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Abstract

We consider a queueing system with a single server having a mixture of a semi-
Markov process (SMP) and a Poisson process as the arrival process, where each
SMP arrival contains a batch of customers. The service times are exponentially
distributed. We derive the distributions of the queue length and the waiting times
of both SMP and Poisson customers. The results are applied to the case in which
the SMP arrivals correspond to the exact sequence of Motion Picture Experts
Group (MPEQ) frames, Poisson arrivals are regarded as interfering traffic. In the
numerical examples, the mean and variance of the waiting time of the ATM cells
generated from the MPEG frames of real video data are evaluated.

Key words: Semi-Markov process; Batch arrival; Queue; Waiting time; MPEG;
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1 Introduction

Cinlar (1] considered a queueing system with a single server with semi-Markovian arrivals.
There are a finite number of types of customers, and the types of successively arriving
customers form a Markov chain, Further, the nth interarrival time has a distribution
function which may depend on the types of both nth and n — 1st arrivals, Separately,
Kuczura [6] analyzed a GI 4+ M/M/1 queue in which the arrival process is a mixture of
a renewal process and a Poisson process. His analysis has been extended by Yagyu and
Takagi [13] to an SSMPW) 4 M/M/1 queue, where the SSMP is a special semi-Markov
process in that the nth interarrival time distribution depends only on the type of n— 1st
arrival, and each SSMP arrival contains a batch of customers, The result has been applied
to the Motion Picture Experts Group (MPEG) frame sequence as the SSMP¥! arrival
process. The Markov chain underlying the SSMP has three states corresponding to the
I-, B-, and P-frames. The state transition probabilities are determined in proportion to
the frequency of appearance of these frames in a Group of Pictures (GOP). The effects



of interfering Poisson traffic on the waiting time of the ATM cells generated from the
MPEG frames of some real video data haye been evaluated.

In this paper, we first consider an SMPX] + M/M/1 queue by extending the analysis
of an SSMPI] + M/M/1 queue in Yagyu and Takagi [13]. The semi-Markov arrival
process is the same as that of Cinlar [1). We derive the distributions of the queue length
and the waiting times of both SMP and Poisson customers. The results are then applied
to the case in which the SMP arrivals correspond to the exact MPEG sequence of frames,
namely “IBBPBBPBBPBB,” in a GOP. Thus the Markov chain underlying the SMP has
twelve states with cyclic transitions. Poisson arrivals are regarded as interfering traffic.
Taking the numerical data for the sizes of the three types of MPEG frames from the
Jurassic Park video, we evaluate the mean and variance of the waiting time of the ATM
cells generated from the frames.

2 SMP Batch Arrival Process

Consider an arrival process with L types of customers, each type arriving in batches of
random size, and the state of the systemn is determined by the type of arriving customers.
We say that the system enters state ! when a batch of type [ arrives. Let g (k) denote
the probability of batch size being k for type ! customers, [ = 1,...,, L. Suppose that the
arrival points of each type of customers are Markov points by which the system passes
through I states with transition probability matrix P= (P}, l,m = 1,..., L. The nth
interarrival time may depend on the types of nth and n — 1st arrivals. Let A (t) be the
distribution function of interarrival time in state I, given that the next state is m. For
a given sequence of arrival points, all interarrival times are mutually independent. This
arrival process is referred to as a semi-Markov batch arrival process (SMP[X]).

Clearly, the probability that SMP moves from state [ to state m in time ¢ is given by
PimAm(t). Since P is a stochastic matrix, we have

L
Zplmz]-; I=1,...,L
m=1

Let [y, ... ,mz] be the stationary distribution of the Markov chain with transition proba-
bility matrix P = (p;,,). Then we have a set of the balance equations and the normalizing
condition as follows:

L L |
Wm=zﬂziﬂtm; m=1,...L ; Z'ﬂ'!=1- (1)
=]

b1

In Figure 1, we illustrate this semi-Markov arrival process, where Ay, represents the
interarrival time between the arrivals of type [ and type m customers. For convenience’
sake, Ay is also referred to as the sojourn time in state ! when the next state is m in
this paper. Note that there are two characteristics for this arrival process: (i) the state
of the underlying Markov chain is determined by the type of arriving customers, and (ii)
the interarrival time depends on both the current and next states of the Markov chain.
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Figure 1: Semi-Markov arrival process.

3 Queue Length in SMPX4+M/M/1

In an SMPI! + M/M/1 queueing system, the arrival process is a mixture of an SMP
and a Poisson process. The arrival rate from the Poisson process is denoted by A.
The service times for the SMP and Poisson customers are assumed to have common
exponential distribution with mean 1/ Finally, it has a single server and an infinite-
capacity waiting room.

We analyze the queue length in the SMPX! + M/M/1 system. The queue length
X(t) at time t is the number of both SMP and Poisson customers, including those
waiting and in service, in the system at time ¢. We extend the approach proposed
by Yagyu and Takagi [13] for an SSMPW] + M/M/1 system in order to analyze our
SMP™! + M/M/1 system. Notice that, between the successive batch arrival epochs of.
SMP customers, the process X (t) behaves exactly like the queue length in an M/M/1
system. By the method similar to the one in [13], we study the bivariate Markovian
sequence {(X™,5M™):n = 0,1,2,...} embedded at the points of SMP arrivals, where
X™ denotes the number of both the SMP and Poisson customers found in the system
by the first customer in the nth arriving batch of SMP customers, and S denotes the
state of the underlying Markov chain immediately after the nth SMP arrival (Figure 2).

