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Abstract

We study an M/G/1 queue with multiple vacations and exhaustive service disci-
pline such that the server works with different service times rather than completely
stops service during a vacation. It is assumed that both service times in a vacation
and in a service period are generally distributed random variables. The length of
a vacation is also generally distributed. We derive the distributions for the queue
size and the system time for an arbitrary customer in the steady state. Several
special cases, namely, exponentially distributed vacation lengths and/or exponen-
tially distributed service times in a vacation, are considered. Numerical examples
are also presented.

1 Introduction

We consider an M/G/1 queue with multiple vacations such that the server works, say at a
low rate, rather than completely stops service during a vacation. Such a vacation is called
a working vacation (WV) [8]. The server begins a working vacation of random length
following a general distribution at the instance when the queue becomes empty. When a
vacation ends, if there are customers in the queue, the server changes to another service
rate, say a fast service rate, and the service interrupted at the end of the vacation restarts
from the beginning; otherwise, another vacation is taken. The time interval between two
successive vacations is called a service period [10, p.107]. The length of a service period
is zero if there are no customers waiting in the queue at the end of a vacation. The
service times in the service period form an i.i.d. sequence of random variables having
a general distribution function. The service times in the vacation are also i.i.d. with a
general distribution function. The arrivals of customers occur according to a Poisson
process. This queueing system is referred to as an M/G/1/WV queue in this paper.

It is well-known that the queueing system with server vacations is useful to model
a system in which the server has additional task during a vacation. Thus it has wide
applicability in analyzing the performance of computer systems, data communication
networks, and production systems. During the last two decades, the queueing systems



with vacations have been studied extensively. The readers are referred to the surveys
of Doshi [2, 3] and the monograph of Takagi [10] as well as the references therein. In
these studies, it is naturally assumed that the server stops service during the vacation.
Recently, Servi and Finn [8] have analyzed an M/M/1/WV queue in which the server
works at a different rate rather than completely stops service during the vacation. The
motivation of their study is that the M/M/1/WV queue can be used to approximate
a multi-queue system whose service rate is one of two service speeds such that the
fast speed mode cyclically moves from queue to queue with exhaustive service. They
try to apply the M/M/1/WV queue to model a WDM optical access network using
multiple wavelengths which can be reconfigured. The latter problem is addressed in [7]
specifically. In their model, all random variables, i.e., interarrival times, service times
in the service period, service times in the vacation, and the length of a vacation, are
exponentially distributed. Therefore, it seems difficult to approximate the multi-queue
system precisely.

In this paper, we extend Servi and Finn’s M/M/1/WV model to an M/G/1/WV
model. We assume that both service times in the service period and in the working
vacation as well as the length of a working vacation are generally distributed respectively.
This model may be more suitable for approximating the multi-queue system. We recall
that Kuczura [6] studies the theory of piecewise Markov process. The piecewise Markov
process is a discrete-state, continuous-parameter stochastic process which is Markovian
within each contiguous time segment. The method for dealing with an M/G/1/WV
queue in this paper is the theory of piecewise Markov process.

The rest of this paper is organized as follows. In Section 2 we describe the system
and define the notation. Section 3 reviews some results about the transient behavior for
an M/G/1 queue as a preliminary. In Section 4, an imbedded Markov chain that de-
scribes the queue size process in an M/G/1/WV queue is introduced, and the probability
generating function (PGF) for the steady-state queue size is derived. Based on this, the
PGF for the steady-state queue size at an arbitrary time is obtained in Section 5. The
system time distribution for an arbitrary customer is analyzed in Section 6. Section 7
examines a special case in which the length of a vacation follows an exponential distribu-
tion. Another special situation in which the service time in a vacation is exponentially
distributed is considered in Section 8. Numerical examples are also presented in Sections
7 and 8. A summary is given in Section 9.

2 System Description and Notation

In our M/G/1/WV queue, the server begins a working vacation each time the queue
becomes empty, and the length of a working vacation is generally distributed. The
service time in a working vacation follows a general distribution. If the server returns
from a working vacation to find no customers waiting, it begins another working vacation.
If the server returns from a working vacation to find the queue not empty, it switches to
a service period in which the service time follows a different distribution.

In Figure 1, we illustrate the queue size and the service process in the M/G/1/WV
queue. It is noted that the service interrupted at the end of a vacation is lost and it is
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Figure 1: Queue size and service process in an M/G/1/WV queueing system.

restarted with a different distribution at the beginning of the following service period.
For the analysis of an M/G/1/WV queue, we introduce the following notation:

A arrival rate
V(t) distribution function for the length of a working vacation
H(t) distribution function for the service time in a working vacation
B(t) distribution function for the service during a service period
¢(s) Laplace-Stieltjes transform (LST) of V (¢)
Y(s) LST of H(t)
B(s) LST of B(t)

v mean of V()

v; ith moment of V'(¢) (i =2,3,...)

h  mean of H(t)

b mean of B(t)

b; ith moment of B(t) (1 =2,3,...)

