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Abstract: A regression equation may include many consecutively lagged
variables with/without other explanatory variables. The explanatory vari-
ables may cause multicolliearity or the number of the explanatory variables
may exceed the sample size. In this case, the Almon distributed lag regres-
sionmay be useful, Although all possible regressions, the forward selection,
backward elimination, stepwise regression, mini-max regret principle methods
and others have been studied in the literature, a variable selection method for-
the Almon distributed lag regression has not been studied much. As a vari-
able selection problem for the Almon distributed lag regression (ADLRY), the
j-th ADLR-best subset problem is proposed and how to solve it is shown.
The Intellectual Statistical System OEPP is developed to solve the first §
ADLR-best subset problems in & run of a computer.
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1 Introduction

Now that the technology, hard and soft, concerned with a computer has matured,
statistical science can make not superficial but positive contributions to societies and
the world through substantial sciences. The contributions are possible only when
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statistical theories are well interwoven with informatic and computational methods
to handle the professional knowledge related to research in question.

In some economic research, many consecutively lagged variables appear in a
regression equation. They may cause multicollinearity or the number of them and
other variables, if any, may exceed the sample size. In this circumstance, it is impos-
sible to apply regression analysis. S. Almon (1965) proposed a method to reduce the
number of regression coefficients to be estimated. Part of the changes of a dependent
variable over time is explained by a set of current and consecutively lagged data of
a factor and the remaining is explained by the other factors. She put a decisive as-
sumption that the regression coeflicients of these variables may be approximated by
a polynomial of some appropriate degree on the basis of the Weierstrass’s theorem,
which states that a continuous function in a closed interval may be approximated
by a polynomial of an appropriate degree, and successfully reduced the number of
regression coefficients to be estimated. It is better to obtain somme statistical results
than to do nothing. If a user, i.e., an applied researcher, knows accurately all vari-
ables which statistically explain the movement or behavior of a dependent variable
and has a reliable data set, then he can easily estimate the regression equation with
the Almon distributed lag regression, abbreviated as ADLR, hereafter, and proceed
to analysis, prediction and/or policy simulation (scenario) by using the estimated re-
gression equation. However, in most actual regression analyses, a user does not know
a priori such a specification and may not have a precise’data set. It is quite difficult
to know a priori a functional form between a dependent variable and explanatory
variables, define the correct data of some explanatory variable and determine the
most appropriate proxy variable if the data of a variable are unavailable. These
occurrences force a user to search for the scientifically reasonable and statistically
best regression equation somewhat through trial and error.

‘Some efficient algorithms to calculate all possible regressions in a run of a com-
puter have been developed in the literature. If the number of variables is, for in-
stance, 20, then 1,048,575 regression equations are estimated and printed in the
computer output, because 220 — 1=1048575 where 1 is for an empty subset. A user
has to obtain a heavy and 10-meter high printout and select the best among 1,048,575
regression equations. If is impossible or quite difficult. All possible regressions are
not so useful as expected.

The forward selection, backward elimination, stepwise regression, mini-max re-
gret principle methods and others have been proposed to search for the best regres-
sion equation in a run of a computer. Unfortunately, these conventional variable
selection methods often select different best regression equations, especially if the
number of explanatory variables exceeds 5. It is quite strange that the best re-
gression equation for a dependent variable depends on a variable selection method
employed. Also, they are not useful for ADLR.

As a result, a user adds a new variable to or removes another from the initial set
of explanatory variables by paying close attention to each new set of explanatory
variables in such a way that no contradiction occurs, loads a new set of explana-
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tory variables with the dependent variable into a computer and then evaluates the
estimated regression equation through scientific, statistical and data-analytic cri-
teria. This process is repeated at least until he obtains a scientifically reasonable
and statistically satisfactory regression equation. This primitive one-at-a-time pro-
cedure is quite laborious, time-consuming, costly and resource-wasting and does
not take advantage of the rapid improvement of cost performance of a computer in
contrast with the increasing price of output paper. Unless all intended regression
equation candidates are estimated and evaluated through scientific, statistical and
data-analytic criteria, the quality of regression analysis may be lowered.

A crucial defect common to these conventional variable selection methods is that
they cannot take advantage of the professional knowledge needed to solve a vari-
able selection problem in the research at hand. Statistics does not surpass all other
sciences but is independent of them and just as important. A variable selection
problem can be solved by statistics on the basis of the professional knowledge re-
lated to research at hand. Unless professional knowledge needed can be generally
handled and processed by a computer, a variable selection problem cannot be solved
by the computer. Fortunately, it is possible to make a computer recognize and pro-
cess professional knowledge, whatever the research, loaded by a user. If a software
system possesses not only a knowledge database of professional knowledge but also
(a database of) statistical and data-analytic criteria, it is called a statistical expert
system. So far, professional knowledge which can be used for any kind of research
cannot be stored in a software system except where research is narrowly limited.
It is better to incorporate user’s professional knowledge regarding the research at
hand into a software system and utilize it together with statistical and data-analytic
tests. Such a software system is not an expert system but can be called an intellec-
tual system. The author developed the Intellectual Statistical System OEPP!
in which a user-knowledge-based variable selection method for ADLR is available.

2 Almon Distributed Lag Regression

To simplify the explanation about ADLR, we here omit a constant term and
non-ADLR explanatory variables and deal with only one kind of ADLR explanatory
variables (e.g., current and lagged interest rates for capital formation).

Let X=current variable and X_; = k-time-lagged variable of X, Suppose that
current and consecutively lagged variables, X, X_;, X o, -+, X_g, are explanatory
variables for the dependent variable ¥ and the regression equation is expressed as

1 The Intellectual Statistical System OEPP consists of the main program and about 550 subrou-
tines written in FORTRAN 77 and leading to about 90,000 lines in total and is at present available
for FACOM and IBM-compatible main frame machines, workstations and personal computers, An
8-hour-a-day work of estimation by a primitive procedure can be done in less than one second of
CP7U time at a cost of half a US dollar by a notebook-type PC.
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follows:
Y =aqpX + a1 X1 +as X o+ tagX g+ U=XA+U (2.1)

where ¥Y'=dependent variable or (T x 1)-vector of its data; T=sample size of time
series data; X =current explanatory variable; K'=far-end time lag number with & >
0; X_ = k-time-lagged variable of X or (T'x 1)-vector of its time series data for k =
0,1,2,---, K with X = X_;; ag=true regression coefficient of X_;; U=disturbance
term or (T x 1)-vector of its disturbances with £(U) = 0r and V(U) = oIy,
Or = (T x 1)-zero vector; Ip = (T x T)-unit-matrix; X = (X + 1)-variate set
{X, X0, X gy, X_g} or {T x (K +1)}-matrix of their data; and A = (ag, a1, as,
Tty GK)'-

Suppose that (2.1) cannot be directly estimated by OLS (ordinary least squares),
because | X'X|=0 or K +1 > T. We assume that regression coefficient ay is ex-
pressed as the following polynomial of degree P with respect to &:

ap = bo + bk + bok® - -+ bpk® for all k=0,1,2,.., K (2.2)

where P=integer, satisfying 1 < P < min{K,T} — 1 and b, =parameter to be
estimated of a polynomial for p=0,1,2,..., P. .

‘The explanatory variables in the regression equation (2.1) satisfying (2.2) are
here called Almon variables. We can express (2.2) in a matrix form as

ar =W B for all k (2.3)
where Wi = (1,k, %%+, k") and B = (bg, b1, by, + -+, bp)". Then we have
/ a 10 0 0 0 - 0 bo
a1 1 1 1 1 1 - 1 by
as 1 2 22 28 2¢ ... 2P || p,
ag | =] 1 3 32 3 3 .. 3f b (2.4)

\ax /] \1 K K? K* K* ... KP |\ i,
and express (2.4) as
A=WB - (2.5)

where W = (Wg, W{, Wy, .+, Wg) = {(I{ +1) x (P + 1)}-matrix of fixed elements
and B = (bg, by, by, -+, bp)'. Substituting (2.5) into (2.1), we can rewrite (2.1) as

Y=2ZB4U (2.6)

where
‘ _Z =XW, (2.7)

If |Z'Z| # 0, B may be estimated as '
B=(Z2'2)'72Y (2.8)



ONISHI 5

which leads to £(B) = B and V(B) = 06%(Z'Z)~!. The regression coefficient vector,
A, may be estimated as X X
A=WBS, (2.9)

A has the following statistical properties: £(4) = WB = A and V(A) =W (Z'2)"' W',
An assumption that variable X_(x+1)is not included in (2.1) may require ax 41=0.

If we regard it as a constraint, we have the following constraint imposed on B by

substituting K + 1 into & in (2.2):

bo -+ (K + 1)by -+ (K +1)%by + -+ + (K + 1)Pbp = 0. (2.10)

On the other hand, constraint E,‘Zf___ﬁ ar=1, implying constant returns to scale over
time, yields the following constraint imposed on B:

(K + )by + (i k)b + (i B )by + -+ (i EP)bp = 1. (2.11)
k=1

k=1 k=1,

Let X not be included in (2.1) so that ¥ = a1 X_1+a, X _s+as X s+ +axgX_je+U
is estimated. We have ag = 0 which lead to by = 0. Constraints like (2 10) and (2.11)
can be rewritten as a constraint set CB = c.

