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Abstract

A closure space is a pair (X, 7) of a finite set X and a closure operator : 2X — 2% with
7(0) = §. The extreme point operator ex: 2X — 2% associated with closure space (X, 7)
is defined as ex(4) = {p|p € A,p & (4 - p)} (4 € X). We investigate the extreme
point operators of closure spaces and convex geometries (or antimatroids), and show that
each of the following conditions is necessary and sufficient for a closure space (X, 7) to be a
convex geometry: (i) ex(A) = ex(7(4)) for each A C X; (il) ex|z: £ — £ is bijective; (iii)
ex{B) € A C B implies ex(4) C ex(B); (iv) ex '(A) is an interval in 2% for each A € £,
where £ = {A C X |7{A) = A} and £ = {A C X | ex(4) = A}. New characterizations of
convex geometry in terms of closure operator are derived as well,
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1. Introduction

For a finite set X and a closure operator 7:2%X — 2% with (@) = @, we call the pair (X, 7)
a closure space. A closure space (X, 7) is called a convex geometry if 7 satisfies Antiexchange
Axiom, which is, in a sense, opposite to the Steinitz-MacLane exchange property of closure
operators of matroids. (Precise definitions will be given in the later sections.) Convex geometries
(or antimatroids} arise in many situations in combinatorics and combinatorial optimization. See
Edelman and Jamison (3], Korte, Lovdsz and Schrader [8], Dietrich [2] for surveys and examples
of convex geometry.

For a closure space {X,7) the extreme point operator ex: 2% — 2% is defined as ex(A) =
{plpe Ap & 7(4-p)} (A C X). Although convex geometries are studied considerably,
less attention has been paid to the behavior of extreme operators of closure spaces and/or
convex geometries in the literature of discrete mathematics. In the meanwhile, a remarkable
- result on the extreme operators of convex geometries was brought from the literature of social
choice theory: Koshevoy [9} showed that the path independent choice functions are exactly
the extreme point operators of convex geometries, Moreover, Johnson and Dean [6] showed
another interesting property of path independent choice functions, which was called the quotient

property,
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In this paper, we investigate the extreme point operators of closure spaces and convex ge-
ometries, and discuss the results of Koshevoy and Johnson and Dean in the context of the theory
of closure operator rather than that of social choice function. As a result, we obtain four chasr-
acterizations of convex geometries in terms of extreme point operator: Each of the following
conditions is necessary and sufficient for a closure space (X, 7) to be a convex geometry.

(i) VA C X:ex(r(A4)) = ex(A).

(i) ex|z: L — £ is bijective.

(ili) VA, B C X:ex(B) C A C B = ex{A) Cex(B).
(iv) VA € £, ex"1(A) is an interval in 2%,

where £ C 2% is the set of subsets A C X such that ex(A) = A and L is the set of closed subsets
of X. .

In Section 3, we show that convex geometries can be characterized by Condition (i), It is
well known that closure space (X, 7) is a convex geometry if and only if 7 and ex satisfy the
Minkowski-Krein-Milman property (MKM property): VA C X:7(ex(4)) = 7(A) (see [3]). The
condition (i} is a variant of MKM property.

Kashiwabara and Okamoto [7] observed that if (X, ) is a convex geometry, then the mapping
ex|z: £ —+ £ is bijective. In Section 4, we prove that this property characterizes convex geometries
indeed. We show a similar condition for 1 characterizing convex geometries as well.

The condition (iii) is called Aizerman's Axiom (cf. Moulin [10]). As an immediate corollary
of Koshevoy's theorem, we can see that a closure space is a convex geometry if and only if its
extreme point operator is path independent. Analyzing path independent mappings carefully, we
have a slightly stronger result. In Section 5, we show that a closure space is a convex geometry
if and only if its extreme point operator satisfies Aizerman’s Axiom.

Johnson and Dean [6] called the condition (iv) the quotient property. They showed that for a
choice function, path independence is equivalent to Chernoff property and the quotient property.
Combining this result with that of Koshevoy, we can see that the extreme point operator of a
convex geometry satisfies the quotient property. In Section 6, we will prove that for a closure
space the quotient property is also sufficient to be a convex geometry. Moreover, we show the
quotient property for closure operators characterizes convex geometries.

2. Closure spaces

In this section, we collect important lemmas concerning extreme point operators of closure
spaces, which will be useful in the subsequent sections.

Let X be a finite set. We call mapping 7:2% — 2% a closure operator if 7 satisfies the
following conditions. ' '

(C1) YAC X A C 7(A) (Extensionality).
(C2) VA, B C X: A C B = 7(4) C 7(B) (Monotonicity).
(C3) YA C X:7(r(A)) = 7(4) (Idempotence).