3 Transient Behavior of an M/G/1 Queue

Before starting our analysis, we review some results about the transient behavior for an
M/G/1 queue, which will be used in studying the queue size process during a working
vacation in an M/G/1/WV queue. Therefore we use the following notation: A for the
arrival rate, H(t) for the distribution function for the service time, and ¢ (s) for the LST
of H(t). Let Y(t) be the number of customers (queue size) in the M/G/1 queue at time
t. Suppose that there is a departure at time t = —0 and Y (0) = ¢ (> 0). We define the



transition probability

and its PGF

The Laplace transform (LT) of I';(z, t)

vi(2, 3) ::/ e *Ti(z,t)dt; i=0,1,2,...
0

is given by [9, p.74, eq. (77); 10, p.88, eq. (7.73)]

2PN — (s + A= A2)]+ (z—=1)(s+ A= A2)Y(s + X — Az) Pfy(s) @)
(s+A=X2)[z —Y(s+ X — A\2)] ’

vi(z, s) =
where

Plo(s) :== /000 e " Pio(t)dt = %a

and 7(s) is the root with the smallest absolute value of the equation
7(s) = ¢[s + A — A7 (s)]. (3)

Let N;(t) denote the expected number of the customers served in the time interval
(0,¢] with initial queue size Y (0) = ¢ (> 0). The LT of N;(¢) is given by [9, p.78, eq.
(91)]

N*(s) = /0 et (1)t =

o) (. sl
= 0] (1

m), Z:0,1,2, (4)

4 Queue Size in an Embedded Markov Chain

We now analyze the M/G/1/WV queueing system described in Section 2. The queue
size X (t) is the number of customers, including those waiting and in service, in the
system at time ¢. Notice that during a working vacation, the queue size process X (t)
behaves exactly like the queue size process in an M/G/1 queue described in Section 3.
This fact suggests that the queue size during each vacation in an M/G/1/WV queue can
be analyzed by utilizing the transient solution for the queue size in an M/G/1 queue.

Let us consider a discrete-time Markov chain {X™; n = 0,1,2,...}, where X
denotes the queue size immediately after the epoch at which either a vacation or a
service starts. For the time-homogeneous Markov chain {X™);n =0,1,2,...}, the state
transition probability is defined by

Dij :P{X(n+1):j‘X(n) =i} 4,7=0,1,2,....
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Because X(™ = 0 means that the nth Markov point is the beginning of a vacation, we
have

pw=/'amwm«m j=0,1,2,.... (5)
0

If X > 0, we must have Xt > X _ 1 for the nth Markov point is observed at
the beginning of a service. Therefore we have

o0 )\t Jj+1l—2
/ %e”dB(t); j>i-1
py =14 Jo G+1-10) i=0,1,2,.... (6)
0; j<i—1
Assuming that this Markov chain is ergodic, the limiting distribution

7= lim P{X™ =4¢}; i=0,1,2,...

n—oo

satisfies the balance equations

jt+l )\t j+1—4 Y
71' —7T0/0 P()J dV +Z7Tz/ +1—Z dB(t),
7=0,1,2,... (7)
and normalization condition
o0
Som=1
i=0

Let us introduce the PGF for {m;; i =0,1,2,...} by

00
= E 7TZ'ZZ
=0

Multiplying (7) by 2z’ and summing over j = 0,1,2,..., we get

Tol2¥(2) — B\ = A2)]
—BO =)

I(z) =
where
U(z) = /0 " Tolz V(1) (9)

is the PGF for the queue size at the end of a vacation and I'y(z,t) is defined in (1).

Let us transform the real integral (9) appearing in (8) into a complex integral in-
volving 7o(z, s) given in (2) and ¢(s), the LST of V(¢). To do so, note the inverse
transform

1 ct+ioco
Lo(z,t) = —/ e*'y0(z, s)ds, (10)

2m1 c—ioo



where ¢ > 0, 1:= y/—1, and the integration fcc:t;o is the Bromwich integral, being written
as f 5, hereafter. Furthermore, we have

/ etV (1) = ¢(—s).
0
Thus we get

wvfémmww& (11)

271

Substituting (2) into (11) yields

1 / [2[1 —Y(s+ A=)+ (z=1)Y(s+ A — )\z)sjrj{ii;i‘é)
Br

U(z2) d(—s)ds. (12)

= o (s + X = Xo)lz = (s + A= A2)]

Following Kuczura [5], we may comment on the Bromwich integral in (12) as follows.
Since Py (t) is the probability, the LST ~(z, s) of I'g(z,¢) is analytic for |z| < 1 and
R(s) > 0. Hence the bracketed part of the integrand in (12) is analytic for |z| < 1 and
R(s) > 0. On the other hand, since V (¢) is the distribution function, ¢(s) is analytic for
R(s) > 0. For R(s) < 0, ¢(s) may or may not be analytic. However, ¢(s) is meromorphic
for R(s) < 0 in many cases, including the cases in which the distribution function V()
is exponential, Erlang, and a linear combination thereof.

If we assume that ¢(s) is meromorphic for the left-half plane R(s) < 0, all the poles of
¢(—s) are in the right-half plane $(s) > 0. Hence the integrand in (12) is meromorphic
in the right-half plane. Thus we can use the residue theorem to evaluate the integrand
over the contour consisting of the line (c+iR, c—1iR) and a semicircle of radius R in the
right-half plane which connects ¢ — iR with ¢ + iR counterclockwise. We can choose c
and R such that all the poles of ¢(—s) are interior to this contour. Then the Bromwich
integrals in (12) are evaluated only at the poles of ¢(—s).

