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Abstract

We propose the following model for optimal rescue problems concerning hostages. Suppose that a person is taken as a
hostage and that a decision has to be made from among three alternatives: rescuing, no rescuing, or taking one action
which will save the situation. It is assumed that the action can only be taken once and it will be effective only at that time,
i.e., the effect vanishes thereafter. The objective here is to find the optimal decision Tule s0 as to maximize the probability
of the hostage not being killed. Several properties of the optimal rescuing rule are revealed.

1 Introduction

Acts involving hostage taking occur for different reasons, e.g., social inequality, poverty, religious prob-

lems, racial problems, political problems, are part of life. The problem has become an urgent issue to be

tackled worldwide. Typical examples in recent years include:

1 A 17-year-old youth wielding a knife, hijacked a bus on the Sanyo Expressway and killed a 68-year-old
hostage. After 15 hours, the police stormed the bus, the other hostages were rescued, and the hijacker
was arrested (May 4, 2000).

2 An armed man took a Finance Ministry official hostage in the Tokyo Stock Exchange building and
demanded a meeting with the Finance Minister. He surrendered to the palice after a tense, five and
half hour standoff (January 12, 1998).

3 Fourteen guerrillas stormed the home of the Japanese ambassador to Peru and took about three
hundred people hostage, including diplomats and government officials attending a birthday party for
the emperor. All but one of the hostages were rescued though all the rebels were killed when special
forces stormed the building (December 17, 1996).

4 A man with a knife broke into a house and took a 2-year-old boy hostage. The police finally rushed
into the house, set the uninjured boy free, and arrested the criminal (December 1, 1995).

Although the information is not available for accurate statistics, it could be said that different scenarios
of the above continue to occur all over the world. The most important decision for the person in charge of
crisis settlement is the timing to enact rescue of the hostages. Wrestling with the problem, needless to say,
involves many factors, political, economical, sociological, psychological, and so on, and all must be taken
into acount, together with the safety of hostages, the demands of criminals, the repercussions of success
or failure in a rescue attempt, and so on. The purpose of this paper is to propose a mathematical model
of an optimal hostage rescue problem by using the concept of a sequential stochastic decision processes
and examine the properties of an optimal rescuing rule. The author has proposed and examined a model

concerning the problem in [1] where only two alternatives, rescuing or no rescuing the hostage, were



2 Model 2

available. However, as is seen in many hostages cases, negotiators often take certain actions to coax the
kidnapper(s) to their way of thinking, for example, presuading the criminal to surrender by subjecting
him/her to his/her mother’s voice, submitting to his demands to be airlifted to another country, providing
a means of escape, paying the ransom, releasing his comrades in prison, and so on. In the paper we propose
a model where such an action can only be taken once, which is effective only at that time, i.e., its effect
vanishes thereafter. Unfortunately, for this problem, with the exception of the author’s paper|[l], we are
unable to find any reference material based on any mathematical approach. Accordingly, we cannot list
references to be directly cited.

2 Model

Consider the following sequential stochastic decision process with a finite planning horizon. Here, for
convenience, let points in time be numbered backward from the final point in time of the planning
horizon, time 0, as 0, 1, ---, and so on. Let the time interval between two successive points, say times ¢
and ¢ — 1, be called the period {. Here, assume that time 0 is the deadline at which a rescue attempt is
considered as the only course of action for some reason, say, the hostage’s health condition, the degree of
criminal desperation, and so on.

Suppose one person is taken as a hostage at any given point in time ¢, and a decision has to be make
from among three alternatives: Rescuing, no rescuing, or taking an action .A. Let z dencte a decision
variable of a certain point in time ¢ where £ = 0 if there is no rescue attempt, £ = 1 if the action is
taken, and r = 2 if rescue is attempted, and X, to denote the set of possible decisions of time ¢, i.e.,
X:=1{0,1,2} for t > 1 and X, = {2}.