In actual research, one or more sets of Almon variables with/without non-Almon
variables appear in a regression equation, Let X¢ be the ¢-th Almon current variable
for all £. A general form of ADLR may be expressed as follows:

Kt
= ag + 2 apXp + Z > ag, X, + (2.12)

£=1 k=0
where L=number of kinds (or groups) of Almon variables; X?,a8 = k-th non-Almon
variable and its true regression coefficient for k£ = 1,2, -+, KY, respectively, if K° >
0; and X% a5, = ketime-lagged variable of the current X¢ in the é-th Almon
variable group and its true regression coefficient for k, = 0,1,2,- -+, K* with X%, =

X¢, respectively. For instance, if ¥Y=capital, then ¢=1 may be “an interest rate”,
= 2 “economic growth rate”, =3 “retained earnings”, and so on.

3 A Variable Selection Problem for ADLR

We focus on the selection of the practically best regression equation when all
possible Almon and non-Almon variables are given for a dependent variable. Such -
a regression equation has been obtained through a trial and error process in most
research. A user may not necessarily have perfect professional knowledge and pre-
cise data needed to find such a regression equation but may possess fairly sufficient
professional knowledge and considerably reliable data. Making allowance for this
situation, we formulate the j-th ADLR-best subset problem as a variable selection
problem for ADLR in which a user can specify an appropriate positive integer for
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7 which depends on the degree of the certainty and confidence in his professional,
statistical and data-analytic knowledge about the research. If he has sufficient pro-
fessional knowledge, precise data and rich experience in model building and knows
appropriate significance levels for statistical tests and data-analytic criteria, then
j=1 can be specified and a solution to the (first) ADLR-best subset problem be-
comes the practically best regression equation. He should otherwise specify 4 or 5
for 4, continuously solve the first 4 or 5 ADLR-best subset problems in a run of
a computer and then select the ultimately best among the solutions by comparing
them with each other or using his own new criterion.

3.1 Notation

We introduce the following notation:

T =sample size of time series data where ¢ = 1,2,+-.,T for 7" > 1;

Y =dependent variable or (1" x 1)-vector of its data y's, i.e., Y = (y1, %2, * yr)’;

y =average of Y, ie., y = Yoo, 4:/T;

L =number of sets (or kinds or groups) of Almon variables;

£ =set number of Almon variables, where £ =1,2,--+,Lfor L > 1.

£, =number assigned to a set of all possible non-Almon variables, like a time trend
variable or dummy variables for seasons (quarterly data), oil crises, cold summer
and liberalization of a foreign exchange rate, as £, = 0 or sets of all possible
Almon variables as all £, like £, = 1 {or £ = 1) for a set of the Almon variables
for the current and lagged interest rates, £, = 2 (or £ = 2) for a set of the Almon
variables for the current and lagged economic growth rates and £, = 3 (or £ = 3)
for a set of the Almon variables for the current and lagged retained earnings in
capital formation where £, =0,1,2,---, L;

K° =number of all possible non-Almon variables not including a constant term for
K°® > 0 where K° = 0, unless any non-constant non-Almon variables are used;

K*, K* =possible farthest and nearest end-points of the time lag of current Almon
variable X*, respectively, where ¢ and K are specified by a user and an
optimal far-end point is determined among x¢ = K K¢+ 1, K¢+ 2, .- , Kt
for 1 < Kt < K¢ '

K =K'+ Y} (K*+ 1) =number of all possible explanatory nonconstant variables
so that 2% — 1 possible nonempty subsets exist;

i=1,2,3, +,2% ~1 =number assigned to each of all possible subsets or submatrices
of a set or a data matrix X of all possible explanatory variables;

Xo =constant term or (T" x 1)-vector of its data 1's, i.e., Xy = (1,1,---,1)4

X§ = k-th possible non-Almon variable or XJ = (2,23, +,2%) = (T x 1)-

- vector of its data 2 ’s for k = 1,2, -+, K% if K% > 1 and X must be ignored, if

K% =0,

X* =current Almon variable of the £-th set of Almon variables or X¢ = (z £, .. 2Ly
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= (T' x 1)-vector of its data zf's for all ¢

X!, =possible k:-time-lagged Almon variable of X% or X¢,, = (2¢_,,, wg w2l
g, 28, 2h_ ) = (T x 1)-vector of its data zf_,’s for k= 1 2, -, K* for all
I

X° =set {Xo, X, X3, -, X%} or data matrix (Xo, X2, X2, -+, X%0) of all possi-
ble non—Almon variables, including a constant term,;

K} =number of non-constant non-Almon variables in X? for all 1 where X? > 0 for
all %;

MY = K? + 1 for some ¢;

X* = £-th Almon variable set {X4XE, X, XE ey o, X8 10} or data matrix
(X4 XE, X, ,Xf&“ o, XE ) for all £

U =disturbance term or (7'x 1)-vector of disturbances u,’s, L.e., U = (uy, ug, - - yur);

X =set {X° X', X% .., X} or data matrix (X° X, X2, ... , XY of all possi-
ble explanatory variables, including a constant term, for the dependent variable
Y,

X; = ¢-th subset of X or z—submatrlx of X for all 4, where if X¥ % @ for all £ and
some i, then X; = {X?, X}, X2, ., X} or X; = (X9, X}, X2 L XE)

K "“far-end point of X for all £ and a.ll i for Kf < Kf < K

M, t = = K!+1forall ¢ and some 4 when all X lE’S for all £ are meanmgful subsets
Where M‘e‘ = K& + 1 for all 4,;

X; ¢ —meanmgful and ALDR-applicable M g-subset of X*¢ for all £ and some %, then

={X, Xt X, X8} = (T x Mf)-subset of X% or X¢ = (Xf_X_

X-{z» s, XE ) = (T x Mf)—submatrix of X! for Kt < Kf < K¢

M, = Ef‘ o M & —number of all variables in X i, including a constant term;

LKl
Alo= (b0 a0kt af? 0T Y = (MP x 1)-vector of true regression coefficients

of X? or meanmgful Xt for all £ and some i;

Ay = (A“’ Al A% AL’) of X; when X%'s for all £ are meaningful for some i;

Py, Gy _possible smallesfs and largest numbers of degrees of a polynomial used for
the variables in the £-th Almon variable set, respectively, and specified by a user
where 1 < P, € Qs < K%

rp =number assigned to a polynomial of degrees p, applied to the variables in the
£-th Almon variable set where 7y = 1,2, .-, Q¢ ~ P+ 1 for all 4

R=1},(Q¢ — Py + 1) =number of all possible permutations of the degrees of L
polynomials applied to L Almon-variable sets;

pe =possible degree of the re-th polynomial candidate for meaningful X¢ where
pp=Fp, P+ 1,-+-, Qg for all £ s0 that p; = P+ 1, — 1;

W,f”‘ = (1, kf, (kf)?, (kz)3 - (k6P = {1 x (pg+1)} vector for &f = 0,1,2,+-+, K},

br
all £ and some 7 so that WP = (1 0,0,-+-,0), Wi = (1,1,1, -+, 1), W“Pf =
(1,2,4,:-+,27¢), WaP* = (1,3,9, 3”‘) etc. for all £ and some i;

Wi, = (W(fff', Wfff’ , Wi{’;’ o W Pt’ ) {ME x (pg + 1)}—conversion matrix for
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meaningful X f for all ry, all £ and some i;

zi, =1{28,28,28, .-, 22} = (p+ 1)-set of new converted variables or Z f, =
(28,228,222 = {T x (p,+1)}-matrix converted from meaningful X ¢
through the 7¢-th polynomial of degrees py, i.e., an =X fo,.t for all 7y, all £
and some ¢ where Zf,.[ is here called the converted Almon variables from the £-th
Almon variable
group;

r =number assigned to the polynomial-index set {ry, 79, ++,7r.} from which the
corresponding set of degrees of polynomials is derived as {py,ps, -, 11}, ie.,
{m+P—1r+P—1, 7+ P, — 1} wherer = 1,2,.-+, R so that (i)

7 =1 corresponds to the polynomial-index set {1,1,--+,1} and the polynomial-
degree set { Py, P,,--+,Pr}; (ii) 7 = 2 corresponds to the polynomial-index set
{2,1,++-,1} and the polynomial-degree set {P, +1, Py, -+, P}, -+ (iil) r = @
corresponds to the polynomial-index set {R;, 1, -, 1} and the polynomial-degree
set {Q1, Pa,++, Pr}; (iv) r = Q1 + 1 corresponds to the polynomial-index set
{1,2,+++,1} and the polynomial-degree set {P;, P+ 1,.-+, Py}, v e+ s (V) r=
(J1 -+ 2 corresponds to the polynomial-index set {2,2,--+,1} and the polynomial-
degree set {P1+1, P+ 1, , P}, -« - ; (vi) r = R corresponds to the polyno-
mial-index set {R;, R, -+, Ry} and the polynomial-degree set {Q1,Qq, -+, Qz};

Kip = M{ + 35, (pe+1) =number of all non-Almon and converted Almon variables
related to X; for all r and some ¢ where all X s for all £ are meaningful;

Wi = (M; x K, )-matrix which consists of block-diagonal matrices Ltg, Wiy,
Wirgy +++y Wi, and all zero off-diagonal matrices where it is assumed that
7 corresponds o not only the polynomial-degree set {p;,ps, -+, ps} but also the
polynomial-index set {ry,7q,++, 71} for all  and some ¢ where all X f’s for all £
are meaningful (see Subsection 3.2);

Zi = K new converted variables or Z;. = r-th (T x Kj,}-matrix converted from
X ; through the r-th polynomial-degree set {p1,pa, -+, 01}, .., Zgp = X, Wy =
(X1, 2, 22,,--+,Z% ) for all 7 and some ¢ when all X¥s for all £ are meaning-
ful; .