A pair (X, 7) of a finite set X and closure operator v with () = @ is called a closure space
(cf. [4]}). For a closure space (X, ), a subset K C X is called closed if 7(K) = K.
Closed subsets of closure spaces are characterized as follows.



Proposition 2.1: For a closure space (X, 7) the family L of closed subsels satisfies the Jollowing
two conditions:

(A1) 0,X € L.
(A2) A, BeL= ANBeL.
Conversely, given a family £ C 2% satisfying (A1)~(A2), the pair (X,7) defined by

=({K|ACKeL} (ACX). (2.1)

is a closure space, and L is the family of closed subsets of (X, 7). [

Thus, a closure space is uniquely determined by its family £ of closed subsets. It should be
noted here that £ ordered by set-inclusion is a (finite) lattice, and conversely, every finite lattice
is isomorphic to the lattice of the closed subsets of a closure space.

Let (X, 7) be a closure space. For A C X we call S C A a spanning set of A if 7(S) = T(A).
A minimal spanning set of A is called a basis of A. For A C X an element p € A is an extreme
point of A if p ¢ 7(A — p). We denote by ex(A) the set of extreme points of A. The mapping
ex: 2% — 2% thus defined is called the extreme point operator associated with (X, 7).

Throughout the rest of this paper, we always denote by ex the extreme point operator
associated with the closure space in context,.

Lemma 2.2: For a closure space (X,7) subset A C X is closed zf and only if for eachp & A
we have p € ex(AU p).

(Proof) Suppose that A is closed. If p & A, then we have T({AUp) — p) = 7(4) = A ¥ p, and
hence, p € ex(A U p).

Conversely, suppose that for each p ¢ A we have p € ex(AUp). Ifp ¢ A, we have p ¢
T({(AUp) — p) = 7(A). Therefore, we have 7{A4) C A. [

Extreme point operators of closure spaces can be described as follows.

Lemma 2.3: Suppose that (X,7) is a closure space. Then, for each A C X we have

=({B|B < 4,7(B) =r(4)}.

(Proof) Let p be an extreme point of A and B be a basis of A, If p ¢ B, then since B C 4 —p,
we have 7(B) C 7(A ~ p) G 7(A) contradicting B is a basis of A. We thus have inclusion C.

Conversely, if p € A is not an extreme point of A, we have 7(4—p) = 7(A4). Hence, inclusion
2 holds,.O

Lemma 2.3 is partly due to Edelman and Jamison [3].
The following proposition shows that the extreme point operator of a closure space has an
important property called the Chernoff property (cf. Moulin [10]).

Lemma 2.4: Let (X,7) be a closure space. If AC B C X, we have ex(B) N A C ex(A).

(Proof) If p € ex(B)N A, we have p & 7(B—p). Since 7(A—p) C 7(B—p), we have p ¢ 7{A—p).
: il

The lemma above was proved for convex geometries by Pfaltz [11].



Example 2.5: Consider a closure space (X, 7), where X = {a,b, c} and the associated family
of closed subsets is given by £ = {0, {a}, {8}, {c}, {a,b},{a,b,c}}. The left-hand side of the
following figure shows the Hasse diagram of £ ordered by set-inclusion and the right-hand side
shows the extreme point operator associated with this closure space, where we abbreviate, say,

{a, b} to ab.

abc abC:'}C
ab ab—ab carrea  ber be
® O O
ars b= b e e
a ¢ () . (] ()
f * P9
L ex

3. A variant of the Minkowski-Krein-Milman property

A closure space (X, 7) is called a convez geometry if the following Antiexchange Aziom holds,
(AE) VAC X,Vp,q ¢ 7(4)iq € T(AUp) = p € 7(AU ).

Convex geometries can be characterized in many ways. Among them are the followings due to
Edelman and Jamison [3].

Theorem 3.1 (Edelman and Jamison [3]): Suppose that (X,1) is a closure space. Then, the
following conditions are equivalent.

(a) (X,7) is a convez geometry.
(b) For each closed set I # X there exists p € X — K such that K Up is closed.
(c) Each A C X has the unique basis.
(d) For each closed set K, we have K = 7(ex(K)).
(e) For each A C X, we have 7(A) = 7(ex(4)).
(f) For each closed set K and p ¢ K, we have p € ex(7(K Up)).
a

Each of Conditions {d) and (e) in the above theorem is called the (Finite) Minkowski-Krein-
Milman property.