Let p (0 < p < 1) be the probability of the hostage being killed if x = 2, let gand r (0 < g <1, 0<
r <1, and 0 < g + r < 1) be the probabilities of the hostage being, respectively, killed and set free up
to the next point in time if £ = 0; accordingly, 1 — ¢ — r is the probability of the hostage being neither
killed nor set free if = 0. Now, taking an action .4 will influence the probabilities p, g and r to a greater
or lesser degree. Therefore, if z = 1, let ¢ (0 < p < 1) be the probability of the hostage being killed,
let gandr (0 < ¢ <1, 0<7r <1,and 0 € ¢ + 7 < 1) be the probabilities of the hostage being,
respectively, killed and set free up to the next point in time. Here, let us assume that the action .A can
only be taken once and that if this action A is taken at a certain point in time, then the p, g and r thus
far change into g/, ¢’ and r', which are effective only at that time, and then back again to p, g and r
following thereafter.

The objective here is to maximize the probability of the hostage not being killed. Now, the cases of
p=p =q=q¢ =0,p=p =q=¢=r=r"=1,and g+r =¢g + 1 =1 make the problem trivial.
Accordingly, all of these are excluded in the definition of the model.
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3 Optimal Equation

Let v, be the maxmium probability of the hostage not being killed, provided that the action .A has already
been taken up to time ¢, and let ¥; be the maxmium probability of the hostage not being killed, provided
that the action .4 has not yet been taken up to time ¢. For convenience, let P = 1 — p, the probability of
the hostage not beiﬂg killed if a rescue attempt is made (z = 2) at any time. Then, we have

1 = P, (3.1)
g = P, (3.2)
ve = max{P,V;}, t>1, {(3.3)
9, = max{P,V;,V}}, t>1, (3.4)
Now, for convenience let -
Vo=Vo=V;=P. (35)

Therefore, Eqs. (3.3) and (3.4) hold also for ¢ = 0. Accordingly, Eq. (3.1) to Eq. (3.4) can be rewritten as

follows.

v = max{P,V;}, t>0, (3.6)

ﬁ! ma'x{Pa ‘71.‘: ‘/t’}: t 2 0. (37)

where V; is the probability of the hostage not being killed over the period from time ¢ to 0 (the deadline)
if no rescue attempt is made (z = 0), provided that the action .4 has already been taken up to time ¢, ¥;
and V; are the probabilities of the hostage not being killed over the period from time ¢ to O (the deadline),
respectively, if no rescue attempt is made (z = 0) and if the action A is taken (x = 1), provided that the
action 4 has not yet been taken up to time ¢. Accordingly, we can express V;, V; and V;, respectively,

for t > 1, as follows.

Vi=r+(l-g—r)u, (3.8)
Vi=r+(1-q-r)B_y, (3.9)
V=r+(l-¢-rv,, (3.10)

The right hand side of the above three expressions imply the following:

1 Vi: Suppose the action A has already been taken up to time ¢ and no rescue attempt is made at time
t. Then, if the hostage is released with the probability r, the probability of the hostage not being
killed is equal to r x 1, if the hostage is killed with the probability ¢, the probability of the hostage
not being killed is equal to g x 0, and if the hostage is neither released nor killed with the probability
1 — g — r, the probability of the hostage not being killed over the period from time ¢ — 1 to 0 is equal
to(l—q—r)ve_;.

2 V;: Suppose the action .A has not yet been taken up to time t and no rescue attempt is made at time

t. Then, if the hostage is released with the probability r, the probability of the hostage not being
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killed is equal to r x 1, if the hostage is killed with the probability g, the probability of the hostage
not being killed is equal to g x 0, and if the hostage is neither released nor killed with the probability
1 — ¢ — r, the probability of the hostage not being killed over the period from time ¢ — 1 to 0 is equal
to (1 —q— r)ve—1-

3 V/: Suppose the action 4 has not yet been taken up to time ¢ and the action is taken at time t.
Then, if the hostage is released with the probability r’, the probability of the hostage not being killed
is equal to r' x 1, if the hostage is killed with the probability ¢’, the probability of the hostage not
being killed is equal to ¢’ x 0, and if the hostage is neither released nor killed with the probability
1— ¢ — ', the probability of the hostage not being killed over the period from time ¢ — 1 to 0 is equal
to(l1-¢ —r)ve-1.

For convenience, let

U=r+(1-g-r1)P, (3.11)
U=r+(1-q¢-r)P, (3.12)
= q_—:;T:t' (3.13)
Then, clearly B
W=W=U (3.14)
Vi =U". (3.15)

4 Preliminaries

This section provides the two lemmas which are used in the subsequent sections.