A} = (M x 1)-vector of regression coefficients of X? of Z, for all r and all 7;

Af =W BE = (M{ x 1)-vector of regression coefficients of X £ of Z;, for all 7

irs irey—iry T

and all 4;
Bf, = (b, 8,68, b)Y = (py + 1)-vector of regression coefficients of Zt, of

Z i for all vy, all £ and some i where Af,,t = meBf”;
By = (A}, By, BE,, +, BE Y = (K x 1)-vector of true regression coefficients of
Zyy for all 7 and some 3;
N} =rank(C?) of constraint set CJA? = ¢ where it is assumed that N® =0 if no
constraint is imposed on A{ for all 4;
Nf =rank(C},,) of constraint set C5, B,
no constraint is imposed on B, for all §;

N; =number of all constraints imposed on 4;, i.e., N; = Ea -0 Nf‘ for all 4;

= ¢f where it is assumed that Nf, = 0 if
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C'yr =matrix whose diagonal submatrices are CY, C,, C%,, -+, CE_ and all off-

diagonal submatrices are zero matrices where C? and/or C:, , nust be eliminated
with the corresponding rows if the constraints are not imposed on A? and/or

Bf,, (see Subsection 3.2);
&

= (Nl

¢;" = (N;* x 1)-vector of scalars (constraint values) for all £, and 1

10 0L SOKE

A= (a8, ad,a%2, ... 4, ) =estimate of A} based on Z, for all 4;

VI A0l A eIt . .
Ai,. , = (@ ff,, fﬁea af,?t, "y Gy, ) =estimate of Af based on Z;, for all £ and i;

Aw = (A%, AN A2 ... ALY —estimate of A; based on Z;, for all r and
lan

s“, =standard deviation (or error) of & azr ™ for all ¢, and mf;
mf = =0,1,2,, M; ~ I
tf;m t-ratio of &y { for all £, and mé

o —(parmal test) estunate of 4, based on Z,, for all 7 and ¢

f’, = (y1 05y + -, OF) =(partial-test) estimate of ¥ by Z; for all r and 4;
:;" =y yg’" =(partial-test) residual from y, based on Z;, for all r and 3;
By = (é’i’", &y, -+, 8N = (T x 1)-vector of (partial-test) residuals &i"’s;
Ty =T — K + N; =degrees of freedom for all » and

I, = (n x n)-identity-matrix;

0, = (nx1)-zero-vector;

Omn = (M X n)-zero-matrix;

o2, 0 =unknown variance and standard deviation of the disturbance Uy, respectively;

2., 6;r =estimates of 0® and o based on Z;, for all 7 and i, respectively;

v} =a priori known lower bound of the A-th sign or magnitude condition about
regression coefficients; /

o =a priori known upper bound of the h-th sign or magnitude condition about
regression coeflicients;

[ =percentage of a significance level for a one-tailed or two-tailed #-test
(0 < B8 < 0.25);

~ =percentage of a significance level for the Durbin-Watson test (4 =0, 0.01 or 0.05
at present);

v =percentage of a significance level for a two-tailed ¢-test for detecting a residual
outlier (0 < v < 0.25);

7 =percentage of a significance level for the Jarque-Bera normality test
(0 < 7 < 0.25); :

£ =criterion value of a standardized residual test;

¢; =definition value (%) of a turning point for y; # 0;

(» =definition value of a turning point for ¥, = 0;

f =minimum requirement of an adjusted coefﬁ(uent of determlnatzon

3.2 Assumptions

(1) A user must have fairly sufficient knowledge about his research.
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(2) If there are L kinds of Almon variable groups, a subset becomes meaningless
unless any variables are selected from each of L groups. If X{is {X¢ X¢,, X4,
K;} it is called meaningful and ADLR-applicable when K* < KE< KE

!
(3) If regression coefficient aek‘ of Af is estimated with Z,,., it is represented by a
polynomial of degree p, in the r- th polynomial-degree set {pi,pa, -+, P2, *+, P}

as follows:
!
afnt = 00+ UL+ b (K + - DR
= W,ff;th”; for kf = 0,1,2,---,Kf, all £and i (3.13)

(4) OLS cannot be directly used, because
| XX =0o0r M; — N; > T for all §
but the following holds:
| X)X #0o0r T > MP+ L, (@, +1) for at least some 1.

(8) The disturbance term U is normally distributed as U ~ N (0O, 02Iy).
(6) |Z}.Z:| # 0 for at least some i,
and

(7) X is nonstochastic or independent of U if stochastic for all 4.

If the i-th subset X; is a meaningful subset? for the research at hand, it can be
expressed as the following regression equation:

Vo= XA+ U=X)A + XTA + X2A2 4+ 4 XPAF 4+ U (3.14)

which is estimated with R possible polynomial-degree sets. Thus, R regression
equation candidates are estimated for (3.14). Concretely writing W, Cy and ¢;,
we have with the polynomial-index set {ry, 7y, -, 7.} and the polynomial-degree set
{p1,p2,++,pr} which correspond to r with ry = py— Py+1for pp = Py, Po+1, .-+, Q,

? A meaningful subset was originally defined in H. Onishi (1983), A meaningful subset is defined
as a subset which includes all necessary explanatory variables but does not include any unnecessary,
redundant or contradiction-causing explanatory variables so that it deserves to be estimated and
evaluated as a candidate for-the best regression equation. Thus, it corresponds to a regression
equation in the primitive one-regression-equation-at-a-time procedure where a user repeatedly
loads into a computer a set of variables by carefully adding a new variable(s) to or removing
an already-entered variable(s) from the set. On the other hand, a subset which does not include
at least one of the necessary explanatory variables or includes at least one unnecessary, redundant
or contradiction-cansing explanatory variable is called a meaningless subset. In the primitive
procedure, a wise user never loads any meaningless sets into a computer and estimate them.
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where if constraint sets CFA? = ¢} and/or Cf”Bf” = ¢f are not imposed on A}
and/or Bm, respectively, the corresponding rows in C;. and vectors in ¢; must be
eliminated.

If (3.14) is estimated by ADLR, with the r-th polynomlal degreeset {py,p9,"*+, 01}

which corresponds to the polynomial-index set {ry,rg, -+, 73}, it is converted into
Y = XM} +Z, BL + meBfm 4+ Zf;,LBf;L +U
= ZuBiy+U (3'15)

which is actually estimated.

3.3 The J-th ADLR~Best Subset Problem

We concretely formulate the j-th ADLR-best subset problem® as a variable
selection problem for ADLR as follows:

The J-th ADLR-Best Subset Problem

Search for subset X;, t.e., { X9, X}, X2 .+, XF}, from set X of all possible non-
Almon and Almon varlables spemﬁed for the dependent variable ¥, determine the
optimal far-end points {K}., K2, K2, -+, KE} of X; and the optlmal polynomial-
degrees {p1, pa, pa, +++,pp} which corresponds to r, and estimate A;, with their stan-

gt ké
dard errors &, ’'s and {-ratios ttr i ’s, variance &7 and standard error &;, of the

dlsturbance term U and some other important statistics under the criterion set
{a}’s,0i’s,B,v,m, €,(1,(0,0) specified by a user in a run of a computer such that-

3 For simplicity, a case of lagged dependent variables'is not referred to here. Hence, the Schur
stability condition, the Durbin h-test for serial correlation and final test are not incorporated in
the j-th ADLR-best subset problem, although the System OEPP can handle them.
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[ I ] X7 is a meaningful subset for the research at hand and X? is meaningful and
ADLR—apphcable for the research, ie., X! = {X?¢ XEI,X‘EQ, o -»Kf} for
all £,

Lok

[ II] Ay Yir, Bin, Vi, & 62, Giry 8 * s, t "5 are estimated as follows:

- o n - E! E ekl o kok
— — A2 i A — A9 ploks - L
Vo = XiAipy, Bo=Y ~ ¥, 62 = , by = \J62, 8N =V

7T 2’!1:;; | r i
ts &f}*kf* ' -1
and &% =~ for kf =0,1,2,- K and ko= Y IF 4+ kP +1
Sir ! n=1
for £, =0,1,2,--+,L (3.16)
(1) in an unconstrained case (IV; = 0)
fL‘r = Wir(zn’irzir)“lzir_y (3‘17)
with the estimated covariance matrix
V‘i?' = a-frwif(z-’irzif‘)*lwgr ' (3'18)

(ii) in a constrained case of Cy 4; = ¢; (N; > 0)
Aw = WilZ42:)7YZ,Y + CL{Ci( 2}, Z:,) " Cl )
x{e;i ~ Cir(Z}, Z5)1 2, Y} (3.19)
 with the estimated covariance matrix
vir = &ierir[(Z;rZ ) (Z.r ) IC’r{CiT(ZngiT')‘-lcir}—l
xcir (Z;rzir) 1]vair' (320)

where V. Bk = (ku, k. )-diagonal element of V,;

[ IIT ] A; must satisfy the following sign and/or magnitude conditions if necessary
from the viewpoints of the professional knowledge related to the research in
question: for h; = 1,2,---, H;

fhi( H‘) 2 ah 1 fh.-(ﬁir) < lale;- or O"Ill,' < fhi(ﬁ‘i'f‘) < O"le,- (321)

where fp,. (A 1T) =function of A;, which is linear in most cases but has absolute
values and square roots in some cases;
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[ IV ] the following Jarque-Bera normality test statistic jl?w must hold to main-
tain the null hypothesis Hy : U is normally distributed with the expectation
E(U) = O at a significance level 1007 %* :

7B, =7(Se 1+ LTy oy (322)
for
T 2 T
{3/} S(@EnT
Sh= o oy o K= —F———
{Zieryy/r} {H(*W) /Y’

where x3(n) = n percentile of a x?-distributon with 2 degrees of freedom,

[ V] the following inequality must be satisfied to adopt the specified alternative
hypothesis H; or maintain the specified null hypothesis Hy, depending on the
purpose of the research® , if necessary: for d; =1,2,-.+, D;

- (i) if Hy must be adopted for Hy : Gy, A; = ga, against H; : Gig, A # G,y

Gig Air — 04,
| id; :d gdal > tT-' (;B/Z) (3_23)
5 ?