Recall that the transition probability '

Pylt) = PIX(H) =4IX(0) =i} >0

in the birth-and-death process for the queue length of an M/M/1 system with arrival
rate A and service rate y is given by [9, p.93]

Pi{t) = pilinfe (v [Ii,:,- (th) +p 5 gy (215\/5\;)

+ (=) > L (%\/E)] ) (2)
k=1
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Figure 2: State transition in the Markov chain {(X™,S®™);n =0,1,2,...}.

where p 1= A/p, and I;(#) is the modified Bessel function of the first kind of index 4. For
a nonnegative integer %, it is defined as

1) = L1) = (;)fj P (;)Bj; i>0

For the time-homogeneous Markoy chain {(X®,5():n = 0,1,2,...}, the state
transition probability is given by

P{X®H) = j gD — | X — 4 90 < [} = py, th f Pipi;(t)dAim(t)
s

5,i=0,42,...;L,m=1,...,L. (3)
Assuming that this Markov chain is ergodic, the limiting distribution

P(i,l) = lim P{X™M =4,8™ =1}, i=0,1,2,...;!=1,...,L (4)

A 00

satisfies the balance equations

ow L o
='ZZZ?!m9¢ k)P(i, )/ Pigi(tYdAm(t); 5=0,1,2,...;m=1,...,L

i=0 l=1 k=1

and the normalization condition
o L
S S PG =1, (6)
=0 1=1
Let us introduce the generating function for {P(3,1);4=0,1,2,...} by

ZPzz I=1,..,L

i=0



By definition, we must have
@1(1)=ﬂ'g; l=1,...,L. (7)

Multiplying (5) by 2/ and summing over j = 0,1,2, ..., we obtain

o0 L oo oo
On(2) =D Y > pima(k)P(i, 1) /0 Pirk(2,)dAm(t); m=1,...,L, (8)

i=0 I=1 k=1
where
w .
Ti(z,8) =Y Pyt i=0,1,2,...
=0

While this function is not simple, its Laplace transform is given by [9, p.89)

where
_Atpts—/(+p+s)T -4y
n(s) = ) ,

Let us transform the real integral

f0.°° Tye(r ) dAim(t)

appearing in (8) into a complex integral involving v;4x(2,s) and ay,(s), the Laplace-
Stieltjes transform (LST) of A;,(t). To do so, note the inverse transform

ctico

Fi+k(zsf)=§;r-i 1 "4k (2, 5)ds,
C—100

where ¢ > 0, i := 4/—1, and the integration path fc‘"‘:zc’ is the Bromuwich integral, being
written as [ hereafter. Furthermore, if oy, (t) denotes the LST of Ay (t), we have

o0
f e dAum(t) = aym(—5).
0

Thus we get

1

fo " Loz, )dAum() - /B esk(2, )0t (—5)ds. (10)

Substituting (10) into (8), we obtain

L 00 00
By (2) = Zp;m ZQ(.’G) ZP(Z’, Z)%ﬁ/ Yigk{Z, 8)Qpm(—8)ds. (11)
=1 =1 Br

k =0



Changing the order of summation and integration, we get the following set of simulta-
neous equations for {®;(z);!=1,...,L}

B L 1 28,(2)Gi(z) — (1 — z)H(s) Vs
(I)m(z) ““;plmzﬂ_i Lr [ zs_(lmz)(#'“)\z) O!zm,( )dS, ]., ,L,

(12)

where

_ 1(8)Giln(s)] @ifn(s)] _
Hy(s) = ;_n(s)‘ ,  l=1,...,L. (13)

Note that letting 2 =1 in (12) recovers (1), because

L _/ Qm(=8) 4o _ 1,
27i Jp, S

Following Kuczura, [6], we may comment on the Bromwich integral in (12) as follows.
Since Fiyg,;(t) is the probability, its generating function Ty (2, £) is uniformly convergent
for |2] <1, and yi4x(2, 5) is analytic for |2| < 1 and R(s) > 0. Hence the bracketed part of
the integrand in (12) is analytic for |2| < 1 and R(s) > 0, since it is the convergent series
of 32720 2 het P(,D)gi(k)vi44(2, 8). On the other hand, since Ay, (t) is the distribution
function, qyn(s) is analytic for R(s) > 0. For R(s} < 0, cym(s) may or may not be
analytic. However, cynm(s) is meromorphic for R(s) < 0 in many cases, including the
cases in which the distribution of Ay, is exponential, Erlang, and a linear combination
thereof,