Lemma 4.1  All of v, U, Vi, V¢ and V. are nondecreasing in t, hence converage to finite numbers v,
9, V, V' and V, respectively, as t = oo.

Proof. From Eq.(3.6) we have v; > P = vg. Suppose v;_1 > v;—3. Then V; 2 Vi—1 due to Eq.(3.8),
hence v; = max{P,V;} > max{P,V;—1} = vi-1. Accordingly, by induction the assertion for v holds. In
a similar way we can prove the assertions for o, V;, V; and V, hold. Hence, from the fact that v, 0¢, V4,
V; and V: are all bounded since they are probabilities, their limits as ¢ =+ o0 exist. B

For convenience we define

-1
AN =—(re-r@) Y (1-g-r)* 721 (4.1)
k=0

Lemma 4.2 Let U > P. Then,
@) ve=V; forallt > 1.
(b) V=r/(g+T).
(©) Ifg —q+r —1<0, thenr' /g > (X}r/g =V > ()4
(d) Assume that e certain t° > 1 ezists such that O = Vio.
1 Ifr'/q >r/q, then Vieyr < Vo, fort 2 1.
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2 Ifr'/q <r/q, then Vioyr — Viu , = A(T) 2 0, hence, Vieyr > Vieyr for 72 1.

Proof. Let U > P. From Lemma 4.1 and Eq. (3.14), for all ¢ > 1 we have

(a) From Egs. (3.3) and (4.2) we immediately get v, =V, forall £ > 1.
(b) From (a), Eqs. (3.8), and (3.10) we get, for t > 1,

Vi=r+(1-g-r)Viy,

'V‘I == rl + (1 _ql —_ T')]fg_l.
Hence V=r+ (1 —q—r)V, from which V =r/(g+r).
{c) Using Eq. (3.13), we immediately have

rig +r)—r(g+r) _ —(r'g—rq’)

V- =(q+r)(q'-'q+f'—f)_(q+r)(q'_q+r:_r)'

Hence, the assertion is true due to the assumption ¢ —g+r' ~r < 0.

(4.2)
(4.3)

(4.4)
(4.5)

(4.6)

(d) Suppose Gie = Vo with t> > 1. Then Viey1 = r+ (1 —r — ¢)V;. from Eq.(3.9). Accordingly, from

Eqgs. (4.4) and (4.5) we get

Veerr—-Vepyy=r+(l-g-nVie —r' -(1-q¢ —r')Vee

=r4+(1-g-n)r+(1-¢-1rWea)-r-[1-¢-r)r+(1-g—rVie1)

=r4+r(l-gq-r)—r —r(l-¢ -r)=—-(r'g—rg).

(4.7)

(d1) Let r'/q¢ > r/q. Then, it follows from Eq.(4.7) that the assertion holds for 7 = 1. Suppose it holds
for  — 1, i.e,, Vioyr1 < Viop,_,- Now, from Eq.(4.3) we have P < Viojr_;. Accordingly, we have
P < Vieyr—1 < Vioy,_;. Then, we get tiesyr_y = Vjoy,_, due to Eq.(3.4). Therefore, from Eq. (3.9) we

have Vioyr = + (1 — ¢ — r)Vio,,_,. Noting Eqs. (4.4) and (4.5}, we obtain

‘_/3°+T - ‘/t"+'r =r+ (1 —q- T)Vt"+r—1 - - (1 e q’ - f‘)‘/“'i—‘l’—l

r+(1—g-n)(r"+(1-¢ =1 )Wiesr2)
—r —(1—g —r)r+(1-g—r)Veesr)

Then Vieyr < Vjo,, for 7 > 1. Accordingly, by induction the assertion holds.

r+r(l—g-r)—-r—r(l—q¢ -r)=—(r'g—rg’) <0.