(it) if Hy must be adopted for Ho : Gig, A; = gy, against Hy : Gig A; > Gd; »

G'l Az‘r.—' fl
i 7 0 4 (B) (3.24)

(iii) if H; must be adopted for Hu : Gig; A = gq; against Hy : Gig, A; < g,

4 — Gig A
B =2 > by (6) (3.25)

ir

or
(vi) if Hy must be maintained for Hg : Gig, A; = gg; against Hy : Gig, A; # gu;,

GiaAn ~ g4
Giadi — g4l . (579 (3.26)

* The Shapiro-Wilk normality test is alternatively available.

® It is possible to specify a different significance level (% or a critical value) for each hypothesis
test in the System OEPP. If an alternative hypothesis (# is represented as #) is loaded into a
computer, it is required that it be adopted. On the other hand, if a null hypothesis is loaded into
a computer, it is required that it be maintained. Concretely speaking, Giq, A; # gg, is derived
from aggregate linear hypothetical relation GgA # gg which i is loaded through GeX#g4 into a
‘computer and converted into Gy, Wi By leading to Gig, Wi By, which is equal to G,d,Aw
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for .

(S«:l;)2 = Gid,- virG;d‘ and S'Id,f = (S‘::l;)g (327)
where Giy, = (1 X Lfg Mf)-vector of known coefficients of 4; in the di-th
hypothetical relation for the i-th subset; g4, =known value of the d;-th hypo-
thetical relation; and #r: (8/2) and 7+ (8) denote the critical points for 1004

% two-tailed and one- tailed t-tests with T, ie., T — K, + N; degrees of free-
dom, respectively; '

[ VI ] (1) the Durbin-Watson serial correlation Statistic, DW ., defined below must
satisfy the following inequality, if annual time series data (m =1) or quarterly

time series data (m =4) are used and no lagged dependent variables are in X;
(Durbin and Watson (1950,1951)):

DWi > din(y) if DWi <2 or 4-DWy > dip(y) if DWip > 2 (3.28)

for

Ztm1+m(eir é; m)2
| DWW ST gy (3.29)
where di-(7) = dt x, -, ('y) if he subjectively treats an inconclusive case as
unacceptable or dz,.( ) = db g, _n,(7) if he subjectively treats an inconclusive
case as acceptable, df.r. _n I(fy) =upper limit of a 100y % significance level of
the Durbin-Watson serial correlation test with (T, Ky — N;) degrees of freedom,
d .. _n,(7) = lower limit;

[ VII ] B must satisfy the following outlier test? 3 (Sawa, 1979), if necessary:
max 5&7’? < tre 3 (v/2T) for some t=1,2,.-,T (3.30)

for
&/ y1—~ar

| VEBLEq — (87)2/ (1~ ) /VTE=T

2R, o~ N (Op,0?{Ip ~ Z: (2. ,-.,) 1Z:.}) in an unconstrained case or By ~
N Or,0® Ir - Z5x(2}, Z5) " 2} + 240(21, 2 zr)mlcir{cir(Zérzir)—lcér}—lcir(zgr
X Zir) 1 Z}.]) in a constrained case. It turns out that & = &ir/(c\/T=G") ~ N(0,1). As
T — o0, v/2T" — 0. Hence, the larger the sample size, the weaker the outlier test. It may be
possible to set a criterion value £ to define badlly-fitted estimates of ¥ as |y; — 9| > £'s and use

the number T™ of badly-fitted estimates instead of T' and the critical point tpe g, +nv41(r/2T*).
For large T', one may use a standardized residual test.

Ot =

sdr
3 The following standardlized residual test for é, can be uged, if necessary, by defining et =
8ir [(Gip/1 = &7): max; |et | <efort=1,2, -, T with respect to the criterion value £ specified

"‘iT‘

by a researcher where & ~ A(0,1); Pr{|&, [ < 1} = 0.6827; Pr{)&"] < 92} = 09545 and
Pr{|&"| < 3} = 0.9983.
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and/or .
(i) all standardized residuals &,,’s defined below must not exceed the user-
specified criterion value &% , if necessary”

m%x|§;| <¢ forsomes=1,2,---,Sandt=1,2,--,7
s,
for ,
of g;g
est:’\ pw
Girf1 — Gy

where ¢re _1(v/2T)=50v/T percentile of a ¢-test with T —1, i.e., T— K, -+ N;—
1 degrees of freedom and §{"=t-th diagonal element of Z;,.(Z},2;,) " Z., in an
unconstrained case or Zi (23, Zir) ' 2} — Z(2},.2;,) ' CL{Cyr (2}, Z1r) ™
xCy}1Cy (2}, 2) 7}, in a constrained case; -

[ VIII ] f’}r must satisfy the following turning point test, when time series data

and

are used and at least one lagged dependent variable is included in X; and if

it is necessary: fort =1+n,2-+n,.-, T'—nandn=1,2,- -, 1},
if
(Yen — Ye) (4 — Ye-n) <0 (3.31)
and . Yin Yesn
100 x min{|1 - ” 1 - ” b2 G for g #0 (3.32)
or ‘
minf|yenh [Yeral} = & for 3 =0, (3.33)
then
(Yt = Y1un) (?Jt - ﬁ:f. )>0 (3.34)
and '
Yetn — v) (Flin — 97) > 0 (3.35)

where ¢} =maximum time lag number among the tinie lag numbers of all
lagged dependent variables in X,

[ IX ] the following fitting criterion must be met:

the adjusted coefficient of determination (R})? defined below is greater than

- b _‘ ~ N(O 1). Pr{|est| < 1} = 0.6827; Pr{|est| < 1.6449) = 0,9000; Pr{[es| < 19600} =
Q0. 9500 Pr{lestl < 2} = 0.9545; and Pr{|est| < 3} = 0.9983.

7 In regression analysis, an outlier test to identify an outlier in Y before estimation is less

important than an outlier test through residuals. If an outlier-like 3, 18 well tracked with outlier-

like

ki

ve p 3 .
sit—mu, S¢ it i8 not regarded as an outlier.
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or equal to & and the j-th highest among the adjusted coefficients of determi-
nation of the subsets which satisfy the above conditions [ I | to [ VIII | and
are greater than or equal to 8% :

— — (RN —
(Rop)? = max |1 — 1 (R";*HT DT (3.36)
for .
(£4)? =1 o

TV -y Xy (Y - yXo) .

A criterion set {oy’s,0f’s} depends on the professional knowledge related to the
research in question. There are no optimal criteria for {8,v,7,¢,v,8}. Conventionally
used criteria are usually set for them, For example, 8 =0.05 (5 %) or 8 =0.1 (10
%), v =0.06 (5 %), n =0.1 (10 %), £ =1.65, v =0.1 (10 %), § =0.6. A data-analytic
criterion set {(1,{2} depends on the data of a dependent variable. If the data of a
dependent variable are expressed as ratios, rates or percentages, the above criterion
for # may be reduced, since empirical studies indicate that it is not easy to obtain
high 2. No solution may exist if criteria are very severe. It may be impossible to
reverse a priori known sign condition or alter Jower and upper bounds of a magnitude
condition except where a new fact is found and correct the established professional
knowledge. If a user is uncertain about a sign or magnitude condition, he should
not use it. If a sign condition (positive or negative) is applied, a one-tailed t-test is
automatically applied. A two-tailed {-test is applied, otherwise. The System OEPP
can evaluate all regression equations and optionally print with respect to each of all
regression equations all reasons or only the first reason if a regression equation is
unsatisfactory. If no solution existed, a diagnosis is printed whether all regression
equations failed to pass all sign and/or magnitude conditions or some regression
equations passed them but failed to pass statistical and/or data-analytic criteria. In
the latter case, it will be printed that a solution exists if weak statistical and data- -
analytic criteria are reset and the job is rerun. It should be kept in mind that a
solution to the j-th ADLR-best subset problem is the practically j-th best regression
equation in the sense that (i) various scientific, statistical and data-analytic tests
must be applied, (ii) there exists no overall evaluation function which incorporates
all scientific, statistical and data-analytic tests, (iii) an inconclusive case often occurs
in the Durbin-Watson serial correlation test, (vi) no optimal criterion set exists at
present and (v) the solution depends on a criterion set specified by a user,

8§ AIC; = T{ln2x+1+ ln(@frﬁir/T)} + 2( K — N;+ 1) can be used instead of ('J'%,-r)2 and the
phrase “the j-th highest” must be replaced with “the j-th lowest”, T'(In 27 + 1) +4 is not essential,
becanse it is constant where Xn is taken into consideration and already counted in IQ,. The 1 of
2(¥; — N; + 1) implies that ¢? is counted as an unknown,
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4 Scientific Variable Classifications and Meaning-
ful Subsets o

The author has developed the System OEPP for a user-knowledge-based vari-
able selection method to solve the first § ADLR-best subset problems in a run of a
computer, which is available for any kind of research. The main characteristics are
(i) the automatic generation and estimation of only all meaningful subsets through
scientific variable classifications rendered by a user and (ii) the automatic evalua-
tion of the regression equation candidates by scientific, statistical and data-analytic
criteria loaded by him.