If we assume that cym(s) is meromorphic for the left-half plane R(s) < 0, all the
poles of ctm(—s) are in the right-half plane R(s) > 0. Hence the integrand in (12) is
meromorphic in the right-half plane. Thus we can use the residue theorem to evaluate the
integrand over the contour consisting of the line (¢+iR, ¢—iR) and a semicircle of radius R
in the right-half plane which connects ¢—1iR with ¢+iR counterclockwise. We can choose
¢ and R such that all the poles of oy, (—$) are interior to this contour forall{ = 1,... , L.
Then the Bromwich integrals in (12} are evaluated only at the poles of qyn,(—s)'s. Here
the terms resulting from H(s) are simply constants. Therefore, (12) is not a set of
integral equations but simply a set of linear equations for {@,(2);l = 1,..., L} albeit
containing unknown constants as coefficients. These unknown constants are determined
from the condition that the generating function @;(z) is analytic for |2| < 1 and that
Oy =m forl=1,...,L. :

The marginal distribution for the number of SMP and Poisson customers found in
the system by the first customer of an arriving SMP batch is denoted by

L
P(i) = lim P{X® =i} = > P(i,1); i=0,1,2,.... (14)

-0
=1

The generating function for {P(4);¢=0,1,2,...} is then given by

B(z) =Y _P(i)e' =D Bnl2). (15)
i=0 m=l



Substituting (12) into (15) and rearranging terms yields

L1 [ [2()Gi(E) — (1~ 2)Hi(s)
Z%/ [ lzs—l(l—z)(,u—)\z)l ou(=s)ds.

m=1

Here, we define

t) = Zplm-‘qlm(t):

m=1

which is the distribution function of the sojourn time in state [, whose LST is given by
ag(s).

In particular, if the sojourn time Ay, follows an exponential distribution with mean
1/ 0y, equation (12) is free from the Bromwich integral, and it is reduced to

L
On(2) = Y L [2B(2)Cil2) — (1 - 2)Hyy m=1,... I, (16)
=1 Gim (2)
where
n(a’lm)@l[ﬂ(a!m)]ai [n(alm)]
Hyy, = y 17
Im 1 - n(alm) ( )
and
1
gm(2) =z~ —(1—-2)(u—Az); I,m=1,...,L (18)
Qi
Note that ®,,(1) is equal to mp,, m = 1,..., L, which is the stationary distribution of

the underlying Markov chain. Therefore, we have the following set of balance equations
and the normalizing condition:

L
1) = Zplm(pl(l); m = 1}'” IL)

Now, equation (16) can be written in matrix form as

B(2)V(2) = 22(2)G(2)Q(2) — (1 ~ 2)1diag[H*Q(2)], (19)
where ®(2) 1= [®1(2), ..., ®1(2)], 1= [L,... 1],
Gz 0 ... 0
ay=| ° @@ 0] @)
0 0 Gi(z)



. .
HQ‘jl(Z) 0 0
j=1 L
V=] Eq”’(“) S (21)
: L
0 0o .. H%’L(z)

[ PllHQ’jl(z) P12H%'2(Z) cor P1L HCIjL(z) ]

J#1 §#1 J#1
| P21 qul(z) P22 H a2(2) ... par H 75.(2)
Q(z) := i i i#2 , (22)

L1 H a1(2z) Pra H gi2(2) ... Prr H ¢1(2)

L J#L J#L J#L i
and
Hy Hyp ... Hy
H(z) := :21 :22 N 2 g (23)
Hpy Hpp ... Hyg

In eguation (19), diagX is a diagonal matrix whose elements are taken from the
corresponding elements of X, and H* is the transpose of H. We may write (19) as

B()F(2) = (= — 1)1diag[H'Q(2)), (24)
where
F(z) := V{(z) — 2G(2)Q(z). (25)

Let adjF(z) denote the adjoint matrix of F'(z). Multiplying (24) on the right by adjF(z),
we have

(z — 1)1diag[H'Q(z)]adjF(z)

3(s) = -

det F(z)

(26)

It is shown in Appendix 1 that there are L? zeros for det F(z) in the unit disk |2| < 1
if the condition

g+ A< p (27)



is satisfied. Here

1

Q= '—L———E—p——' (28)
im
DM
I=1 m=] Qtm
is the arrival rate of the batches of SMP customers, and
L
g .= Z mad (29)
1=1

is the average batch size. The condition in (27) means that the sum of the arrival
rates of SMP and Poisson customers is less than the service rate. Therefore, it is a
sufficient condition for the stability of our system. Thus the set of L? unknown param-
eters {Hyn;l,m = 1,2,...,L} can be determined by solving the same number of linear
equations corresponding to the zeros of det F(2) in {2] < 1.

4 Waiting Times in SMP™4+M/M/1

Let us investigate the waiting time for an arbitrary customer in an SMPIX]-i—M/ M/1
system, In section 4.1, the waiting time distribution for an arbitrary SMP customer in
a batch is derived. In section 4.2, based on the theory of Markov renewal processes, the
waiting time distribution for an arbitrary Poisson customer is given.