The PGF II(z) in (8) is given in terms of the unknown constant 7. In order to
determine y, we first derive several relations. Evaluating ¥(z) in (12) at z = 1 gives

- L [ 49

2m1 Jg, S

ds =1. (13)

Differentiating the right-hand side of (12) with respect to z and evaluating the result at
z =1 yields

d¥(z)

s T AERE ] (R ey | KRS

= [ wvos f, [5 -  ( rw) | e

=/ﬂm—mwmw>
_ W-N, (14)



where we have used (4) with 7 = 0, and

N = /Ooo No(t)dV(£) = 2%/3 % (1 - H%M(SQ s(—s)ds  (15)

is the expected number of customers served in a vacation. The result in (14) means
that the expected queue size at the end of a vacation is equal to the expected number
of customers arriving in a vacation minus the expected number of customers served in
that vacation. Thus we have A\v — N > 0. By excluding the rare case A\v — N = 0, let us
assume that Av — N > 0 throughout the paper.

We may determine the unknown constant 7y by recognizing that II(1) = 1. Evalu-
ating the right-hand side of (8) at z = 1 and using L’Hospital rule along with relations
(13) and (14), we obtain

1—-Xb

T -b - N (16)
Substituting this back into (8) yields
- Au() - - 2]
B = T2 — b - Mz - 80— 2] ")

where U(z) and N are given in (12) and (15), respectively.

5 Queue Size at an Arbitrary Time

We next derive the PGF for the queue size in an M/G/1/MV queue at an arbitrary time.
It is observed that the server has service periods and vacations alternately and that it
is in one of the two conditions at all times. If we consider the number of customers in
the M/G/1/MV queue as the system state, it follows from the property of the Poisson
arrival process and the assumption of exhaustive service that those points in time at
which each vacation starts (i.e., at which each service period ends) are the regeneration
points of the system.

According to the renewal theory, if we select an epoch ¢’ randomly to observe the
system, the probability that the server is in a vacation at time ¢’ is

v

:= P{t' € vacation} = )
bv { v ! Il} o+v

(18)

where ¢ is the mean of the length of a service period. Similarly, the probability that the
server is in a service period at time ¢’ is

o

oc+v

Let S(t) be the distribution function for the length of a service period in an M/G/1/WV
queue, and let its LST be

pp = P{t' € service period} = (19)

o(s) := /000 e *dS(t).

7



If there are ¢ (> 0) customers in the system at the end of a vacation, the following
service period behaves exactly like the busy period in an M/G/1 queue beginning with i
customers. Therefore, if we denote 75(s) the LST of the busy period distribution in an
M/G/1 queue with arrival rate A and a service time distribution B(t), then

o)=Y [ Pustdv Ol = [T 00v (0 = ¥ra) (0

where 75(s) is the root with the smallest absolute value of the equation
T8(s) = Bls + A — Atp(s)].

Thus we obtain

()| b
ds |y 1-Nb

s=

o=-0'(0)=—

Av— N), (21)

where we have used (14). Using (21) in (18) and (19) we get

(1= (A —=N)b
bv = o — Nb pbB = o—Nb (22)

Since o > 0 and Av — N > 0, it follows that
1—Xb>0. (23)
Thus we have
0< (A —N)b= Awv — Nb<v— Nb.

The condition (23) means that the arrival rate is less than the service rate during a
service period. Therefore, it is a stability condition for our system.

By applying the theorem of total probability, the probability that the queue size
X (') = j at an arbitrary time ¢’ is given by

P{X(t")=j}=pvP{X(t")=j|t' € vacation}+(1—08;0)psP{X (t')=j|t' € service period};

i=0,1,2,..., (24)
where ;o is Kronecker’s delta. If we multiply (24) by 27 and sum over j =0,1,2,..., we
obtain the PGF

®(z) = pv®Pv(2) + p®a(2) (25)

for the queue size at an arbitrary time, where

a(z) = Y PLX () =7},



= Z P{X(t")=j|t' € vacation}2/, (26)
and

= ZP{X(t') =j|t' € service period}z. (27)

To derive @y (2), note that the interval between an arbitrary time in a vacation and
the starting time of that vacation corresponds to the deficit of the vacation time in the
renewal theory. The distribution function for the deficit is given by

V() =+ /0 1 - V(z)]dx, (28)

v

and its LST is
: ® o L[ 1 - ¢(s)
= AV () = = S — V(H)dt = — 72,
3(s) / AV (8) / L — V(1)]dt

v vSs

Conditioning on the length of the deficit of a vacation time, we have
P{X(t")=j|t' € vacation} :/ Py(t)dV(t); 7=0,1,2,.... (29)
0

Substituting (29) into (26) and using the relation similar to (10), we obtain

By (2) = /0 T Po(z AV (1) = B(2), (30)
where
o1 ZIL=9(s+ A= A2)]+ (2 = 1) (s-l-/\—)\z)sf;fi;i‘fs) .
V=) =55 ! F P V5 P pay W v #(=s)ds (31)

is the PGF for the queue size at an arbitrary time during a vacation. As in (12), the
Bromwich integral is evaluated only at the poles of ¢(—s) in the right-half plane R(s) > 0
in most cases.