Lemma 3.2: Let (X, 7) be o closure space. For each A C X, we have ex((A)) C ex(A).
(Proof) Bach spanning set of A is a spanning set of 7(A4), that is,

{B[BC A7(B)=1(4)} C{B| B C7(A),r(B) =r(r(4))}.
It follows from Lemma, 2.3 that ex(r(A)) C ex(A). O |

We have the following variant of the MKM property, where 7 and ex are transposed.



Theorem 3.3: A closure space (X, 7) is a convex geometry if and only if for each A C X we
have ex{A) = ex(r(4)).

(Proof) We have ex(A) 2 ex(7(A)) for each A C X by Lemma 3.2.

If (X,7) is a convex geometry, then it follows from Theorem 3.1(d) that ex(r(A)) is a
spanning set of A. Therefore, we have from Lemma 2.3 that ex(A4) G ex{r(4)).

Conversely, suppose that (X, 7) is not a convex geometry. Then, by Theorem 3.1(f), there
exists a closed K and p ¢ X such that p ¢ ex(m(K Up)). However, since we have p € ex(K U D)
due to Lemma 2.2, it follows that ex(K Up) 2 ex(7(K U p)). 0

4. Bijective properties

The extreme point operator of a closure space is idempotent as is shown in the following propo-
sition.

Proposition 4.1 (Idempotency): Let (X,7) be a closure space. We have ex(ex(A)) = ex(A)
foreach AC X,

(Proof) Since we have ex(A) C A, it follows from Lemma 2.4 that ex(A) = ex(4) N A4 C
ex(ex(A)). O

For a closure space (X, 7) a subset A C X is called free if ex(4) = A. Proposition 4.1 shows
that the range of ex: 2% — 2% is precisely the family of free subsets,

Kashiwabara and Okamoto [7] noticed that if (X, T) is a convex geometry, then the mapping
exle: £ = £ is a bijection, where £ C 2% and £ C 2% are, respectively, the families of closed
and free subsets. In fact, this property characterizes convex geometries. To prove it, we need
the following lemma,

Lemma 4.2: Suppose that (X, 7) is a closure space. For A C X, each basis of A is free,

(Proof) Let B be a basis of 4. If b € B, then, since B is a minimal spanning set of A, we have
7(B —b) € 7(A) = 7(B), and hence, b ¢ 7(B ~ b). Therefore, we have B C ex(B), i.e.,, B is
free. O

Theorem 4.3: A closure space (X, ) is a convex geometry if and only if ex|p: £ — &€ is bijec-
tive, where £ C 2% and £ C 2% are the families of closed and free subsets, respectively.

(Proof) (“only if” part:) By Theorem 3.3, we have ex(A4) = ex(r(4)) for each A C X. Hence, it
is clear that mapping ex| is surjective. If K, K’ € £ and ex{K) = ex(K"), then it follows from
the MKM property (Theorem 3.1(d})) that I = r(ex(K)} = 7(ex(K")) = K’

(“if" part:) Suppose that ex|s: £ - £ is bijective. If (X, 7) is not a convex geometry, then
it follows from Theorem 3.1(d) that there exists a closed set K such that K 3 7(ex(K)). Let
K be such a closed set with ex(X) being maximal,

Let B be a basis of K. We have B 2 ex(X) by Lemma 2.3 but since ex(X) cannot span K,
we have B 2 ex(K). Since B € £ by Lemma 4.2 and ex|¢ is bijective, there exists I £ L € £
such that B = ex(L). However, the choice of K implies that L = r(ex(L)) = 7(B) = K. This
is a contradiction. O '

In particular, the extreme point operator of a convex geometry gives rise to a “choice func-
tion” (see e.g, Moulin [10]) as the following corollary shows.

Corollary 4.4: If a closure space (X,T) is a conver geomelry, then for each § # A C X we
have ex(A) #0. ‘

ot



(Proof) Let (X, 7) be a convex geometry and A C X. If ex(A) = @, we have from Theorem 3.3
that ex(r(A)) = @. Furthermore, it follows from Theorem 4.3 that 7(A) = §. Therefore, we
have A = § due to the extensionality of 7. O

It is very natural to ask whether a similar” statement as Theorem 4.3 holds for 7. The
following theorem gives the positive answer for this question.

Theorem 4.5: A closure space (X,T) is a convez geometry if and only if 7|g: £ = £ is bijective,
where L C 2% and £ C 2% are the families of closed and free subsets, respectively.