4.1 Waiting Time of SMP Customers

We first consider the waiting time W of an SMP customer. Let us focus on a randomly
chosen tagged SMP customer included in a batch that arrives to bring state {. Recall
that the probability generating function for the number of customers placed before the
tagged customer in this batch is given by {11, p.45]

Ay 1=Gi(2)
Giz) = E’{(‘T—t?j” (30)

where g; is the mean batch size. Thus the LST Dj(s) of the distribution function for the
sum of the service times for those customers before the tagged customer in the batch is
given by

_ 1—Gy[B(s)]

Dy(s) = G/[B(s)] = A= Bl

(31)
where B(s) := /(s + p). '

If the service is given in the order of arrival, the waiting time of an arbitrary SMP
customer (tagged) in a batch consists of the waiting time of the first customer of that
batch and the service times for the customers placed before the tagged customer in



the batch, Therefore, the LST of the distribution function for the waiting time of an
arbitrary SMP customer included in a batch that brings state [ is given by

‘I’:[B(S)]Dg(s).

Finally we get the LST (s) of the distribution function for the waiting time W of
an arbitrary SMP customer as :

ZQE(I)! ()] Di(s) Z‘I’z s){1 - Gi[B(s)]}, (32)
where

L
9= Z g
=1

is the overall mean batch size. The mean E[W] and the second moment E{W?] of the
waiting time are then given by

L
1 @
EW] = — (Z E(X]gi+ %—) , (33)
gk \ =
2 1 2 {2) p) 9‘(3)
B = — | o {EX+ BX Do+ Bx)P } +9+ I ), (34)
I=1
where
G(g) (t) = ng i=2 : :
=1

EX]=a1), BXY=9P0)+EBX]; I=1,..,L

4.2 Waiting Time of Poisson Customers

We proceed to consider the waiting time W* of a Poisson customer. According to the
PASTA (Poisson arrivals see time averages) property, the number of customers that an
arriving Poisson customer finds in the system has the same distribution as the number
X* of customers present in the system at an arbitrary time in steady state. Thus we
will find the generating function ®*(z) for the probability distribution of X*,

To do so, note that the interval between an arbitrary time and the preceding SMP
arrival time corresponds to the backward recurrence time in the Markov renewal process
that counts the number of state transitions in the SMP. The joint distribution for the

10



backward recurrence time in state ! and the probability that the next state is m is given
by
t

Aumlt) = E?ﬁ'{]‘ 1L Ain(@)lds; £20, (35)

where

ElA] Z PimE{Aim]
m=1
is the mean sojourn time in state l,
Conditioning on the number of customers and the states of the SMP at the pre-
ceding and the next arrival points, and integrating with the backward recurrence time
distribution in (35), the steady-state distribution of X* is given by

P(X*=j)=3" 3" Pi,) Y ai(k) f:’ Puang@dAlt; 5=0,1,2,...,  (36)
=0 =1 k=1

where

L L ¢
At) == %ﬁl;fi;m(ﬂ = -E%A]g;plm‘/o 1~ Ap(z)|dz; t2>0

is the conditional distribution function for the backward recurrence time in state I. The
mean interarrival time E[A] between the batches of SMP customers is given by

E[A]: E?T;E[Ag]

From (36), the generating function @*(z) for X* is given by

= ZP( z-"' ZZP %, l Zg; /OWI‘,-.HC(z, t)d}ig(t), (37)

j=0 i=0 l=1

Using the relation similar to (10), we obtain

2%z — (- 2)H(s)] , .
Z 27r1/ [ lzs_ (1 - 2)u— ,\z)l j|al(“3)d8, (38)

where Hy(s) is given in (18), and & (s) is the LST of A;(¢). Again, the Bromwich integrals
are evaluated only at the poles of &;(—s)’s in the right-half plane R(s) > 0 in most cases.

The LST Q*(s) of the distribution function for the waiting time W* of an arbitrary
Poisson customer is expressed as

2(s) = B'[B(s)) (39)
The mean E[W*] and the second moment E[(W*)?] are then given by '
= ey, sy = ZEEIEOL )

respectively, where E[X*] and E[(X*)?] are obtained from ®*(z).

11



5 Application to the MPEG Frame Sequence

Let us use the SMP] + M/M/1 system to model the traffic in the ATM network in
which the transmission of MPEG frames is interfered by other traffic. The waiting time-
of an arbitrary ATM cell generated from MPEG frames is studied. In Section 5.1, a
brief description of MPEG coding scheme is given. In section 5.2, the transmission
of MPEG frame sequence with interfering traffic is modeled by an SMP¥! 4 M/M/1
system. Assuming that the MPEG frame arrival process is also Poisson, we obtain the
formula for evaluating the waiting time of an arbitrary ATM cell. In Section 5.3, some
numerical results using the statistics of a real video film are presented.

5.1 MPEG Video Coding Scheme

In the MPEG coding [7], a video traffic is compressed using the following three types of
frames.

o [-frames are generated independently of B- or P-fraines and inserted periodically.

¢ P-frames are encoded for the motion compensation with respect to the previous I-
or P-frame.

e B-frames are similar to P-frames, except that the motion compensation can be
done with respect to the previous I- or P-frame, the next I- or P-frame, or the
interpolation between them.

forward prediction

bidirectional prediction

Figure 3: Group of pictures (GOP) of an MPEG stream [7).