(d2) Let /¢’ < r/q. From Eq.(4.7) the assertion clearly holds for 7 = 1. Suppose it holds for 7 — 1,
ie., Vieyr — Vi = A(r — 1) > 0. Then Viey,_y = Vjo ., + A(T — 1), hence Viegro1 > Vierra1-

°4r—-1 -

ACCOI'diﬂgly, since ‘7;0.‘.7_1 2 P due to Eq (4.3), we have ﬁgu+f_1 = ‘_/ta+f_1 due to Eq. (34), hence
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Vieyr =1 + (1 — ¢ — r)Vie4r—1 from Eq. (3.9). Consequently, noting Eqs. (4.4) and (4.5), we get

Vioyr — Viegr =17+ (1-g-r)(Viesr o +A(T— D-r-(1-¢ -1r"WVeyr
=r+{(l-g-r)Voy, - —(1-¢ —rVesra1 + (1-g-r)A(T - 1)
=r+(1-g=-r){r'+(1-q¢ - Vs, 2)

—r=(1—g -r)r+(1-g—1)Veeyra) +(1-g—r)A(T - 1)

=r+r(l-g-r)—-r' —-rl-¢-r)+(1-g-r1)A(T-1)

r—2
= —(rg-r¢)-(1-g-n)r'q-rg)Y (1-g-r)*
r—2 =
= —(r'g— rq’)(l + E(l —q- r)k“)
k=0
r—1
= —(rg—r¢) Y (1-g-r)* = A(r) > 0.
k=0

Then Vieyr > Viuy, for 7 > 1. This completes the induction. 8

5 Analysis

In this section, we examine the properties of the optimal decision rule for the problem, classifying all the

possible combinations of the parameters, p, g, 7, ¢ and r’ into the following three cases:

Case 1- {P>U}{=>{(q+r)P>r (1)} (5.1

P>U (@ +r)P>r (2)
. U >p (¢ +r)P<r (1)
Case 2: {U’>U}‘=’{(q’—q+r'—r)P<r'—r (2)} (5.2)
) Uzp (g+r)P<r (1)
Case 3 {UZU'}‘:'{(q«—Hr'-r)Pgr'—r (2)} (5.3)

51 Caseof P>U and P> U

Theorem 5.1 Let P>U and P> U’. Then, v, =9, =P forallt > 0.

Proof. Assume P > U and P > U’. Then, vlr= max{P,U} = P and ¥, = max{P,U, U’} = P due to
Eqs. (3.3) and (3.4). Hence, the assertion holds for ¢t = 1. Suppose v;,_; = %1 = P. Then, from Eq. (3.8)
to(312) weget Vi=Vi=r+(1—g—r)P=Uand V; =r' + (1 - ¢ —r')P = U’; accordingly v, = P
and @ = P for t > 0 due to Eqs. (3.6) and Eq. (3.7). ®

52 Caseof U'>Pand U' >U

Theorem 5.2 Let' > PandU' >U.

(a) Suppose U < P, thenv; =P and 0, =V, =U’ forallit > 1.
(b) Suppose U > P, then
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1Ifr/q >r/q, then by = V{ forallt > 1.
2 Ifr'/qg <rfq, thent, =V} and 5=V, fort>2.

Proof. Let ' > P and U’ > U. Then #; = max{P,U,U'} = U’ =V} due to Eqs. (3.4) and (3.15).

(2) Let U < P,i.e., r—(q+r)P < 0dueto Eq.(5.1(1)). Then v; = P from Eq. (3.3). Noting#, = V} = U,
the assertion is true for t = 1. Suppose it is true for t — 1, i.e., ;-1 = P and 6;—1 = V{_; = U’. Then,
from Eqgs. (3.8} and (3.11) we have V; =r + (1 — ¢ — r)P = U, hence v, = max{P,U} = Pforall t > 1.
From Egs. (3.9) and (3.10), and (3.12) weget Ve =r+(1—g—-r)l" and V} = r'+(1-=¢ - )P =U" > P.
Hence V, -V, =r+(1—g—r)U' —=U' =r—(g+7r)U' <r—(g+7)P <0, ie, V, < V. Accordingly
oy = max{P,V,,Vy} =V =U' forall t > 1.

(b) Let U > P. Since ¥, = V7, from Lemma 4.2(d) we have t° = 1.

(bl) Let r'/g' > r/q. Then, from Lemma 4.2(d1) and Eq.(4.3) we have P < V; < V{ for all t > 2.
Accordingly #, = V] for t > 2 due to Eq. {3.4), hence #; = V; for t > 1.