We next determine the PGF ®g(z). Conditioning on the number of customers in the
system at the epoch at which a service begins, and integrating with deficit of a service
time, we obtain

)\159Z
1—7r0 (j —9)!

P{X(t")=j|t' € service period} = Z —"tdB(t); ji=1,2,...,
(32)

where



Substituting (32) into (27), rearranging terms, and using (8) and (16) gives

o

p(s) = - (Hg) - 1) B(A = A2)

~ (o) Gt o )

where

B(s) = /0 " etaB(t) - 1‘675(5).

s
Using relations (22), (30), and (33) in (25), we obtain

1= X z[¥(z) — 1][1 — B(A — A2)]
*(2) = <” S Y s pyTo ) '

Letting z = 1 in (34) recovers
1= . 2[¥(z) — 1[1 — BN — A2)]
°() = T (”q'(l) + lim 1= 2)[z — BN — \2)] )
1—Xb ( N [P(1) -1+ \Il’(l)])\b)

v — Nb (=Y
L 1=M (- N
- v—Nb<U+ Y )‘1’

where we have used (13), L’Hospital’s rule, and

1- V()

dt = 1.

(1) = /Ooo I'(1,t)

Differentiating (34) and using L’Hospital’s law four times, we have

1—Xb
v— Nb

E[X] = [Aby +2(1 — AD)BJT'(1)  bU"(1)

[v\iﬂ(l) +

where W'(1) is given by (14),

v LI M) ) )
=5, [ -] sl - D()P

X (1 _ M) ] é(—s)ds,

and

V) =55 [, [ e (0 srrsaem) 4o

10

2(1 — Ab)? 2(1—Ab) |’

(33)

(36)

(38)



Differentiating (34) twice and using L’Hospital’s rule six times, we have

1= [ -, Abs + 2(1 — Ab)b
" v[\11(1)+\11(1)]+( e

| ALBNES + 2(1 = AB)(3b + Aby)]
6(1 — Ab)? )\I’ M

+( ( b Amt2(1- Ab)b) w(1) + bI®) (1) ] (39)

E[X?]

2(1 — Ab) 2(1 — Ab)? 3(1 — Ab)

where

27 ra B

3) _ 3 2% 2X\[Yh(s) + M (s)] 2% (s)
v /Bl B TR R )

20(s) + 209/ (s)[1 +9(s) + W' (s)] | A*"(s) )
5[1 —¢(s)P s[1 = (s)]?

(
X (1 — AT( ))]qs(-s)ds (40)

and

: +
1

s SPL=y(s)] T s[L—y(s)]?

x (1 . M) ] &(—5)ds. (41)

iy = L [A? Mo(s) L w(s) + X (s)

Remark

In Appendix A we show that if the server does not work during a working vacation,
®(z) in (34) becomes

(1= A1 = (A = A2)[B(A = Az)

() = M[B( — A2) — 7]

(42)

This is the PGF for the queue size at an arbitrary time in an M/G/1 queue with multiple
non-working vacations [10, p.124, eq. (2.19b)].

6 System Time of an Arbitrary Customer

We proceed to determine the total time 7" for an arbitrary customer to stay in the system
(system time). We define the LST of the distribution function for the system time 7" by

a(s) := /000 et dP{T < t}.

11



To derive «a(s), we use a theorem in [4] (the distributional form of Little’s law), which
states as follows:

O(2) = a(A — Az2), (43)

if following four conditions hold: (a) the arrivals are Poisson; (b) all arriving customers
enter the system, and remain in the system until served; (c) the customers leave the
system one at a time in the order of arrivals; and (d) for any time t, the arrival process
after time t and the time in the system of any customer arriving before t are independent.

Obviously, these four conditions are satisfied for our M/G/1/WV queue. Substituting
z=1-—s/\in (34) gives

a(s) = Ul__])\\;;) (v\il(l —s/A) +

(A~ $)[U(1 — /) — 11— B(s)]
S = B9 — s )' (44)

By taking derivative and using L’Hospital’s rule, the mean E[T] and the second moment
E[T?] of the system time 7T are given by

_EX] 1-x [ o, [Aby +2(1 — AB)D]T/(1)  bU"(1)
BT == == [“ (1) 2(1— \b)? 2(1— /\b)} (45)
and
) 1—\b - A[BA2B2 + 2(1 — AD)(3by + Ab3)]¥’(1)
BTl = - [”‘Ij (1)+ 6(1 = \b)?
[Aby +2(1 — Ab)b]U"(1)  bUG)(1) 46
2(1 — Ab)? 31— b | (46)

7 When the Length of a Vacation Follows an Expo-
nential Distribution

Let us investigate the queue size and the system time when the length of vacation follows
an exponential distribution. In Section 7.1, the PGF for the queue size and the LST for
the system time are derived. A numerical example is presented in Section 7.2.