Let us call a priori known sign and magnitude conditions about regression coeffi-
cients scientific conditions, a regression equation of a meaningful (sub)set which
satisfies all scientific conditions a scientifically reasonable regression equation,
a regression equation which satisfies the user-specified criteria for all statistical hy-
pothesis and data-analytic tests and, furthermore, fits the j-th best to the data of
a dependent variable a statistically j-th best regression equation, and a sci-
entifically reasonable and statistically j-th best regression equation a practically
J-th best regression equation. A user tries to search for the practically (first)
best regression equation (§ =1) or one among the first j practically best regression
equation candidates,

It is quite amazing that all possible explanatory variables for ADLR can be
trebly classified by the professional knowledge regarding research at hand in order
to generate only meaningful subsets. They are (i) single or grouped variables,
(ii) combinatorial or sequential variables. Furthermore, sequential variables are
classified into (iii) non-Almon or Almon (sequential) variables. These variable
classifications are called scientific variable classifications, distinguished from
econometric variable classifications® . Three kinds of variable classifications are
not only necessary but also sufficient for the sake of generation of only meaningful
subsets for any kind of research.

4.1 Single Variable VS Grouped Variables

In variable selection by a run of a computer, a user has to notify a computer
of the meanings or roles of explanatory variables in regression analysis. First of
all, all possible explanatory variables must be classified according to whether an
explanatory variable has its own meanings or role by itself or as a group. If an
explanatory variable can have some meanings or role by itself and independently of
any other explanatory variables, it is called a single variable. On the other hand,
if an explanatory variable can have some meanings or role only when it is used to-
gether with the other(s), it is called a grouped variable. For instance, in population

8 Included predetermined variables, right-hand side endogenous variables and excluded prede-
termined variables in the estimation of a simultaneous equation system are called econometric
variable classifications which play different roles in variable selection.
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movement from a region to another or job change from a company to another not be-
cause of unemployment but because of his desire, a pair of a pushing-out factor and
receiving-in factor may be expected to appear in a regression equation. Computer
hardware and software are complementary goods, regarded as a set of two grouped
variables. Hardware without software is just a plastic box. Software without hard-
ware cannot output anything. The information about the signs of some regression
coefficients is often available from the professional knowledge related to research
at hand. A user may want to test hypotheses about the signs of some regression
coefficients. In this situation, it is convenient to attach the a priori known or to-be-
hypothetically-tested signs, + or —, to the fronts of such explanatory variables in
loading a dependent variable together with all possible explanatory variables into
a computer. Let ¢ denote -+, ~ or nothing and braces { and } stand for a set or
subset of variables. Therefore, GX implies +X, —X or X. {+X], — X2, X3} implies
a (sub)set of variables X1, X3 and X3 the a priori known signs of whose regression
coefficients are positive, negative and unavailable, respectively. We postulate that
. (i) a set of grouped explanatory variables X, Xy, -+, OXx is enclosed within (
and ) like '

(0 X1, 0Xa, -+, OXg) for K =2,83, - (4.37)

and (ii) treated just like a single variable in generating only meaningful subsets,

Let A% = k-th single variable ¢X) or k-th set of M} grouped variables, Xy,
OXka, vy Xy, which is counted just like a single variable and enclosed within (
and ) like ($Xp1, ¢Xkg, »+, OXiag,) in the following combinatorial and sequen-
tial variable classifications but not in a generated subset denoted by {---} like
{-, OXp1, OXk2y -+, OXkagy, -} For simplicity, we call &} a condensed vari-
able hereafter.

Example 1: If we regard Xi, +X,, (X3, —X4), +X5, (— X5, + X7, X3) as Xy, Xp, Xa,
X,;, Xs like

X1, +Xo, (X3, = X4), + X5, (—Xg, + X7, Xs) = X1, A, As, Xy, X5

then Xy = X1; & = +Xo; Ay = (X, —X4); Xy = +X5; and X = (— X5, +X7, X;)
so that X3, Xo and X are single variables, X3 and X, are grouped variables in
a set, and Xg, Xy and X are grouped variables in another set. The scientifically
reasonable regression coefficients of X3, X and X7 are positive from the viewpoints
of the professional knowledge at hand, whereas those of X4 and X are negative.
However, those of X, X3 and X are not a priori known, implying that the regression
coefficients of X3, X3 and X3 can be estimated as either positive or negative. The
number of all possible subsets of variables X, X, - «+, X3 is 28 =256, whereas that of
condensed variables Xy, Ay, + - -, X5 i3 2° =32, The use of information or professional
knowledge about sets of grouped variables drastically reduces the number of subsets
to be generated. |
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4.2_ Basic Combinatorial Variables

A set of combinatorial variables is defined as one which consists of explana-
tory variables which can be selected in a combinatorial way to generate mean-
ingful subsets. Let X =number of the condensed variables of X, A, +++, Xg;
M, N =nonnegative integers such that 0 < M,N < K and 0 < M + N, M* =
min{M, N} and N* = max{M, N}. Nonnegative integers M and N and variables
with/without the signs of their regression coefficients of A%'s reflect part of user’s
professional knowledge and specified by a user. Suppose that Xy, X, .-+, Xk be a
set of combinatorial condensed variables at least M* but at most N* of which should
be selected. We postulate that (i) they are enclosed within < M < and > N > or
within < N < and > M > as follows: for K =1,2,3," -+

<M<, Xg>N> or <N<X,A, -, Xk>M>, (4.38)

(ii) the subsets of {X}, Ay, + -, Xx} which include at least M* but at most N* con-
densed variables of Xy, Ay, - -+, X are generated, and (iii) the signs of the estimated
regression coefficients of variables are examined whether or not they coincide with
the a priori known signs of the corresponding variables. The subsets generated be-
come meaningful with respect to these variables. A user can specify the appropriate
integers M and' N through the professional knowledge of his research. Needless to

say, SN o (7};{1) meaningful subsets are generated with respect to Ay, A3, -, K.
It must be noted that the positions of combinatorial variables within < M < and
> N > or within < N < and > M > do not matter., M = 0 or N = 0 allows
an empty subset.- It is easily understood that < 0 < A3, A%, , X > K > or
<K < X, Xy, -+, Xg > 0 > generates 2 meaningful subsets including an empty
subset but <1 < A, &, \ A > K >o0or < K < &, Xy,--+, Xx > 1 > generates
2% — 1 meaningful subsets excluding an empty subset. Let us give examples,

Example 2:
<1 <+X), =Xy, (X5, +X1) > 2> or <2< (Xs+Xy),+X1,-X2> 1>

which is regarded as < 1 < Xy, A, &3 > 2 > or < 2 < A, A7, A2 > 1 >, respectively,
with &1 = +X;, & = —X, and A3 = (X3, +Xy), generates {X1}; {M}; {Xa};
{1, Ao}y {X, A and {A, A3}, de, {+X0} {20} {Xs +Xu); {+X1,-X}
{+X1, X3, +X4}; and {-X, X5, +X4} but treats 0; {X3}; {+X4}; {+X1, Xz}
{+X1,+X4}} {“XQ,X3}; {~X2,+X4}; {+X1,—X2,X3}; {+X1, —X2,+X4}; and
{+X4, —Xq, X3, +X,} as meaningless and does not generate them where X; and X,
are single and combinatorial variables while X3 and X are grouped and combina-
torial variables,

Example 3:

<1<4+X1>1> <0< Xy, ~X3>2> or <2< =X, X>0> <l<+X;>1>
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generates {+X1}; {+X1, Xa}; {+Xy, —X3}; and {+X1, X5, —X,}, which are led by
the combinations of [1] the only one partially meaningful subset {+X,} generated
by <1 < +X; >1 > and [2] four partially meaningful subsets @, {X,}; {—X3)};
{X7, —X3} generated by < 0 < X, —X3>2>0r <2< —X3, X5 > 0 >. Meaning-
less subsets §; {Xa}; {—X3}; and {X3, —X;} are never generated.

4.3 Basic Sequential Variables

The third variable classification is for sequential variables. The Almon distributed
lag regression is available only for a special case of time series data, At first, we
introduce the entry format for non-Almon sequential variables and then modify it
in a way that a computer can recognize (i) each set of Almon variables, (i) whether
the far-end point of time lag is fixed (known) or varying (to be determined), and
(ili) whether a degree of a polynomial is fixed or varying (to be determined).