(Proof) (“only if” part:) Suppose that (X,) is a convex geometry. For each X € £ we have
K = 7{ex(K)) by Theorem 3.1(d). Therefore, 7|¢ is surjective.
Suppose that for A, B € £ we have 7(A) = 7(B). It follows from Theorem 3.3 that

A = ex(A) = ex{7(A)) = ex(7(B)) = ex(B) = B,

and hence, 7|¢ is injective.

(“if” part:) Suppose that (X,7) is not a convex geometry. Then, it follows from Theo-
rem 3.1{c) that there exists a closed K having two distinct bases. Let B; and B, be such
bases. We have By, By € £ by Lemma 4.2 and that K = 7(B)) = 7(B3) by definition of basis.
Therefore, 7|¢ is not bijective. 0

The family of free subsets is an independent system for a closure space (X, 7) as the following
proposition shows.

Proposition 4.6: Let (X, 7) be a closure space. If A is free and B C A, then B is free.

(Proof) Suppose that A = ex{A). We have from Lemma. 2.4 that B = BNA = Bnex(A) C ex(B).
It is clear from definition that ex(B) C B. [1

5. Ailzerman’s Axiom

First, we summarize properties of extreme operators of closure spaces obtained in Section 2.

Proposition 5.1: Let (X, 7) be a closure space and let S = ex: 2% — 2% Then, there hold the
following conditions (Ex1)-(Ex3).

(Bx1) VA C X: S(A) C A (Intensionality).
(Ex2) Vp € X:S({p}) = {p} (Singleton Identity).
(Ex3) AC B C X == §(B)NAC S(A) (Chernoff property).

(Proof) Both Conditions (Ex1) and (Eﬁc?) are clear from definitions. Condition (Ex3) follows .
from Lemma 2.4. O

The following proposition shows implication of Conditions (Ex1)-(Ex3).

Proposition 5.2 (Mouhlin {10]): Condition (Ex3) is equivalent to any one of the followings
four conditions provided that (Ex1) holds.

(Ex3a) VA, B C X:S(AUB) C S(S(A) U B).
(Ex3b) VA, B C X:S(AU B) C 5(S(4) US(B)).
(Ex3c) VA, B C X:S(AUB) C S(A)U S(B).



(Ex3d) VA, B C X:S(AUB) C S(4)UB.
O

The following lemma is due to Koshevoy. Wé include an alternative proof.

Lemma 5.3 (Koshevoy [9]): Suppose that a closure space (X,7) is a conver geometry. Then,
S = ex satisfies following condition,

(Exd) VA, B C X:S(AUB) = 5(S(A4) U S(B)) (Path Independence).

(Proof) Let A, B C X. It follows from Theorem 3.3 and Theorem 3.1(e) that we have ex(AUB) =
ex(ex(A4)Uex(B)) if and only if T(AUB) = 7(ex{A4)Uex(B)). Hence, it suffices to prove equation
7(A U B) = 7(ex(4) Uex(B)).

We have, by the monotonicity of 7, that 7(AUB) 2 7(ex(4) Uex(B)). Conversely, it follows .
from Theorem 3.1(e), Proposition 5.2 and the monotonicity of 7 that 7(AUB) = T(ex(AUB)) ¢
T(ex(A) Uex(B)). O

We consider the following condition (Ex5), which we call Aizerman’s Aziom (cf. Moulin [10]).
(Ex5) VA,B C X:S(B) C ACB=>S(4) CS(B) (Aizerman’s Axiom).
Proposition 5.4 (cf. Moulin [10]): Condition (Ex5) is equivalent to the following Condition
(Ex5") provided that S(S{A)) = 8(A) for every A C X.
(Ex5’) VA, B C X:5(B) C A G B = S(4) = S(B).
0

It follows from Proposition 4.1 that for the extreme point operator ex of a closure space Condition
(Ex5) is equivalent to Condition (Ex5').

Path independent property (Ex4) decomposes into Chernoff (Ex3) and Aizerman’s Axiom
(ExE) as the following lemma shows.

Lemma 5.5 (Aizerman and Malishevski [1]; cf. Moulin [10]): Condition (Ex4) is equivalent to
Conditions (Ex3) and (Ex5), provided that (Ex1) holds. O

Theorem 5.6: 4 closure space (X, 7) is a convez geometry if and only if ex: 2% — 2% satisfies
Adzerman’s Aziom (Ex5).

(Proof) Suppose that (X,7) is a convex geometry. Then, it follows from Lemma 5.3 and
Lemma 5.5 that ex satisfies Aizerman’s Axiom (Ex5).

