant can be simultaneously equidistant from their farthest user. However,
the efficient location outside Sp U Sq U 0Q are always located between two points within
Sp USgUORN. Therefore, we can obtain the complete expression of the efficient set by doing
one more step after Steps 1-4.

Step 5. In geographical space, draw a line segment joining two distinct points which are
transformed into the same point on the lower envelope.

Then, the efficient set is given by the links defined in Step 4, ;and the a.réas encompassed
by these links and the line segments identified in Step 5.

PROPOSITION 3 The efficient set associated with rectangular mazimin and minimaz cri-
teria can be constructed in O(n|I~|logn|I~| + |IT|) time.

The proof of this proposition is given in Appendix A.3.
The tradeoff curve and the efficient set corresponding to Figures 7 and 8 have been
obtained by use of our procedure. The tradeoff locus is formed at one point and three

discontinuous segments. This is illustrated gx Figure 9 where the plots corresponding to



Sp, S¢ and 0Q are designated by the thin, broken and thick segments with reference with
Figures 7 and 8. The efficient set consists of the center ¢* and three areas, which appear
as shaded areas, denoted as Aj, Az and Az in Figure 10. These areas A;, As and Ag are
delimited by the segment between u; and ug, the segment between v and v, and the segment
between w; and wy, respectively. As’ the decision-makers weights the relative importance of
the desirable characteristic to the undesirable one, the alternative to be selected moves from
the center c* towards the anti-center a* through three regions A;, A and As. To confirm the
process of the jumps occurred in the geographical space, four squares are indicated by dotted
segments in Figure 10: the smallest square passes through ¢*, u; and uy; two immediate
squares pass through us and v, respectively; and two largest squares pass through vz and
w1, respectively.

Three other remarks peculiar to this rectangular model are presented. First, the tradeoff
curve is made up of only the lines of a slope +1 in the objective space: see Figure 9. This
means that both the tradeoff curve and the efficient set can be readily traced by use of
broadly available computer codes. Second, the line segment which makes 45° angle with the
coordinate axes in the geographical space can be expressed as a point in the objective space.
For example, the line segxﬁent joining ug and uy in Figure 10 is plotted by zo in Figure 9.
This is because both the nearest and the farthest distances of all points on the segment are
the same. Finally, several loci may overlap each other in the objective space. For example,
the path from u, to ug through us, and the path from u; to ug through us and uy in Figure
10 are both expressed as the same segment connecting z; with z3 in Figure 9. In addition,
the segment connecting w; with a*, and the one connecting wy with a* are both expressed
as the same segment joining z4 and zs.

The weighted scalarization problems are examined in Mehrez et al.(1985) and Drezner et
al.(1986). Mehrez et al.(1985) proved that if the inhabitant set coincides with the user set,
then the solution to the weighted problems lies at an intersection point of the rectangular
bisectors between a.ny' pair of users. Drezner et al.(1986) demonstrated that if both objective
functions (6) and (7) are assigned by an equal weight, the solution lies either at a nearest-point
or & fa.rthes;c-point Voronoi edge. Thus, our finding is consistent with their results.

Our procedure from Steps 1 to 5 is applicable to the rectangular maximin and minisum
bicriteria problem, where the efficient set may contains an area. Konfurty and Tamir(1997)

examined both the rectilinear minisum and minimax problems with minimum rectilinear
9



distance constraints. Theoretically speaking, the efficient set is given by the solution to
all possible restricted problems obtained by changing the minimum threshold. However,
their proposed solution method is specialized to the problems for a fixed minimum distance
constraint. Our procedure can identify all at once not only the efficient set but also the

tradeoff curve different from their work.

5. CONCLUDING REMARKS

Location models are constantly evolving to accommodate the requirements of specific ap-
plications. In addition, location for semi-obnoxious facility that provides both services and
some damage is certainly an exciting field of research.

In this paper, we first presented a unifying technique for tracing out the tradeoff curve
and then finding the efficient set associated with such facility in a continuous plane. Second .
we examined the efficient set and the tradeoff curve for the elliptic maximin and rectangular

- minisum bicriteria location problem, and the rectangular maximin and minimax bicriteria

location problem.
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Mathematical Appendix
A.1. Proof of Proposition 1
For specified values a(> 0) and 8(> 0), define Lg(c) and Lg(B) by Lr(a) = {x € Q|F(x) =
a} and Lg(B) = {x € Q|G(x) = B}, respectively. Thus, Lr(a) and Lg(B) symbolize a
contour of F(x) and G(x), respectively. Consider a restricted problem in which the objective
is to minimize G(x) subject to the constraint x € Lr(a). Let s*(a) deno;ce the solution of
this restricted problem.