7.1 Queue Size and System Time

If the length of vacation follows an exponential distribution with mean 1/n, the PGF
®(z) in (34) for the queue size X at an arbitrary time is free from Bromwich integral
and it is reduced to

n(1 = Ab)[1 —yp(m)H{n+ A1 —7(n
[1—vmHn+ A1 -7} —bdbAg[l — 7
o () o 2mSUz) = 1[L = B = Az)]
(o0 + B g )

I}
m]e(n)

d(2) )(

(47)

12



where

A= A=A+ (2= DY+ A - )
Q(z) = [+ A1 = 2)][z —(n+ A — Az)] ‘ )

After lengthy elementary manipulation, the mean E[X] and the variance Var[X] are
given by

1
21 = AD)[1 = ()] (Mr(n) + (1 +m)[1 = 7o)} — 0l — ()] - )
XA [N2[26(1 + bn) = bo][1 — T()][L = ()] — 261 — 7(m)(n)?](1 — Ab)
=1 = ()] (22 + 0(2 + Mzba) — 200+ 0(2 + 37 = \b — BAnb? + Anby) i (1)
—{2A(1 + 18) = [2A+ (2 + Abo)J ()} ()
—2PH{1 — 7(n)] (1 — M)y ()] (49)

E[X]=

and

1
M+A=0+A+mA)Y(n) +AT(n) (=1 +¥(n) + dnp(n)))?
)

! (A(=3A(mAba(=1 + () (0 + A — (21 + A)p(n)
)

Var|[X|=

“T2n2 (1 0P (14 ()
+7(M) (= A+ (1 + A)(n))) + 2(=1 + DAY (1 + bn)(n + A

() (—=((1 4+ bn)(3n + 2X)) + (A + n(2 + 3bn + bA))(n))

+bon? M’ () = T(n) (A + bnA — (74 2X + 2bnA)(n)

+(1 4+ bn)(n+ N (n)* + b’ ' () + 2(n +

— (4 A+ 0nA)p(n) + Ar(n) (=1 + () + by (n )))

X (6(1 4 bn)(n + A)(n+ 20) (=1 + bA)? + 3n° X33 (—1 + v (n))?
X(n+X—=2n+ X)) +70) (=X + (n+ Np(n )))

+30A(=1 4+ bA)ba (=1 + (7)) ((n + A)(3n + 2X) — (3n + 2X)*¥(n)

+(87* + A+ 2X%)0 () + 20X (1) — 7(10) (= (7 + 8nA + 4X*)(n))
+(n 4+ A (B + 229 (n)* + A3 + 2A + 2°¢' (1))

+2(=1 4 0X) (= (N3 (=1 + (1)) *(n+ A = (20 + A)¥(n)

+7(m) (=X + (1 + N)(n)))) + 3(=1 + bA)((17° (7 + 6bn) + 13n(1 + bn) A
+6(1 + b)) A*)p(n)* — (n*(4 + 5bn) + 5n(1 + dn) A + 2(1 + bn) A?)3b(n)®
+12A((2 + 3bn)Y' (n) = 2bn A’ (n)? — bpAy" (n))

+(n) (= ((L+bn) (n + 2X) (47 + 3X)) + n* M(—((2 + 7o)y’ (n))

+on\y" (n))) + () (=((1 + b)) A(n + 2X)) + (b7 — Tn(1 + bn)A

—6(1 + )X (n)* + (1 +bn)(n+ A)(n + 2A)%(n)*

+ AW (1) (=2 — by + 26X () + bnA" () + ¥ (1) (—n® + 5n(1 + by) A

13



+6(1+ bn) A" +1°A((2 + 5bn)¢' () — bnAy" (m))))))))- (50)

In the same way as deriving (44), we obtain through (43) the LST of the distribution
function for the arbitrary customer’s system time 7" as

als) = (1= Ab)[L —(n){n + AL = 7(n)]}
1—ymHn+A1l—7(n )]} —bAn[l — 7(n)]Y

(A = 8)[nw(s —1]1— (s)]
X (w(s) + SO0 = 50)] — 5} ) (51)

where
(0= 9)[1 = (s + )] = (s + 1) ez

== = T L oG )] ) 2

Thus the mean E[T] and the variance Var[T] are given by

1

(1= )L — )] (M) + (1 D)L — 7))} — 1 — ()] — A)
X [X22b(1 + bm) = Ban][L = 7()][1 = () — 260°[1L = () (m)*)(1 — Ab)

—[1 = 9 ()] (22 + 02+ Aba) — 2[A+ 02+ 3nb — Ab — 3Aqb? + Ngby) |16 (1)

—{2A(1 +b) — 2\ + 5(2 + Mba) ()} (n))
—2Pb1 = T(n)](1 = A0} (1) (53)

and
1
M+A=m+A+bmAN)Y(n) +AT(n) (=1 + ¢(n) + dnyp(n)))?

1 21312 2
X 12772)\(_1 + b)\)Q(_l + w(n))2(377 A b2(_1 + 1/1(77)) (77 + A— (277 + )\)7/1(77)

+7(M(=A+ M+ N)v(1)(n+ A= (A+2mA)¥(n)

+7(N) (=X + (=1 + A+ 2bA) (1)) — 127° A(—1 + bA)be

(=14 9(m)*((n + N (3n + A\ (n) — n(3n + 2X)¢(n)?
27 () (=1 4+ () — ' (n) — (n+ ) (n+ A+ 0\ (n))

+7(n) (2A(n 4+ A) — 2X(2n 4+ Ny (n) + n(n + 23)¥(n)?