These frames are arranged in a deterministic sequence “IBBPBBPBBPBB” as shown
in Figure 3, which is called a Group of Pictures (GOP). The length of the GOP in Figure
3 is 12 frames. The traffic stream generated by the MPEG coding is characterized
by two features, namely (i) the deterministic frame pattern in the GOP, and (ii) the
distinguishable frame size distributions for the three types of frames (I, B and P).

12



5.2 Traffic Model for MPEG Frame Sequence

We are now in a position to apply the analysis results of an SMP®! 4+ M/M/1 system to
the queueing model with MPEG frame sequence and interfering traffic. In this model, the
Markov chain underlying the SMP has twelve states corresponding to the frame pattern
“IBBPBBPBBPBB” in Figure 3. We index this sequence which represents the states
in the Markov chain as 0 through 11. As shown in Figure 4, for any given state, the
transition probability to the next state is unity, since the frame pattern is deterministic.

Figure 4: State transition diagram of the MPEG frame pattern.

The stationary distribution of this Markov chain is given by

m=1 ; 1=0,...,1L
For the sake of simplicity in the expressions, we assume that the arrival process of the
frames is Poisson with rate o as a (very) special case of the SMP. Let Gy(2) denote
the probability generating function for the number of ATM cells generated from the ith

frame, I = 0,...,11. Equations in (12) become
1
Bn(s) = sle s (NBnas() = (L= )Hpeth m=0,.,11, ()
where

d(a) = 2~ (1= )= A2),

and Hy,, m =0,...,11, are constants to be determined. Hereafter state “—m " should

13



read state “12 —m”. Solving the set of equations in (41), we get

(z~1 sz[q (N Hop g H Gi(z

Bn(z) = ) ok s om=0,...,11,  (42)

where
T(z) = {g()]"* - 12HGz (43)

Thus the following relations are established:

J+k
(z—1) Zz’“IQ(Z)]“ - EH > Gilz |
— Z (I’m(z) _ k=0 T(z) J=0 {=g-1 ' (44)

m=0

It is shown in Appendix 2 that there are twelve zeros of T'(2) in |z| < 1 under the
condition

ag+A <. (45)

Here

1 11
='1"§Z.91

=0

is the mean size of an MPEG frame. Therefore, by using the twelve zeros of T'(z) in
|z| <1, we can solve the set of twelve linear equations for {H,,; m = 0,...,11}. This
completes the determination of parameters in the model,

5.3 Numerical Examples

Let us evaluate the waiting time of an arbitrary ATM cell in the model with MPEG
frame sequence and interfering traffic. The real video film data for the Jurassic Park
(dino) is downloaded from the web site htip://nero.informatik.uni-wuerzburg.de/MPEG/
prepared by Rose [8]. We need to assume some distribution for the number of cells in
each frame (frame size) so that we can calculate the value of waiting times numerically.

Frey and Nguen-Quang {2] and Sarkar et al. [10] propose the gamma distribution
for the frame size, As a discrete version of the gamma distribution, let us assume that
the distribution of the frame size is negative binomial. Thus the probability generating
functions for the frame size are given by

m
G:(z)=(1f'qlz) ; qi=1l-p; {=0,...,1L

14



Table 1: Statistics for the frame size in ATM cells calculated from the MPEGQ traces for
the Jurassic Park video.

| I-frame | B-frame | P-frame |
|mean | var | cv. |mean| var | cv. | mean| var | c.v.
[ 143.4 [ 9187 10211 19.0 | 135.0 | 0.612 | 37.7 | 632.6 | 0.667

Table 2: Parameters of the negative binomial distributions for the frame size of the
Jurassic Park video.

I-frame | B-frame P-frame

|
L n | mm PB Tp PP
| 26.534 [ 0.156 [ 3.123 [ 0.141 [ 2.384 [ 0.060

where, referring to Figure 4, we set

pr=p, =N [=0,
p=ps, m=ng [=1,24,57810,11,
D =pp, M =np; [=3,6,9.

In Table 1 the statistics for the number of ATM cells in each frame type for the dino,
which have been calculated by assuming that every frame is divided into a group of cells
each with a payload of 48 bytes, are presented, The fitted parameters determined from
the mean and variance of the actual data are given in Table 2, Figure b compares the
histogram of the frame sizes with fitted negative binomial distribution,

Let us assume that cells are transmitted on a 10 Mbps channel, which corresponds
to p = 2,350 cells/sec, Substituting these parameters in (43), we have exactly twelve
zeros in the unit disk. The zeros of T'(z) are plotted in the complex z-plane in Figure 6.