Conversely, suppose that ex satisfies Aizerman’s Axiom (Ex5). Let 4 C X be arbitrary.
We have from Lemma 3.2 that ex(r{4)) C ex(4) C 7(A). Then, by (Ex5') we have ex(d) =
ex(ex(A)) = ex(r(4)). It thus follows from Theorem 3.3 that (X, 7) is a convex geometry. [

6. Quotient properties
For a closure space (X, 7) and a free subset A, let us consider family

ex (A) = {B| B C X,ex(B) = A}.

If B € ex™!{A), then we have A = ex{B) C B. Hence, A is the minimum element of ex"H{A).
The “only if” part of the following theorem was implicitly shown in [6). For C C D C X we
denote by [C, D] the family {B | C C B C D}, We call such a family an infervel in 2X.



Theorem 6.1: A closure space (X, 1) is a convex geometry if and only if ex"1(A) is an interval
in 2% for each free subset A.

(Proof) (“only if” part:) Suppose that (X,7) is a convex geometry and let A be free. We
claim that ex™}(A) = [4,7(4)]. Let B € ex~!(4). We know that A C B, and we have from
Theorem 3.1(e} that B C 7(B) = r{ex(B)) = 7(A4). Conversely, suppose that A C B C 7(A).
Since we have from Theorem 3.3 that A = ex(7(A)), it follows from Aizerman’s Axiom (Ex5’)
that ex(B) = A.

(“if” part:) Suppose that for each free 4 C X the family ex™'(A) is an interval [4, B] for
some B € X. We will show that ex satisfies Aizerman’s Axiom.

Suppose that ex(D) CC € D for C,D C X. Let A = ex(D). Since D € ex~!(A), we have
C € ex }A), ie., ex(C) = A = ex(D). It follows from Theorem 5.6 that {X,7) is a convex
geomeftry. [l ‘

A paralle]l statement for Theorem 6.1 holds, where ex is replaced with 7. To prove it, we
need the following lemma.

Lemma 6.2: Let (X,7) be a closure space. For each closed K we have K € 7 YK) and
rHK) C [ex(K), K].

(Proof) Let K be closed and A € 771(K). Then, we have A C 7(A) = K. Also, we have
7(K) = K. Therefore, X is the unique maximal member of 7=}(K). Furthermore, we have
from Lemma 3.2 that

ex(K) = ex(7(A)) ¢ ex{A) C A
o

Theorem 6.3: A closure space (X,T) is a convex geometry if and only if 7~1(K) is an interval
in 2% for each closed K.

(Proof) (“only if" part:) Suppose that (X,v) is a convex geometry and K is closed. We will
show that 71 (K} = {ex(K), K]. Since we have inclusion 71(K) C [ex(K}, K] by Lemma. 6.2,
it suffices to show the other inclusion. '

Suppose ex(K) C A C K. Then, we have by Theorem 3.1(d) and the monotonicity T that

K = r{ex(K)) C 7(4) C K,

and hence, 7{4) = K.

(“if” part:) Conversely, suppose that 7~1(K) is an interval for each closed K, This, in
particular, means that each closed K has the unique minimal spanning set. It follows from
Theorem 3.1(c) that (X, 7) is a convex geometry. [ '

An seemingly weaker version of Theorem 6.3 is given as follows.

Corollary 6.4 (Edelman and Jamison [3] (cf. Hoffman [5])): A closure space (X, ) is a conves
geometry if and only if

VA,B C X:7(A) = 7(B) == 7{AN B) = 7(4) = 7(B). (6.1)

(Proof) The necessity easily follows from Theorem 6.3. ‘To show the sufficiency, suppose that
condition {6.1) holds. Let K be closed. We have from Lemma 2.3 that 7{ex(K)) = K. Then, it
follows from Theorem 3.1(d) that (X, 7) is a convex geometry. O

Pfaltz [11] called Condition (6.1) the unique generation property.



Remark 6.5: It immediately follows from Theorem 6.1 that if closure space (X, 7) is a convex
geometry, then we have

VA, B C X:ex(A) = ex(B) ==, ex(4 U B} = ex(4) = ex(B). (6.2)

However, the converse is not true. One can see the closure space in Example 2.5 satisfies (6.2)
while it is not a convex geometry.

Also, note that a closure space does not necegsarily satisfy condition (6.2). Let us consider
the closure space and the associated extreme point opeiator depicted in the following figure. We
have ex({a, b}) = ex({b,c}) = {b} but ex({a,b,c}) =

abe abc:—}@
ab— b ca—rca be— b
O O o]
3 b b —
a c a. a = c.c
f ® P
L ex
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