A1 4 209 (n))) = 4(=1 4+ bA) (1" N?bs (=1 + (1)) *(n + A
=M+ A+ bnAN)Y(n) + At(n) (=1 +¥(n) + dn(n)) (n+ A

—2n+ Ny + (M) (A + (n+A)p((n))) +3(=1 + bA)((—1 + bn)
X (14 bn)A(n+ A)? + 2(1° (2 + bn) — 3n*(1 + bn) (=1 + 3bn) A

Var[T|=
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—An(=1+0"n*)A? + (1 +0n) (2 + ) A*)p(n)° + (=27° (1 + bn)
2+ bn(4 + 7))\ + 2n(—=1 + b2n*)A% — (1 4+ )2 23)(n)?
2(14bn)(n + A) (=1 + A\ (n) + bpA(2n + 21 + bnA)Y' (n)?
n+ A)Y" (1) + 1) (2(=((=1 4+ bn) (1 + b)) A*(n + A))

+ () (0* + A+ 4n(—1 + 6*n*) A% + 2(=2 + bn)(1 + bn) A

+(n) (=202 X + 63 — by* (1 + bA) + 69X\ (1 + bA) — 2> (1 4+ bA(2 + 3b)))
+¢( V(P (14 bn) + 721 + 2bm(3 + 20m)) A + 4n(—1 + b°n*) N2
=2(1+bn) (2 + b)) X° — (1 + b)) A(n + A)(26n* — (1 + bn)A)(n))))
0P A (1 42X — b2\ — 2b(1 + bn) A2 + o (n) (—2n(1 + bn) + 2(—2 + by(—2 + bn))A
+4b(1 + bn) X% + (n(1 + 20m) + (2 + bn(4 + bn)) A — 2b(1 + bn) A*)y (1))’ (n)
+b0°A*(—n — 2X = bpA + (42X + 2bnA)p (n)' (n)?)
=P N2 (=1 +9(n) (=0 = 2X + (7 + 2X + 20 A)p(n))y" (n))
+p()2(=2n% + n? (=T + 5bn(2 4 3bn))A + 12n(=1 + b*n*) A% — 6(1 + bn) A3
+°M=2(n(1 4 3bn) + A+ 26nA — b(1 + bn)X*)¢' (1) + bnA(n + A + bnA)y" (n)))
+Ap () (=2(1 + bn)(n + A)(=2A + n(=2 4+ b(3n + A)))
+17 (=4 4+ A) (=1 + b(=2n + A+ nA))Y' () — 26nA(n + A + dbpA)¢' (n)?
—bnA(2n + 2X + b)Y (n))) + AT(0)*(=2(1 + bn) (2 + bn) (n — A) (0 + M) (n)®
+(14bm)*(n = A (0 + N (m)* + ¥ (n)*(n* (5 + 4bn) — 6(1 + bn) X?
17 (1 + b)) AM(=2(1 + by = bA)Y' () + bnAg" () + A((=1 + b*n) A
+0* (%' (n) (=2 + 2b(1 + b) A + b (2 + bn) A’ (n)) + bnAy" (n)))
+4p(n) (4N = 2n(n + b(=1 4+ b)) A?) + 7 A(=2(1 + )¢’ (1) (=2 + 20X + by’ ()
—bn(2+ ) A" (1)))))))- (54)

+n*(
+n2 A
+bnA

[
\_/\_//—\Al

Remark

As shown in Appendices B and C, two special cases can be derived from (47). (i) If
the server is always on a working vacation, i.e., n — 0, (47) is reduced to

(1 =XAh)(1 — 2)Y (A — Az)

(z) = DO — ) -2

(55)

where h is the mean of the service time in a working vacation. (ii) If the server never
takes a vacation, i.e., n — oo, (47) becomes

(T =20)(1—2)B(A— A2)
B =) -z

Each of (55) and (56) is referred to as the Pollaczek-Khinchin transform equation for an
M/G/1 queue [10, p.6, eq. (1.18)].

®(z2) = (56)
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7.2 Numerical Example

In this section we illustrate the results obtained in Section 7.1 numerically. In our
numerical example, we assume that service time in a working vacation follows an Erlang-2
distribution with mean 1 for which the LST is given by

v = (2 ) (57)

s+ 2

The service time during a service period is assumed to follow an Erlang-3 distribution
with mean 0.2 for which the LST is given by

B(s) = (;515)3. (58)

Combining (3) and (57) yields the equation

)= (e

which we solve for 7(n) numerically.

We plot the performance values by changing the arrival rate A. In order to investigate
the influence of the mean for the length of a vacation v = 1/n, we show the results for
several values of v. Figure 2 and Figure 3 show the mean and variance, respectively,
for the queue size. Figure 4 and Figure 5 show the mean and variance, respectively, for
the system time. For comparison, the performance values for two M/E,/1 queues whose
LSTs of the service time distributions are given by (57) and (58), respectively, are also
plotted. It is observed that at large and small values of v our system behaves like an
M/E,/1 queue in accordance to the limits given in (55) and (56).