4.3.1 Non-Almon Sequential Variables

Sometimes, a priori information is available that explanatory variables in a set
must be sequentially selected. Typical examples are consecutively lagged variables or
power variables in a polynomial. Suppose that Xy denotes the k-th power of variable
X, i.e., Xy = (X)* obtained through a variable transformation for k = 2,3, -, K,
the /& is the maximum degree of a polynomial, all variables with/without the a
priori known signs of their regression coefficients from X to the K-th power of X,
namely, ¢X, $Xa, ¢X3,+++, OXx, must appear in a polynomial regression equa-
tion, and the X varies, for instance, from 3 to 6. Then the relevant subsets are ex-
pressed as {OX? <>X2) 0X3}i {OX: <>X2: <>X3) <>X4}: {Oxs 0X2y <>X3: 0X4:: <>X5}
and {OX, 0 Xo, 0X;5, 00Xy, X5, QX5 } which are the third-, fourth-, fifth- and sixth-
degree polynomials of X, respectively.

We postulate that (i) a set of non-Almon sequential condensed variables X, Xs,
»++, Xk is enclosed within < M < and >> or << and > M > as follows: for
0<M<£LKand K=1,2,8,+- :

<M< A, A Ay, A > or << Xy Xy, Mg, > M >

(4.39)
and (ii) the subsets of {Ay, Xy, -, Xk} which include the first Xy, Xy, -+, Xy and
then one by one additionally from Xy 4; to Xx are generated. M = 0 allows an
empty subset as meaningful. The (K — M +1) generated subsets become meaningful
with respect to these condensed variables. It must be noted that the positions of
sequential variables within < M < and >> or within << and > M > play decisively
important roles in generating correct meaningful subsets.

Example 4:

<0< =X, KXo, + X3, Xy >> or << Xy, +X3, Xy, -X1>0>
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generates 0; {—X1}; {—X1, Xa}; {-X1, X, + X3} and {—X;, Xa, +X3, X4}

4.3.2 Almon Sequential Variables

Since Almon variables are sequential as well as single, we follow the format of
non-Almon sequential variables (4.39) mentioned above but attach the degree or
degree range (the degree is changed within the range) of a polynomial with a slash
to it, Accordingly, a computer can distinguish non-Almon sequential variables from
Almon sequential variables and recognize the degree or degree range of a polynomial
to be used. Non-Almon sequential variables are used whether or not data are times
series. To emphasize that Almon sequential variables are available only for time
series data, we introduce ¢X as an Almon current variable with/without the a
priori known sign and ¢.X_; as the k-time lagged variable with/without the a priori
known sign of X for ¥ = 1,2,.-,K. Thus, &} = X and Xy, = OX_; for
k=12, K.

(I) Fixed Degree of a Polynomial

Suppose that (-1} Almon current and lagged variables X, X_y, X_o, -+, X_g
(in a group) follow the postulation of non-Almon sequential variables in (4.39) and
the regression coeflicients of the Almon variables in each of (X — M + 2) meaningful
subsets are represented by a polynomial of degree P where 0 < M < K +1 and
1 £ P < min{M,T} — 1. Then we postulate that (i) Almon sequential variables
X, OX_1, OX-g, +++, OX_g are enclosed within < M/P < and >> from the
< M/P < side or within << and > P/M > from the > P/M > side like

< M/P < OX: Olea OX-—-Z: "t OXf(M—l),OX—M: b ':OX-"K >> 9 (440)
or

<< OX—K') tre )OX—M:OX-—-(M-—I)) o '1<>-X—2; <>X—-l’<>X > P/M >y (4-41)

® Suppose that “ABC” is the user’s notation of an Almon current variable so that X = ABC. In
the System OEPP, X_; can be directly treated by “ABC(—k)" where k =time lag number. If the
current variable, ABC, is a transformed variable, it must be obtained through variable transfor-
mations prior to introducing ABC(—k). For instance, if K =8 and P =2, then the following entry
is loaded into a computer: < 9/2 < +ABC,~ABC(-1), ABC(-2),---,ABC(~T7), ABC(~8) >>
or << ABC(-8),ABC(-7),:++,—ABC(-1},+ABC > 2/9 >, implying that the first 9 vari-
ables counted from the < 9/2 < or > 2/9 > side become the first meaningful subset of
Almon variables whose regression coefficients are expressed as a polynomial of degree 2, i.e.,
a10ABC + a1 ABC(-1) + a13ABC(—2) + «++ + a13ABC(-8) and a1 = byp + b1k + bisk? for
k=0,1,2,--+,8, where &0 > 0 and d;1 < 0 are scientific conditions, Thus, if ABC(-9) is included
as in < 9/2 < +ABC, -+ | ABC(-8), ABC(-9) >> or << ABC(-9),ABC(-8), -+,+ABC >
2/9 >, the first 10 variables counted from the < 9/2 < or > 2/9 > side become the second mean-
ingful subset of the Almon variables whose regression coefficients are expressed as a polynomial of
degree 2, Le., agABC + an ABC(—1) - age ABC(-2) + +++ + ass ABC(—8) + ap ABC(~9) and
agp = bap + bark + book® for k =0,1,2,++,9, where &y > 0 and dg; < 0 are scientific conditions.
Two Almon distributed lag regressions are automatically conducted by loading the latter entry
into a computer. _ :
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(ii) the (K — M + 2) meaningful subsets
X1 = {0X, 0X1,0X 5, -+, OX_u-py}s

KXo = {OX: <>-X—-1: <>X—2, reey OX—-—(M—-I), <>-X--M}; seareenas
Xg-prrr = {OX, 0X 1, 0X g, o+, OX g1y, O X} (4.42)

are generated and then (iii) the corresponding converted sets
Z;={2),2},2%,---,2F} for X;i=1,2,-- K- M+2

are derived whose data matrices are calculated as Z; = X, W,
where

Wl — (W{)f, Wlil, W]?I’ e T/VIM—-U)f; Wg — (ng, TJVZII, W22!1 - pszl)I;

""" ;oand Wg_prge = (WIO(LMM’ WII(’—M+2’W§!—M+2»‘"aWII({iMH)' (4.43)

and Wi = (1, k;, (k)2 - -+, (k)P) for by = 0,1,2, -, M+i—2andi=1,2,-++ , K ~
M +2. Z;is used as regressors. It must be noticed that X ; and Z; are used not
only as variable sets but also data matrices. L =1 and R = 1 so that £ = 1 and
r = 1 are omitted.

If0 <M < K+1in (440) or (4.41), then the optimal far-end point must be
determined from M —1 to K inclusive. If the far-end point K of Almon variables X,
X1y X9, o+, X_g is known, M must be equal to K +1 in (4.40) or (4.41). In this
case, only one meaningful (K + 1)-variate subset {OX, 0X 1, 0X s, -+, 00X g} is
generated and then converted into a (P + 1)-variate set {20, 21, 2}, ., ZF}.

If the starting point of the time lag is J such that 0 < J < K, the following
format is suitable:
< M/P < QX 5, 0X_ i)y OXogan—1)y OX sy, O X >> or <<
QX gy QX (gay; OXoganr—1)s O X (1), O Xy > P/M >, Bfff must be
estimated subject to bf2, +bf% kf+bf2 (kf)2+- - +bE (RSP = 0for kf = 0,1,2,-++,J —

tre irg e

1,i=1,2,-- K-M-J+2,ry=1andf{=1.

Example 5: Caseof L =1, K =9, M = 10 = K +1 and P =2 in which the far-end
point is known and the degree of a polynomial is fixed at 2,

<10/2 < + X, +X 0, + X0, + X 3, X 4, X5, X6, X7, X 5, X g >>
which is equivalent to |

<< X9, Xogy X, X g, Xog, Xogy +X a, +X 0, +X 1, +X > 2/10 >
generates only one meaningfﬁl 10-variate subset

X = {+X: +X—1) +-X—-2} +X—-3:X—4:X-5: X-—ﬁ: X—-?:X——-B:X—Q}
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which is converted into a set Z = {Z° 2%, 22} of 3 converted variables whose data
matrix is calculated as Z = XW,

where W = (WY, WY, W2 ... W% and W* = (1,k, (k)?) for k=0,1,2,---,9. Z
is used as regressors, The estimated regression coefficients of X, X_; and X_, must
be positive for scientifical reasonableness in estimation.

Example 6: Caseof L=1, K =9, M =8 < K41 =10, and P = 3 in which the
degree of a polynomial is fixed but an optimal far-end point is eventually determined
among K =7,8,9. '

< 8/3 < +X: X—l:X—2)X—3:X—4)X—5:X-B:X—?:-X—B:X—Q >>

which generates 3 meaningful subsets

X, = {+X, X..1,X_2,X...3,X_4,X_5,X...6,X__7};
Xy = {+X, X._]_,X.,..g,X_;;,X_4,X_5,X._5,X_7,X_8}; and
Xy = {+X, X_l,X_g,X._a,X_4,X_5', X_.E;,X_—;,X_S,X_g}

each of which is converted into 3 possible sets of Z; = {29, Z}, Zz} through Z; =
X,W; for a,Il z = 1,2,3 with the data matrices W, = (WY, W} W&, ... W/,
Wy = (WY WY, w2, .. WY; and W = (pvgf,wg',wgf,---,w " and Wk =
(1, ki, (k)2 - (k) ) for k; = 0,1,2,--+,6+417and ¢ = 1,2,3. Z; is used as re-
gressors, The estimated regression coefficient of X must be positive for scientific
reasonableness in estimation, whereas it does not matter whether those of X_;, X_,,

v, X_g assume positive or negative values.
(II) To-Be-Determined Degree of a Polynomial