Figures 7 and 8 show the mean and the variance of the waiting times of an arbitrary
ATM cell in the MPEG frames and an arbitrary Poisson arriving cell. It is observed that
at low arrival rate o (frames/sec) the difference (for both the mean and variance) between
SMP cell and Poisson cell is relatively large, while it becomes small as « increases. In
other words, the influence of batch arrival is small when « is relatively large. It is also
observed that MPEG cell always receive slightly worse treatment, i.e., bigger mean values
of the waiting time, than Poisson arriving cell, This is because the s.c.v. of the interarrival
times for the SMP arrival process is bigger than that of the Poisson arrival process which
is unity. Kuczura [6] reports that the arrival process having bigger s.c.v. receives worse
treatment than that with smaller s.c.v., which agrees with the present result.
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6 Summary

In this paper, we have first analyzed a queueing system having a mixture of an SMP in
batch and a Poisson process as the arrival process, where the Poisson arrival is regarded
as interfering traffic. Then we have modeled the arrival of the MPEG frame sequence
as an SMP batch arrival process. This model captures two major features of the MPEG
cading scheme: (i) the deterministic frame pattern and (i) the distinet distributions
for the size of the three types of frames. The waiting time of each ATM cell has been
evaluated. It is observed that at low arrival rate of MPEQ frames, the difference in the
waiting times between the MPEG and Poisson cells is relatively large. It is also revealed
that the MPEQG cells receive slightly worse treatment than Poisson cells.
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Appendix 1: Number of Zeros of detF(z) in (26) in [2| <1
We first derive the stability condition in (27}, and then prove that there are L? zeros of
det F(z) in (26) in |2] < 1.
In Section 3 we have derived the relation .
P(2)F(2) = (2 — 1)1diag[H'Q(2)), (A1)
where .
F(z) = V(2) — zG(2)Q(2). (A.2)

These are'equations (24) and (25), respectively.
Let us first derive the stability condition in (27). Differentiating (A.1) and evaluating
the result at z = 1, we obtain

3'(1)(1 — P) + 7F'(1) = 1diag[H'P), (A.3)

where Iy, denotes an L x L identity matrix. Here we have used F(1) = I}, — P since
V(1) = G(1) = I, and Q(1) = P. Note also that ®(1) = = := [m,... , 7). Multiplying
(A.3) on the right by 1*:=[1,...,1]* and noting that (I — P)1* =0, we get

wF(1)1* = 1diag[H'P]1". (A.4)
To determine the right-hand side of this equation, we see from (23) that
L L
1diag[H'P]1" = >~ > Hjipjk. (A.5)
j=1 k=1

To determine the left-hand side of (A.4), we differentiate (A.2) and evaluate the result
at 2 = 1. Then we have

F(1) = V(1) -GLHQQ) -G 1HA(l) - LR

-~ V(1) -P-G'W)P - Q(), (A6
where
- L ) -
P chilats 0 " 0
P |
L
Qg+ fh— A
0 bt LN A 0
V(1) = ?/—:1’ a2 ) (A7)
L
a;L+ p A
0 0
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Multiplying (A.6) on the right by 1° and substituting (A.7), (A.8), and (A.9) yields

F'(1)1t

=V/()1'-1' - G'(1)1* - Q' (1)1
a1+ — A |
Qi1
Q9 +p—A i ‘gl
(rj2 - . - .2
: 1 2
(2737 + 1 - A
(718 i

Finally, multiplying (A.10) on the left by =, we obtain

wF'(1)1°

L

i=1

—ZﬁzZszzajk+M 4

k=1
L L

I—-l k=1 J#l

k=1

L

Qip

L L
Zmzakrl-# )\_*1_9

=1

Qg+ jb— A
> 3 L
k=1 i#l 7
L

Qi+ — A
Y 3 L
k=1 jA2 I
L

Qg+ — A
ooy L
k=1  §AL k
L

zwz‘w 2 m- > o

=1

L

Yon ey BEETA S S st

I=1 k=1 j=1
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. L
However, from the relations Do TP =T, k=1,..., L, we have

L L Gip 10— A Lol gty
L — —
Zmzp Z : = ZZ th T2 Z?szrk
=1 k=1 j= Xk k=1 j=1 sk i=1
L L
Qg+ pp— A
= Yom)y AL
k=1 j=1 Ik
Thus we get
L L _ )
P ()1 = (- N> S B2 (A1)
=1 k=1 “

Here o is the arrival rate of SMP batches defined in (28), and g is the average batch size
given in (29). This is the left-hand side of (A.4). Thus we have

L L

N;A*Q:ZZijpjk«

F=1 k=1

Since the right-hand side of this equation is positive, we must have
ag+ A < u, (A12)

which is the condition in (27). O
Multiplying (A.1) on the right by adjF(z), we have

(z — 1)1diag[H*Q(2)]adjF(2)
®(z) = det F(2) ’

(A.13)

which is (26). This is analytic in |2| < 1 and continuous in || < 1.

Recall that ®(1) = w. Since det F(1) = det[I; — P] == 0, the point 2z = 1 is the
common zero of the denominator and the numerator for the right-hand side of {A.13).
Thus we investigate the value of the derivative of det F(z) at 2 = 1

o d
9= a—;detF(z)

z=1

Theorem 1 Ifag+ A < p, then v > 0.

Proof. To determine -y, we use the well-known relations in linear algebra:
F(z)adjF(2) = det F(2)I;, = adjF(2)F(2). (A.14)

Differentiating the second equality, evaluating the value at z = 1, and multiplying on
the right by 1%, we obtain

1t = adjF(1)F'(1)1, | (A.15)
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An expression for adjF(1) may be found as follows. Evaluating (A.14) at z = 1 and
using det F(1) = 0, we have

PadjF(1) = adjF (1) = adjF(1)P.