(59)

8 When the Service Time in a Vacation Follows an
Exponential Distribution

In this section we consider the special situation in which the service time in a vacation
follows an exponential distribution. In Section 8.1 the queue size and the system time
are derived. Numerical examples are given in Section 8.2.

8.1 Queue Size and System time

If the service time in a vacation follows an exponential distribution with rate v, we have

v
vis) = 2 (60

From (3) and (60), the LST 7(s) included in ®(z) in (34) satisfies the equation
(s) = Ty (61)

s+A—=AT(s)+v
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Mean of the queue size

Figure 2: Mean of the queue size when the service times in a working vacation and in
a service period follow Erlang distribution with mean 1, order 2 and mean 0.5, order
3, respectively, and the length of a vacation is exponentially distributed with mean v.
E1l and E2 denote two M/E, /1 queues and their service time distributions have mean 1,
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order 2 and mean 0.5, order 3, respectively.

Vari ance of the queue size

Figure 3: Variance of the queue size when the service times in a working vacation and
in a service period follow Erlang distribution with mean 1, order 2 and mean 0.5, order
3, respectively, and the length of a vacation is exponentially distributed with mean v.
E1l and E2 denote two M/E, /1 queues and their service time distributions have mean 1,
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order 2 and mean 0.5, order 3, respectively.
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Figure 4: Mean of the system time when the service times in a working vacation and in
a service period follow Erlang distribution with mean 1, order 2 and mean 0.5, order 3,
respectively, and the length of a vacation is exponentially distributed with mean v. E1
and E2 denote M/E, /1 queues and their service time distributions have mean 1, order 2

and mean 0.5, order 3, respectively.
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Figure 5: Variance of the system time when the service times in a working vacation and
in a service period follow Erlang distribution with mean 1, order 2 and mean 0.5, order
3, respectively, and the length of a vacation is exponentially distributed with mean v.
E1l and E2 denote two M/E, /1 queues and their service time distributions have mean 1,

order 2 and mean 0.5, order 3, respectively.

18




which may be written as

1 _T7(8)
s+A=Xr(s)  v(l—1(s)) (62)
Solving (61) yields 7(s) = 71(s) and 73(s), where
sHA+v+4/(s+A+v)?2—4w
1(s) = ) ,
(s) = s+)\+1/—\/(;;—/\+y)2—4)\1/' (63)

We claim that 79(s) is the LST of the distribution function for the length of a busy
period in a working vacation, since 7»(s) is the only solution to the equation in (61) such
that |7(s)] < 1. Now, by substituting (60) into (2) and using relation (62) we have

24 (2 = DrPy(s)

%(Z’S):zs—(l—z)(u—)\z)’ 1=0,1,2,..., (64)
where
N 16
Fal) = o —nor %)

From (4) the LT of the expected number of customers served in the time interval (0, ¢]
with initial queue size X (0) = (> 0) is given by

N;(s):é—%; i=01,2,. ... (66)

Thus the expected number of customers served in a vacation defined in (15) is

N = L Rt )qﬁ(—s)ds:/ooodV() ! / (1—727(5)) et ds

27i 27i s s[1 — 1o(s)]

- V/OOO (t _ /Ot PO,O(x)dx> AV (t) = v(v — By), (67)

where we have used the relation (65), and we have defined

/ [// /Poo )(d) }dV() n=1,2,.... (68)

Equivalently, E, can be rewritten as

1 TQ(S)

E,=— [ ¥
271 J g, s"V[1 — To(s)]

d(—s)ds. (69)

Note that F; is the sum of the mean lengths of those periods during which the queue is
empty in a vacation time.
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Substituting (64) and (67) into (34), we obtain the PGF for the queue size at an

arbitrary time

_ 1—Xb [ . z[U(z) = 1][1 — B(A = A2)]
7 (ol Kk G Vo e oy 75 ] !
where
Lo [ e 1))
() = o /B EREET _‘A’Z)] $(—s)ds
and

z+(z—=1) 72(5)

L) | d(—s)ds.
zs — (1 —2)(v — )\z)] ¢(=s)d

A 1

Differentiating (70) and using L’Hospital’s rule four times at z = 1 yields
1

2(1 = M\b)[v — vb(v — Ey)

+(1 = Ab)(1 — vb)[ve(A — v) + 2vE,]},

EX] = ]{2)\vb(1 — Ab) + Aba[Av — v(v — Ey)]

where we have used
, 1 A—v To(s) B
vy = oo [ 150 (o )| oo

= Mw—N=XM—-v(v-E),

(1) = BS [2 A—v)? N v 5 (%)

271 J g, s3 82 1 —7(s)]
+2v(\ —v) (%) ]qzﬁ(—s)ds
= (A=v)*v+2v(v — E1) + 2v(\ — v) Ey,

and

) = [A_”er(&)}d}(—s)ds

omi Jg, | 82 sv[1 — p(s)]

_ %/000[1—V(t)]dt2i7ri /B [?”w(ﬁ)} e ds

_ 1/000[1 V)] [()\ )+ y/ot PO,O(x)dx] dt

v
(A —v)vg N VEQ'
2v v

(70)

(72)

(73)

(74)

(75)

(76)

Differentiating (70) twice and using L’Hospital’s rule six times at z = 1, we obtain

-1

T 1 4 bA)2(0 + B(w 1 EnpE oL 2eATL DA+ Ab (A

Var[X| =
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+(—=v + E)v) + (=1 + bA) (=1 + bv) (v2(\ — v) + 2E,v))?