Suppose that a degree of a polynomial is consecutively changed from P to Q) if
P <@ orfrom @ to Pif P> Q and an optimal degree p is eventually determined
among p = P* P*+1,..-, Q% where 1 < P,Q < K, P* = min{P,Q} and Q* =
max{P, Q}. Let R = Q* — P*+ 1, We postulate that (i) Almon variables X, X_,,
X2, '+, X_g are enclosed within < M/P — Q < and >> from the < M/P-Q <
side or within << and > P — /M > from the > P — Q/M > side like

< M/P - Q < <>X: <>X—1: OX—Z: Ty OX—(:M-—I); OX—-M) Ty OX--K >> (4'44)
or
<< <>X-K: Tty OX—M;OX—(M—-l): v 'r<>X-—-2p OX—I: OX >P - Q/M >y (4'45)

(ii) the (i — M + 2) meaningful subsets are generated as in (4.42) and then (iii)
cach, denoted by ¢, of the (¥ — M -+ 2) meaningful subsets in (4.44) or (4.45) is
converted into the following R possible converted-variable sets

20 {420 o RN Zm (R T 25
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------ »and  Zip={Z0, 2L, Z% ... Z2) for X, (4.46)

through Zy, = X;Wi forr=1,2,---, R and i = 1,2, K — M + 2, where
Wi = (WY, WL WE, - WY Wy = (W, wy, W, Wiy,
------ i and Wig = (Wig, Wig, Wi, -, WE'Y for X, for i =1,2,--, K= M+2
. . N (4.47)
where Wit = (L, ki, (k)% -, (k)™ 1) for by = 0,1,2, -, M +i—2 for i =
1,2,--+, K — M + 2. Needless to say, R X (J{ — M +2) possible converted-variable

sets are generated in total.

It must be kept in mind that P — Q of < M/P ~ Q < and > P — Q/M > does
not imply a subtraction but implies a degree range of a polynomial specified by a
user. If the far-end point I of Almon variables X, X_;, X_5, -+., X_g is known,
- M must be equal to K +1 in (4.44) or (4.45). In this case, the optimal degree p of a
polynomial must be determined, if P # Q. fO0 < M < K +1 and P # Q in (4.44)
or (4.45), then not only the optimal degree $ of a polynomial but also the optimal
far-end point X must be determined at the same time.

Example 7: Caseof L =1, K =11, M = 12=K+1,P =2and Q = 3 in
which the far-end point is known but an optimal degree of polynomial is eventually
determined between p = 2 and p = 3,

<12/2-83 < —X, X 1, X0, +X_3, X_ay X5, +X 6, X7, Xty X—0, X 10, X gy >>
which is equivalent to
<< X 41, X0, Xeoy Xogy X, +X g, X5, Xog, +X 3, X 0, Xy, — X > 3-2/12 >
generates only one meaningful 12-variate subset

X ={-X, X—l,Xn-z,+Xn3,X-;4,X—5,+X—6,X—7,X—s,X—-Q,X~10,X-11}
which is converted into two possible converted-variable sets

Z,={2% 2}, 7%} for p=2 and Z,={Z],2;,22,23} for p=3
whose data matrices are calculated as Z, = X W, for r = 1, 2 where
W= (WY, WY, W2, . WY and W= (WS, W, WZ,..., Wiy

and WF = (1,k, (k)2 -+, (k)" for k = 0,1,2,---, 11 and 7 = 1,2, i = 1is
omitted. Z, is used as regressors. The estimated regression coeflicient of X must
be negative and those of X_; and X_g must be positive for scientific reasonableness

in estimation.

Example 8: Caseof L =1, K =10, M =9 < K+1=11, P =2 and Q =4
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so that R =Q~P+1 =3 and K — M + 2 =3 in which an optimal far-end point
is determined among K = 8,9,10 and an optimal degree is eventually determined
among p == 2,3, 4. ‘
< 9/2 —-4< +X1 +X._1,X_g,X_3,X..,4,X_5,X._5,X..7,X_3,X—g,x._m >>
generates 3 meaningful subsets
Xy={+X,+X 0, X g, Xty Xa}y Xop={+X,+X1, X0, +, X_g, X o}
and Xg = {+X, +X_1,X;2, v ,X_g, X...m} for Y
each of which is converted into 3 possible converted-variable sets
Zn={20,241, 20}, Zn = {20y, 212, 235, 25} and Z13 = {2, Ziy, 213, Zigs By} for X5
Zon = {231, 23,23}, Zn = {23, Z3,, Z32, 23} and Zog = {Z23: Z23, 223)223: Z33} for X5; and
Zo = {231, 231, 74}, Zsp = {232, Z5a, 233, 23} and Zgg = {23, Z33, Z3 Z3s Zgy} for X 5

whose data matrices are calculated as Z;, = X; Wy forr =1,2,3and ¢ = 1,2,3
where

Wll_(Wll’ 11:W11r ’ WSI)': W12~(W12: 12:W T Wg;): and
Wi = (Wla!Wla# 13: - Wig') for Xy W21—(W21: Wat, Wi, + :W281’)')
W = (Wey, Wh, Wa . Wa ) and Wy = (Wi, Was, WA, - - Wm') for Xy
and W = (War, Wat, W2, WEY, Wag_( 32,W32,W32, -, W) and
Wiz = (W33,W33, A o Wy for X5

and Wi}:'i = (1, ki, (ki)z, ey (k,‘)r"'l) forr = 1, 2,3, ki = 0, 1, 2, vt ,7+'i and i = 1,2,3
The estimated regression coefficients of X and X_; must be positive for scientific
reasonableness in estimation.

4.4 Nested Case

Nested combinatorial or sequential variables may be considered, though they are
seldom used in real research. We postulate that they are enclosed within ( and )
like a set of grouped variables.

Example 9:

<l< (<l <+X,Xe>25), X (X4, +Xs), (K 1 < +X5,+ X7 >>) > 1 >

regards {< 1 < +X3,X5-> 2>} {Xs}; {—X4, +Xs}; and {< 1 < —I—X5,+X7 >>}
as equlva,lent to each other and eventually generates

{+X1}) {X2}: {+X11X2}: {X3}1 {—X4)+X5}: {+X6}: and {+X6:+X7}'

Needless to say, exactly the same meaningful subsets can be also generated by
<1< +X1,X2, (+X1; X2)’X3) (“-X4:+X5):+XG) (+X6: +X7) >1>.
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4.5 Illustrative Examples for Variable Selection

Now we are in a position to illustrate a variable selection method for ADLR in
the System OEPP by full-scale examples. Following the notation defined in Section
3, we postulate that a dependent variable ¥ and all possible classified explanatory
variables X are entered in a functional form and a constant term, denoted by Xj,
is entered as itself in a functional form, if needed, and included in all meaningful
subsets.

Let | imply “actions by a computer” such as “generation, estimation, evaluation,
ranking, analysis, prediction or policy simulation through the System OEPP” and
{ imply “actions by a user”. The integer j reflecting the degree of certainty and
confidence in his professional, statistical and data-analytic knowledge and model
building experience is specified and a scientific, statistical and data-analytic criterion -
set is loaded together with a functional form with the data by a user:

Example 10:
V= F(Xo, <1 <+X], (+X3,+X5) > 2>, << X g, X2, 00, X2, - X1 > 2/11 )
or
Y = F(X,<11/2 < =X XY, X0 X2 >>, < 1<+ X0, (+X0, +X8) > 2 >)
. 4
Xy={Xo,+X7], - X1 X1, X1, X110} with p=2;
X5 = {Xo,+ X0, +X2, - X" XL, X2, X1} with p=2; and
X ={Xo,+ X}, +X3,+X3, - X", X2, -, X1, X2y} with p=2 for ¥
-
{Xo,+X7, 20, 211, 21§} and Xu; {Xo, +X3,+X3, 230, 73}, 232} for Xy
and {Xo, +X?, +X0, +X0, 22, Z1, 712} for X,
l
i = a2+ XD + B2 + B2l + 82
Vo = gy + a3} X3 + a3 X3 + DR 230 + B 23} + B 23}
T = 6+ &1XD + XD + a0 + 2230 + Bl 23] + B2
J
Vo= ald 4+ a0 XY +alixt + allxl, +al2xt, 4+ kXl
Vo = a0 + 801 X3 + 31 X5 + &0 X" + X + AR, oo gty
Yis = a0 + a1 X7 + 492X5 + age X3 + a3 + alix?, 4 alixl, + o+ aptxl,,

4
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Evaluation of all regression subequations by means of scientific
conditions, statistical hypothesis tests and data-analytic tests

1

Ranking of the regression subequations which have passed all scientific conditions,
statistical hypothesis tests and data-analytic tests by means of a fitting measure

4

The selection of the first j practically best regression subequations if they exist

1

The analysis, prediction and/or policy simulation by
each of the first j practically best regression subequations

Vifj=1 or | ifj>1

The (first) practically best regression subequation if j = 1 or the user’s selection of
the ultimately practically best regression subequation among the first ;7 practically
best regression subequations if j > 1

4

Presentation of the practically best regression equation and the related analysis,
prediction and/or policy simulation in a refereed journal, a book, a conference,
a seminar, an executive business meeting, ete, Then, final evaluation by referees,
editors, audiences, professors, presidents, critics, readers, etc.

Example 11: Case of no variable selection.

Y = F(Xp,<9/2 < +X1, X1, X1 Xl X0 XY 5>,
<< X?-ID:X?-Q}X?-B: b ':X?.h - X? > 3/11 >)

_ \:
{XU;""XI: X-l-laXlZ:Xlaa e r-XiB)X?—IOrXEQ:XEB: e :XE],: ""Xz} for Y
¢ .
{Xo, 210, 21 212 72 2% 7% 7P} with p; =2 and p; =3
!