Since P is an irreducible stochastic matrix, the first equality implies that each column of
adjF(1) is a multiple of 1* (recall that P1* = 1*), Similarly, the second equality implies
that each row of adjF(1) is a multiple of 7 (recall that wP = ). It follows that there
is a constant ¢ such that _

adiF()=c| : |. (A.16)
ki)

We claim that adjF(1) is a positive matrix [4, p.359]. From the form of (A.16), it is
enough to show that the diagonal elements, say, ;, I = 1,... , L, of adjF(1) are positive.
To see this, note that '

Ky = ('—].)H-I det[F(g,g)(l)] = det[IL_l - P(z,;)],

where Py is the matrix P with its {th row and Ith column removed. Since P is
irreducible, the spectral radius of Py is strictly less than unity. This implies that
det[I;_y —tPqy) # 0 for real ¢ satisfying 0 < ¢ < 1. Since this determinant function of ¢
is positive for £ = 0 and never zero, by continuity it is also positive for ¢ = 1, i.e., x; > 0.
Thus adjF(1) is positive, and we conclude that ¢ > 0 in (A.16).

Substituting (A.16) into (A.15) and noting (A.11) yields

y= (“;’\ ._g). (A.17)

Using ¢ > 0 and the condition (A.12), we see that v is positive. O
We next show that there are L? zeros for det F(z) in the unit disk. To do so, we use
a lemma in [3, p.239]: Let f(z,t) be a function analytic for z within and on e closed
contour C, and continuous for t in some interval I, If f(2,8) #0 forz € C andt € T,
then the number of zeros of f(z,1) inside C is the same for allt € T.
For our purpose, let

f(z,t) == det F{2,%), -
where |
F(z,t) = V(2) — 2t1G(2)Q(2),

We choose a closed contour C := {z;}z] = 1} and an interval 7 := {t;¢ € [0,1)}.
Obviously, f(z,t) is analytic in C and continuous for ¢t € Z, We first prove that f(z,1) 5 0
for z € C and ¢ € Z, and then prove that there are L? zeros for f(z,1) = det F(z) in C
using the above lemma. :
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Theorem 2

(a) detF(z,t) # 0 for |2] =1 and t € [0,1).

(b) detF(z) #0 for |z| =1, z 1.

Proof. We consider det F(z,¢) for |2| = 1 and ¢ € [0, 1). Note that det F(z) = det F(z,1).

Then F(z,t) can be written as
F(z,t) = V(2) - 2tG(2)Q(z)
V(z) — 26G(2)L(2)V(z)

= [l — 2tG{z)L(2)]V(2), (A.18)
where
[ P b2 mr
qu2) qu(z) q12(z)
P Poa _Par
L(z) = @(2) ga(2) 7 qurl(z) _ (A.19)
P DL brLr
| qra(2) qre(2) qrr(z) |
Therefore we have
det F(z,t) = det[I; — 26G(2)L(z)] - det V(). - {A.20)
Since '
g5 (2)| = [(%k + A4 )z - (A2 +#)]’ > a%_;[ajﬂ')\""ﬂ ~(A+u)] =1

for |z| = 1, we see that

|det V(=

- T oate

k=1 j=1

1, for|z|=1.

It follows that det V(2) # 0 for |z| = 1.

~ We next prove that I — 2¢G(z)L(2) is nonsingular for |2| = 1 and ¢ € [0,1) and
that Iy, — 2G(2)L(z) is nonsingular for |2| = 1, z # 1. These are equivalent to det[l;, —
2tG(2)L(2)] # 0 and det[I; —2G(2)L(2)] # 0, respectively. To do this, we use the notion
of strictly diagonally dominant: A square matriz X = (zy) is (row) strictly diagonally
dominant if |xu| > 30 |@y| for every row i, and the Levy-Desplanques theovem: A
strictly diagonelly dominant matriz is nonszngular [4, p.349].
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From (20) and (A.19) we have
I;, — 2tG{z)L(z)

I P P2 YT
1— 2t ~2tG b —2t@
g l(z) d11 (Z) # (z) 9712(2) z 1(2) Q1L(Z)
D21 P22 Par
— 2t 1 — ztG o, —2tG
— ’ g(z)qzl(z) # 2(Z)QQ2(Z) #G3(2) q1(2) . (A.21)
j A1 Pra Prr
—2tG (2 —zt@G oo 1—2tG
| e Gy TR w4

For case (a) in which |z| = 1 and ¢ € [0, 1), we see that

Dig Pij
—2tGi(z) 2Gi(z
2 |l i | < L
pzy Dy
1. pu _— 1 - ztG ¥4 .
Z |ng ;pi i( )Qze(z)

Thus Iy, —2tG(2)L(2) is a strictly diagonally dominant matrix. It follows from the Levy-
Desplanques theorem that Iy — 2¢G(2)L(2) is nonsingular. From (A.20), we conclude
that det F(z,t) # 0 for |2| = 1 and t € [0, 1).