(b2) Let r'/¢’ < r/q. Then, from Lemma 4.2(d2) and Eq.(4.3) we have ¥, > V/ and V; > P for t > 2,
hence ¥y = V; for t > 2 due to Eq.(3.4). 1

53 Caseof U>Pand U >U’
Lemma 5.1 LetU>PandU>U'. Ifg —q+r —r <0, thend > 0.
Proof. From Eq.(5.3(2)), the assumption ¢ — g+ r' —r < 0 yields ' — r < 0 due to P > 0, hence,
d>0. 1
Theorem 5.3 LetU > P and U > U'. Then,
(a) Supposeq —g+r —r >0, thenty =V, =V, fort> 1.
(b) Supposeq —q+r' —r < 0. We have
1IfV <4, thent, =V, =V, fort > 1.
2IfU>6, thenty =Vi=Vy and e =V} fort > 2.
3 IfU <6 <V, there ezists a unique t* > 2, such that V;-_1 <6 < V..

Hence, 5, =V, =V, for 1<t <t* and 5, =V, fort > t".

Proof. Let U > P and U > U'. Then, #; = max{P,U,U'} = U =V, =V, due to Eqs.(3.4) and (3.14).
(a) Clearly the assertion is true for ¢ = 1. Suppose it is true for ¢t — 1, i.e., 54—; = Vi1 = V;_1, hence
Vi=r+(1-g-r)V,_; =V, due to Eqs. (3.9) and (4.4). Now, from Eqs. (5.3(2)), (4.2), and assumption

g —q+r —r >0 we have
(@-—g+r-rV 27" -r, t2>1 (54)
Then, using Eq. (4.5), we obtain

V=V, =Vem¥ = (r+(1=g=r)Vies) = (F + (1= ¢ = Vern)

=g -q+r-rVin;—-(r-r)>0, t>1,
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due to Eq. (5.4), hence V; = V; > V}, and noting Eq. (4.3), we get &4 = V; = V; for t > 1 due to Eq. (3.3).
(b) Let ¢ — g+ —r < 0. Then § > 0 due to Lemma 5.1.
(bl) Let V < 4. Then V,_; < Jfor all t > 1 due to Lemma 4.1, hence from Eq. (3.13) we get

(¢ —g+r -V 2r-r, t>1 (5.5)

Accordingly, in the same way as in the proof of (a), the assertion can be proven, but in this case the
Eq. (5.5) is used instead of Eq. {5.4).
(b2) Let U > 4. That is V; > §, then V;_, > & for all ¢ > 2 due to Lemma 4.1, hence from Eq. (3.13) we
have
(@ —g+r —r)Ve <1’ —r, t2>2 (5.6)

Noting 9, = V}, from Eq. (3.9) we have V2 = r + (1 — ¢ — r)Vi. Then, from Eq. (4.5) we get V> — V§ =
(¢ —g+r —r)V1 — (& — 1) <0 due to Eq.(5.6), hence V> < V;. Now, since V3 > P due to Eq.(4.3),
we get Up =V, hence t° = 2 from Lemma 4.2(d). Now, since V; > 4§, we have V > § due to Lemma 4.1,
hence r'/q¢’ > r/q due to Lemma 4.2(c). Accordingly, from Lemma 4.2(d1) we immediately get V; < V/
for t > 3. Noting Eq.(4.3), we obtain &, = max{P,V,,V;} = V} for all t > 3. Accordingly, we have
o=V =V, and 6, = V/ fort > 2.
(b3) Let U <8 < V. Thatis V; < 4§ < V, then r'/q' > r/q due to Lemma 4.2(c). Now, since V; is
nondecreasing in ¢ with § < V, there must exist a unique t* > 2such that V, < dfort <t*and V; > 4
for t > t* due to Lemma 4.1. If V;-_; < 4, then V;_; < 4§ for 1 <t < #* due to Lemma 4.1. Hence, from
Eq. (3.13) we have

(@ —gq+r —rVi 127 —r, 1<t<t™. (5.7)
Accordingly, in the same way as in the proof of (a), we can prove that 4y = V, = V, for I < ¢ < ¢*,
but in this case the Eq.(5.7) is used instead of Eq.(5.4). Now from this we have #;» = V.. Hence
Vies1 =1+ (1 — ¢ — r)V;e due to Eq. (3.9). Since V;. > 6, then from Eq.(3.13) we get