Vo= 00 + 5102110 + prgu + pr2 z12 + j28 728 + 522222. + 321221 + j20 720
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i
Vo= a"+a"X" +a"XL + 62X, + - 48X, +a18XY,
+&2,10x310 + &QQXEQ NTN a’ZEXzQ 1 &ZIXEI + a?GXQ
!

&% > 0 and 4% < 0 must be met for scientific reasonableness in estimation.

Example 12: We omit the procedure at and after the stage of evaluation.

Y= F(Xy, <1<+X],—X3 >>, << XL, X g, X1, +X1 > 2-4/10 >)
or
V= F(X,<10/2 -4 <+X X1 oo X X2 55 << = X0 4X0 > 1)

1
Xy = {Xo,+X], +X, X1, X1+, X2} with p=2,3,4 and
Xo = {Xo,+X7, — X0, + X", X2, X2, X2} with p=2,3,4d for ¥
b
{Xo, +X7, 231, 231, Zit) {Xo+ X0, 203, 243, 733, Z13} and
{Xo,+X1, 233, 233, 233, 233, 213} for Xy,
and {Xo, +X0,~X3, 230, 78, 282}, {Xo, +X},~X, 22, 233, 73, 733}
and {Xo,+X7,—X3, Z33, 223, Za2, 233, 73} for X,
1
Vi = o)+ afix? + 02 + Bzl + 5221
Vo = 635 + af3 X7 + B9 210 + B3 215 + B3 237 + B3 213
Yro = 6%+ afxD + 53210 + B3 Zl) 4 3212 + D328 + Dlizld
Yo = a3} + a5 X7 + a3 X3 + 00 230 + 0y 2l + b1 Bl
Vo = a8 + 034 XY + aZXS + B9Z10 + BL 2l + B2 + B3z
Voo = a8 + a3 XY + 6B XD + Y7 + R 23 + DR + B2 + iz
!
Vio = a0 +a%x0 4 aldxt 4 alixt +al2xl, + 0+ alXY
Vg = 6% + a0 X0+ ald X + all Xl +al2xl, + - +aldxl,

> A00 | AOLy0 4 al0vl , allyl 4 al2vl 19 v1
Yisg = Gy + 413 X1 + @3 X + G Xy a8 X g+ + 83X
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or . 200 201 ++0 ~02 10 210 1 ~11 v1 ) -
}/?21 —_ a21 + a21X1 + a21X2 ‘I' a'21X + a21X-—1 + a%%Xl + e + a%gxig

= 200 4 ~013r0 | A02w0 | 210yl |, 211 31 212 31 2
1/22 -_ av22 '|"' a22X1 + a22X2 + CL22X + a22X_1 + a22X_2 + v "l" a%gX..].:.g

Or . 200 a0l 10 20290 4 ~10 ~11 ~1 -
Yoy = Ggg -+ Gga Xy + 893 X3 + Gga X + A XL, + 68X+ 4 A Xl

Example 13: We omit the procedure at and after the stage of evaluation.

Y =F(Xo,<8/2-3 <+X", XL, +XL, - X g, oo, =X g, + X1, - X1 >5) .

_ 1
Xy = {XU? +X1: '_'X—l-h +X}-2: '_X-l—.'i} T +XE-61 _X-{-'i'} with p=2,3;
Xo={Xo,+X", - X1, + X1, X5, X1, + X5} with p=2,3; and
X3= {X0,+X1,—X},1,+Xi2,-Xla,-o-,+X}_8,—- 1} with p=2,3 for ¥
| 0

{Xﬂa ZII?) lellx 21112} and {XO, leg: Zilzl# 21122: leg} for Xy;
{Xo, 231, Z31, 231}, and {Xo, B33, Zay, Za3, Z3} for Xa; and
{XU! Z.'ﬁ)! Z.’}lla Z.’;IQ} and {XOa Z:%g: Z&%: 21}22! Z.’}g} for X5
1
Y =&} + 63210 + bl i} + b3z
Yo = % + 821 + B33} + B2 + g2
Vo = a3 + B2 + B 2 + bz
Yoo = a5 + 035250 + b3 733 + bR ZI2 + B3 233
P = + 230 + 123! + B
Vo = &3 + 033238 + b33 233 + B2 232 + b 28

A2 |

P = aff 4 A0+ all X2 + AKX + 6l
Vip = a9 + g X' + alp X1, + 813XL, + -+ alix?g + allx?,
Yoo = ) + g X'+ ayt XL, + al X2y + -+ all XY, + XY,
Voo = 239 + ag9 X + ags X, + a2 X1, + - + 4l XL, 4+ allxl,
Vo = aQl + al0X? + ol Xt + a2 XL, 4+ Al X+ aki X,
Vip = 00 + a0 X1 + 611 XY, + G2 XL, + -+ a8 XY, + a0 X!,
_ ) _

(-1} x a}* > 0forall k=0,1,2,-++,6+14,4=1,2,3 and r = 1,2 must be met for
scientific reasonableness in estimation. ‘
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5 Sufficiency of Treble Variable Classifications

‘The scientific variable classification for ADLR, which consists of (i) single vs
grouped variable classification, (ii) combinatorial vs sequential variable classifica-
tion and (iii) non-Almon sequential vs Almon sequential variable classification, is
needed to solve the first j ADLR-best subset problems in a run of a computer,
‘Thus, if all possible explanatory variables are classified by the professional knowl-
edge related to research in question, the first at most j practically best regression
subequations can be selected after evaluation and ranking when they exist. Now we
must show that treble variable classifications are sufficient to generate all meaningful
subsets in ADLR, for any kind of research in a run of a computer. Suppose that a
user wants to estimate each of the following I x ITZ, (K — M, + 2) regression equa-
tion candidates in the primitive procedure, corresponding to all meaningful subsets,
by removing and/or adding possible explanatory variables on the basis of the pro-
fessional knowledge related to the research at hand and by altering the degrees of
polynomials:

Y—'G;UD+X0*AU+ZX +U for kp = ME_]-:MQ:"':I{E and "::1)2:"':-[

=1

(5.48)

where X7 = {Xo, X{*}; he knows all variables in X{*; X{ = {X% X%, X%, -,

th}for kg = M,—1, Mg, o, Kpwith0 < M—1 < Kgfore =1,2,+++, L; the degrees

= Py, Pp+1,- -+, Qg of a polynomial are applied to X ,With0 < P € Qp < My—1

for all &5 M, — 1 =possible nearest far-end point; ancl Ky =possible farthest-end

point. Suppose that X© = {X4 X4, X, -, X8 ey Xt X!} for all

£=1,2,-++,L. In arun of a computer, he can make a computer generate all the

above Ix IIz 1(Ke— M+ 2) regression equation candidates by loading the following
functional form: -

Y = FX,<1<(XP),(XY), (X)) > 1>, << Xt > P — Qy/M;y >,
<< X? > B ——QQ/MQ Sy, <L Xt > P “QL/ML >) (5.49)

and estimate I x 11}, (K, — M, + 2)(Q} — Py + 1) regression subequations, where
all X™'s are treated as sets of grouped and combinatorial variables; M; — 1 is the
pOSSIble nearest far-end point; and P, — @), shows the p0551b1e polynomial-degree
range for the £-th Almon variable set.

Finally, it can be concluded that treble variable classifications in ADLR are not
only necessary but also sufficient for the generation of only all meaningful subsets,
no matter what research is conducted. In other words, a researcher can clear the
first condition [ I ]in the j-th best subset problem for ADLR, using treble variable
classifications. It is easy to master them.
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6 Concluding Remarks

It is quite difficult to a priori know a best set of explanatory variables for a de-
pendent variable before estimation and evaluation, because some of data problems
(unavailable data, proxy data, inconsistent observation dates of data in a model,
ete.) and/or estimation problems (the considerably good but slightly ambiguous
principle of least squares, linearization of explanatory variables by the Taylor ex-
pansion, unknown functional form, multicollinearity, etc.) often occur, There are
many cases in which the best regression equation cannot be determined solely by
econometrics. Scientifically reasonable signs and/or magnitudes of (the sums of) re-
gression coefficients and well tracking the turning points of the data of a dependent
variable by the estimates are sometimes decisively important. Therefore, informatic
(or knowledge-based) and computational techniques to solve the first j-th best sub-
set problems for various estimation methods are useful.

When the number of all possible explanatory variables many of which are con-
secutively lagged explanatory variables exceeds the sample size of time series data or
the consecutively lagged explanatory variables cause multicollinearity, ADLR may
be useful, A variable selection problem for ADLR has not been concretely for-
mulated in the literature. The author proposed an informatic and computational
method to solve the first § ADLR-best subset problems as a variable selection prob-
lem for ADLR and suggested to regard as the practically best regression equation (i}
a solution to the (first) ADLR-best subset problem (j = 1) or (ii) the one selected
among at most first j solutions to the first j ADLR~best subset problems by a user’s
own new criterion or by comparing them with each other (7 > 1). A suitable posi-
tive integer 7 specified by a user depends on his professional knowledge, appropriate
statistical significance levels, data-analytic criteria and model building experiences.
The informatic and computational techniques installed in the Intellectual Statistical
System OEPP are an easy, quick, resources-saving and high quality method for
econometric analysis and/or forecasting.
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