For case (b) in which |2| = 1, z # 1, since |G;(2)| < 1, we see that

2 < A S 2 = 1omes

J#i g J#

_ ZGi (Z) D

—2Gi(z p”
iz

QW

Thus Iy — 2G(z)L(z) is also a strictly diagonally dominant matrix. It follows again
that I — 2G(2)L(z) is nonsingular. From (A.20), we conclude that det F(z) # 0 for
|2} = 1,2 # L. ()

Theorem 3 Ify > 0, det F(z) has L% — 1 zeros in |z| < 1, and it has a simple zero at
z=1

Proof. Our proof follows {3, p.241]. We first observe that det F(z,0) = det V(z) has L?
zeros in |z| < 1, because each element ¢;;(2) in V(%) has a single zero at

Ak p oy = oS (A o) — 4
4= 22
in |2] < 1. From Theorem 2(a), we have det F(z,t) # 0 for |2| = 1 and ¢ € [0,1). Thus,

according to the above lemma, there are L? zeros of det F(z,t) in |2| < L forall ¢ € [0,1).
We next investigate det F'(z,%) at ¢ = 1. Note that

det F(1,1) = det (1) = det[I; — P] = 0,
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If v > 0, the point z = 1 is a simple zero of the function det F(z,1) = det F(z). Since
det F(1,1) = 0, then detF(1 — ¢,1) < 0 for small £ > 0. By continuity in ¢ € [0, 1),
there is small 7 so that det F(1 —¢,1 — 1) < 0. However, detF(1,0) = det V(1) = 1
and det F(1,¢) # 0 for 0 < ¢ < 1 as shown above. By continuity, det F(1,¢) > 0 for
0 <t <1, s0 in particular, det F(1,1 — ) > 0. Therefore, det F(1 — £1,1 — 7} = 0 for
some 0 < &; < &. The same argument holds for 7 — 0, so the simple zero at z = 1 is
the limit of zeros from inside the unit disk. It follows that det F'(z, 1) = det F(2) has L?
zeros in |z| < 1. From Theorem 2(b), det F(z) has L2 — 1 zeros in |2| < 1. O

Appendix 2: Number of Zeros of T(z) in (43) in|z| < 1

We claim that T'(z) in (43) has exactly twelve zeros in the unit disk |z] < 1 if the
condition

ag+ A< pu (A.22)
is satisfied. Equivalently, we consider
) 1
Ple) = aPT(2) = ()] - a2 [[ (), (A.23)
I=0 '
where
§(2) = az — (1—2)(u— Az). (A.24)

Our proof is based on Rouché’s theorem [12, p.116): If f(2) and h(z) are analytic fune-
tions of z inside and on a closed contour C, and |h(2)} < |f(2)| on C, then f(z) and
f(2) + h(z) have the same number of zeros inside C.

We prove the above claim in a way similar to those in [5] and [13]. Let

F@) =@, hie) = —a2 [ Gil). (A.25)
=({

Then T'(2) = f(2) + h(z).
Let us choose a closed contour C so as to include z = 1 as an internal point, which is
obviously a zero of 7'(z). In particular, we choose C as

. — — Hif, ;
C:.= {z—e ,0<9<2w}U£21{1)C£, (A.26)
where
N P o, T T |
Ce {z 1+ee; 2§<p§2} (A.27)

is & semicircle centered at z = 1 with radius € > 0. The functions f(2) and h(z) are
analytic inside and on the contour C. :
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We now compare |f(2)| and |h(z)| on C. First, we look at z on the unit circle |2 = 1.
Since §(z) = (@ + A + p)z — (M2® + p), we see that

i) Z a+d+p-(A+p)=o
on |z| = 1. Hence, for |#| =1, 2 # 1, it holds that
[f2)] 2 e, |h(2)] <™,

because Gy(z) < 1 since Gy(z)'s are probability generating functions for { = 0,..., 11.
Thus, {A(2)| < |f(2)| for {z| = 1, 2% L.
' We next look at z =1 + g€l on C,, for which

gz) = (a+A+w)(1+ ey — \(1 + ee")? — u
= a+(u+a—Aee¥ +o(e). (A.28)
It follows that
FEP = Jla+ (u+o— Nee +ofe)]?)’
= o +24a®(p+a— Necosp + o(g). . (A.29)
We also have

11 2

R = |om2(1+ec®)2 T](L + giee® + ofe)]
=0
u
= o™ |142 Zggs cosp + 24ecos @ + ofe) | . (A.30)
1=0
Hence
-
2 2 _ 23
If(2))° — |h(2)]* = 24a™ecosyp [,u - A= p ggl]
= 2405 cosp(p — A~ ag). (A.31)

Therefore, if the condition in (A.22) holds, we see that |A(z)[> < |f(2)|? (thus |h(z)| <
|/(2)]) on C, for a sufficiently small value of &, Hence we have shown that |h(z)| < |f(2)]
on the entire contour C. Thus the functions f(z) and h(2) satisfy the condition of
Rouché’s theorem with contour C. Tt follows that f(2) and f(z) -+ h(z) = T'(z) have the
same number of zeros inside C.

Finally, we consider the number of zeros of f(2) = [§(2)]'? inside C. Clearly, there is

a single zero of §(z) inside C, which is

At pta— /Ot p+a)—4p
2 == o) .

Thus f(z) has a zero with twelve-fold multiplicity inside C. Hence we conclude that T(2)
has twelve zeros inside C. 0
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