First, we prove that E* = {s*(a)|F(c*) < a < F(a*)}, leading to the first claim. It
is straightforward to see that E* C {s*(a)|0 < @ < oo}. For all a with 0 < o < F(c*),
s*(a) < c* since F(S* (@)) = a < F(c*) and G(s*(a)) > G(c*). In addition, for all o with
F(a*) < a, s*(a) can not be defined since Lr() = ¢. Therefore, we get E* C {s*(c)|F(c*) <
a < F(a*)}. On the other hand, for F(c*) < a < 8 <7 < F(a*), F(x) < F(s*(8)) for any
x € Lp(c). This means that s*(8) cannot be dominated by x. Since G(x) is quasi-convex,
G(s*(B8)) < G(s*(7)), indicating that G(s*(8)) < G(x) for any x € Lr(7), i.e., s*(8) cannot
be dominated by x. This means that E* D {s*(a)|F(c*) < a < F(a*)}. |

Next, we demonstrate that {s*(a)|F(c*) < a < F(a*)} € Sr U Sg U 0Q. Suppose now
that s*(a) ¢ Sr U Sg U 8. The contour Lg(G(s*(a))) has to be inscribed in the contour
Lr(a) due to the quasi-convexity of G(x). However, this contradicts pr(x) < pg(x). In
conclusion, s*(a) € Sp U Sg U Q. Combining E* = {s*(a)|F(c*) < a < F(a*)} with this
yields E* C Sp U Sg U 0%, i.e., the second claim. O

A.2. Proof of Proposition 2

The elliptic Voronoi diagram can be constructed in O(|I~|log |I~|) time: see Scheike(1994).
The vertical and horizontal lines can be build in O(|I*|) time. Therefore, Step 1 can be
done in O(|I~|log |[I~|+|I*|) time. Since each Voronoi edge intersects these lines at o(|I*))
time, there are O(n|I~||I*]) links within the network Sp U Sg U 9Q. Thus, Step 2 requires
O(n|I~||I*|) operations. As we shall see later, the loci corresponding to any two links of
Sp U S U 8 intersect each other at most twice in objective space. Hence, Step 3 requires
O(n|I~||I*|logn|I~||I*]) time in the worst case, as shown in Boissonnat and Yvinec(1998).
Since the number of the loci on the lower envelope is O(n|I~||I*]), Step 4 can be carried
out in O(n|I~||I*|) time. Therefore, the maximum time complexity, which equals the time

complexity of Step 3, is O(n|I~||IT| 1ogn|I‘lllg*'|).



Let us now return to prove that the loci corresponding to any two links of Sg U Sg U 60
intersect each other at most twice. Consider a link ! such that | € V; N B; ;. Assume that !

is on a liner equation az + By = . Any point x on [ fulfills the following three equations:

Fx) = &z —2)% 42Xz — ) (% —y) + pyi — v)% (8)

G(x) = S oz-m+ Yy ze—z+ > y—yt Y. y—%9)
ze{z|z.>z;} z€{z|z.<z;} z€{z|y:>yx} z€{z|ly=<yx}

By = —az+7. (10)

It follows from this systems that the loci corresponding to any two links intersect each other

at most twice. O

A.8. Proof of Proposition 8
The rectangular nearest-point and farthest-point Voronoi diagrams can be in O(JI~|log |I7])
and O(|I*|) time. So, Step 1 can be carried out in O(|I~|log|I~| 4+ |I1|) time. The network
SrUSg U0 contains O(n|I~|) links, Step 2 can be done in O(n|I~|) time. As we shall see
later, the loci corresponding to any two links of Sr U Sg U 00 intersect each other at once.
Therefore, Step 3 requires O(n|I~|log n|I~|) time in the worst case. Since the number of the
loci on the lower envelope is O(n|I~|), Step 4 can be carried out in O(n|I~|) time. Step 5 can
be done in O(n|I~|) time. Therefore, the total complexity is given by O (n|I~|log n|I~|+|IT]).
We must now return to verify that the loci corresponding to any two links of SpUSqgUSS
intersect each other at once. If 1) x lies on the link ! with ez + By = v, 2) p; is the nearest

habitant from x, and 3) q; is the nearest user, then we have

F(x) = l|zi—2|+|y -yl
Gx) = |zj—al+ly;—yl;
By = —ax+-7.

It follows from this simultaneous linear equations that F(x) is linear with respect to G(x).

This means that the loci corresponding to any two links intersect each other at once O
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Figure 1: Elliptic Voronoi diagram, and contour of maximin criterion
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Figure 2: Parallels, and contour of rectangular minisum criterion
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Figure 3: Tradeoff curve of elliptic maximin and rectangular minisum criteria
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Figure 4: Efficient set of elliptic maximin and rectangular minisum criteria
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Figure 6: Efficient set of another elliptic maximin and rectangular minisum criteria
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Figure 7: Rectangular Voronoi diagram, and contour of maximin criterion
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Figure 8: Rectangular farthest-point Voronoi diagram, and contour of minimax criterion
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Figure 9: Tradeoff curve of rectangular maximin and mininax criteria



Figure 10: Efficient set of rectangglar maximin and mininax criteria