(¢ —g+r—rVi. <r'—r. (5.8)

Noting Eq.(4.5) we get Vieyy —Voy, = (¢ —g+ 7 —r)V;o — (' —7) < 0 due to Eq.(5.8), hence
Vie41 < Vioy,. Using Eq. (4.3), we get 041 = Vi« 41, hence t° = t* + 1 from Lemma 4.2(d). Accordingly,
noting r' /¢’ > r/q, from Lemma 4.2(d1) we have V; < V; for ¢t > * + 2, i.e., t > t* + 1. Noting Eq. (4.3),
we get 9 = max{P,V;,V/} = V; for t > t* + 1. Accordingly, we obtain §, = V; for t > t* + 1, i.e.,
t>t. 1

6 Conclusion

Our model revealed that any one of the following seven decision rules would be made according to the
given parameters p, ¢, r, ¢ and r’ noting that a rescue is always attempted at time 0 (the deadline) by

the assumption.
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DR-A
DR-B

DR-C

DR-D

DR-E

DR-F

DR-G

When a hostage event occurs at time ¢ > 0, attempt to rescue immediately.

When a hostage event occurs at time ¢ > 1, take the action A immediately and if the criminal(s)
do not surrender, attempt to rescue at the next time ¢ — 1.

When a hostage event occurs at time ¢ > 1, take the action A immediately and if the criminal(s)
do not surrender, wait up to time 0 and attempt to rescue.

When a hostage event occurs at time ¢ > 2, take the action A immediately and if the criminal(s)
do not surrender, wait up to time 0 and attempt to rescue. When a hostage event occurs at time
1, wait up to time 0 and attempt to rescue.

When a hostage event occurs at time ¢ > 1, wait up to time 0 and attempt to rescue.

When a hostage event occurs at time ¢t > 2, wait up to time 1. If the criminal(s) do not surrender,
take the action A at time 1 and further to this, if the criminal(s) do not surrender, attempt to
rescue at time 0. When a hostage event occurs at time 1, take the action A and if the criminal(s)
do not surrender, attempt to rescue at time 0.

There exists a t* > 2 such that when a hostage event occurs at time ¢ (t > t*), take the action A
immediately and if the criminal(s) do not surrender, wait up to time 0 and attempt to rescue.

When a hostage event occurs at time t (1 < < t*), wait up to time 0 and attempt to rescue.

Corollary 6.1 Suppose a rescue attempt is always made at time 0 (the deadline). Then

(a) Assume P> U and P > U'. Then DR-A is optimal.
(b) Assume U’ > P and U’ > U. Then

1

Let U < P. Then DR-B is optimal.

2 LetU > P. Then

i If /¢ > r/q, then DR-C is optimal.
ii Ifr'/q <r/q, then DR-F is optimal.

(c) Assume U > P and U > U’. Then

1

Letg¢ —q+ 1 —r > 0. Then DR-E is optimal.

2 Letg —q+r' —r <0, Then

i IfV <4, then DR-E is optimal.
ii IfU > &, then DR-D is optimal.
iii IfU <48 <V, then DR-G is optimal.

Proof. Note that the action A can be regarded as having not yet been taken at the time when a hostage

event occurs, i.e., it is sufficient to consider only ¥; when a hostage event occurs.

(a) Assume P > U and P > U’. Then, from Theorem 5.1 we have o, = P for ¢t > 0, implying that a

rescue attempt is made when a hostage event occurs at time ¢ > 0, ie., DR-A is optimal.

(b) Assume U' > P and U’ > U.
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(b1) Let U < P Then ©, = V; and v, = P for t > 1 due to Theorem 5.2(a). Hence, it follows that take
the action .4 due to #, = V; when a hostage event occurs at time £ > 1. Since the action A can only be
taken once by definition, if the criminal(s) do not surrender, it is sufficient to consider only v, = P for

time 7 < t, hence it means that a rescue attempt is made at the next time ¢ — 1, i.e., DR-B is optimal.

(b2) Let U > P. Then v; = V; for t > 1 due to Lemma 4.2(a).

(b2i) If /¢ > r/q, then B, = V; for t > 1 due to Theorem 5.2(bl); accordingly, when a hostage event
occurs at time ¢ > 1, take the action A due to #; = V;, and if the criminal(s) do not surrender, it is
sufficient to consider only v, = V; for 7 < ¢, hence wait up to time 0. From the assumption we obtain
that a rescue attempt is made at time 0, i.e., DR-C is optimal.

(b2ii) If /¢’ < r/q, then ¥; = Vi for t > 2 and #; = V; due to Theorem 5.2(b2); therefore, when a
hostage event occurs at time t > 2, wait up to time 1 due to # = V;, and if the criminal(s) do not
surrender, it is necessary to consider continually #, when ¢ = 1, i.e., ¥;, hence take the action A at time
1 due to §; = V;, and further to this, if the criminal(s) do not surrender, attempt to rescue at time 0;
and when a hostage event occurs at time 1, take the action A due to ©, = Vj, and if the criminal(s) do
not surrender, attempt to rescue at time 0, i.e., DR-F is optimal.

(c) Assume U > P and U > U, then v; = V; for t > 1 due to Lemma 4.2(a).

(c1) Let ¢ —g+7' —r > 0. Then &, =V, for t > 1 due to Theorem 5.3(a); consequently, when a hostage
event occurs at time ¢ > 1, wait up to time 0 due to 6, = V;, and attempt to rescue, i.e., DR-E is optimal.
(c2) Let ¢ — g+ 7' —r <0. Then § > 0 due to Lemma 5.1.

(c2i) If V < &, then ©; = V, for ¢ > 1 due to Theorem 5.3(b1); accordingly, when a hostage event occurs
at time ¢ > 1, wait up to time 0 due to % = Vi, and attempt to rescue, i.e., DR-E is optimal.

(c2ii) IF U > 6, then &, = V; for t > 2 and ; = V; due to Theorem 5.3(b2); consequently, when a hostage
event occurs at time t > 2, take the action .4 immediately due to v; = V{, and if the criminal(s} do not
surrender, it is sufficient to consider only v, = V; for 7 < t, hence wait up to time 0, and attempt to
rescue; and when a hostage event occurs at time 1, wait up to time 0 due to ¥, = V., and attempt to
rescue, i.e., DR-D is optimal.

(c2iii) If U < § < V, there exists a unique t* > 2 such that V;._, < < V-, and “Op=V fort>¢
and @, = V; for 1 < ¢ < t* " due to Theorem 5.3(b3). This means that when a hostage event occurs at
time ¢ (¢ > t*), take the action .4 immediately due to §, = V;, and if the criminal(s) do not surrender,
it is sufficient to consider only v, = V; for T < ¢, hence wait up to time 0, and attempt to rescue; and
that when a hostage event occurs at time ¢ {1 <t < t*), wait up to time 0 due to &, = V,, and attempt

to rescue, i.e., DR-G is optimal. 1

7 Future Studies

In this paper we propose a basic model of an optimal rescuing problem involving hostages. Taking
different real hostage situations into account, we feel a need to modify the model from the following
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viewpoints:

1 We should consider the case where there is an action which can only be taken once and its effect will
last to time 0, the deadline. More practically the effect of an action decreases gradually after it is
taken. '

2 In real hostage event, several actions are available. The problem arises as to when and what action

" should be taken.

3 In many real cases, more than one hostage is taken.

4 In the present paper, all the hostages are implicitly assumed to be homogenous. As seen in many
hostage crises, however, special considerations are given for females, the aged, the sick, children, and
so on. Models in which such nonhomogenous classes of hostages are taken into consideration should
also be proposed.

5 In many real cases, criminal(s) operate with confused motives. This causes the probabilities p, g and
r to change randomly from one minute to the next. This consideration leads us to the model in which
p, g and r are random variables with a known or unknown distribution function F(p, q,7). When it is
unknown, we can and must update its unknown parameters by using Bays’ theorem.

6 Cases where the deadline cannot always be known.

Finally, in order for the model to be realistically effective, the probabilities p, ¢ and r for each hostage
crisis must be measured and known in advance. Although such a measurement would be a very difficult
task, it should be tackled through united efforts of researchers in different fields, say, psychologists,

sociologists, political scientists, engineers.
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