+2(=v 4+ b(v — E)v)(3A302 (v + (—v + E1)v) — 3A(=1 + bA)by (3uA
+0(A = v)2 4+ (—v + By 4+ 2F5(A — v))v) + (=1 + bA)(—2X\%b3 (v

+(=v + E)v) + (=1 4+ bA)(=2v3(A — v)?(=1 + bv) + 3va(A(1 + 2b))
—v(—1+3bA + bv)) + 6(bvA + v(—2E3(\ —v)(—1 + bv)

+Ey(=1+ 2b) + bv))))))) (77)

where we have used

—v)? v(A—v)
y 12
" omi [ (51/[1 - 7'2 ) 34 * s3

+ov(A <s31/[1 —Ta(s )

—6v(\ — 2v) (QLS)()]) ]qb(—s)ds

s?v[1 — mo(s
=6vE; + (A — v)*v3 + 60 (A — v)vy
+6v(\ — v)?E3 — 6vv — 6v(\ — 2v) B,
=—6v(v — Ey) + (A —v)*[vs(\ — v) + 6V E;3]
+6v(\ — v)(vy — Ey) + 6V°E, (78)

+2u(A —v) (%) }&(—s)ds

1 [(A —31/)%3

and

+ v(vg — 2E5) + 2v(\ — U)Eg,] . (79)

In the same way as deriving (44), we obtain the LST of the distribution function for
the arbitrary customer’s system time 7' as

1N (e G (e /)~ 11 B
o) = oy (H0 - o+ E ) - @

Then E[T] and Var[T] are given by

B[T] = E[jf] - o Ab)[vl_ o =B M = A + A — (o — Fy)
+(1 = Ab)(1 — vb)[va(A — v) + 2vE,]} (81)
and
Var[T] = ! _3(—2buA(=1 + b)) +

TN+ BN (0 & b + E)2
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by (VA + (—v + E)v) + (=1 4+ bA) (=1 + bv) (vo (A — v) + 2E,v))?

+2(=v + b(v — E1)v)(=3X303 (vA + (=v + E1)v) + 3A (=1 + bA)ba (20A
+(A = v)(v2(A — V) + 2E50)) + 2(—1 4+ bA) (A\?b3(vA + (—v + Ey)v)
+(=14 b\ (v3s(A = )3 (=1 + bv) — 6v(=(E3(\ — v)(=1 + bv))

+Ey(—1 4 b\ + b)) — 303(bA* — v(—1 + bA + bv))))))- (82)

Remark

It is shown in Appendix D that if the length of a vacation follows an exponential
distribution with mean 1/7 and the service times in a vacation and that in a service
period are exponentially distributed with rate v and p, respectively, ®(z) in (70) is

reduced to
1=2 1— -1 1— v\ !
(I)(Z) — )\N ( 7—1(77)_1 ) 7’11577)11' ’ (83)
where 71 (n) is defined in (63). The product form in (83) is the PGF for the queue size at
an arbitrary time in an M/M/1/WV queue derived and interpreted by Servi and Finn

8]-

8.2 Numerical Examples

In this section we illustrate the results obtained in Section 8.1 numerically by means of
two examples: one is a case in which the length of a vacation is a constant and the other
is a case in which the length of a vacation follows an Erlang distribution. For both cases
we assume that the service times in a service period and in a vacation are exponentially
distributed with rate y = 1.5 and p = 3.5, respectively.

Example 1: Let the length of a vacation be a constant v, which means that ¢(s) = e.
Then we have

B - 1 Ta($)

n = —— — =7 e¥ds. 84
omi Jp, sV[1 — 1a(s)] ds (84)

We may use the algorithm in [1, p.257] to calculate this inverse Laplace transform nu-
merically.

Figure 6 and Figure 7 show the mean and variance, respectively, for the queue size.
Figure 8 and Figure 9 show the mean and variance, respectively, for the system time.
For comparison, the means and variances of the queue size and the system time in an
M/M/1 queue are also plotted in the corresponding figures. In both figures, we can
observe the influence of the length of a vacation. Our queue in this example behaves like
an M/M/1 queue as the length of vacation becomes very small or very large. This result
agrees with our intuition as well as the limits in (55) and (56).

Example 2: We assume that the length of a vacation follows an Erlang distribution
with probability density function

4 a
dv (t) = —te  dt,
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Figure 6: Mean of the queue size when the service times in a working vacation and in a
service period are exponentially distributed with v = 1.5, y = 3.5, respectively, and the
length of a vacation is a constant v. MM1 means an M/M/1 queue.
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Figure 7: Variance of the queue size when the service times in a working vacation and
in a service period are exponentially distributed with v = 1.5, u = 3.5, respectively, and
the length of a vacation is a constant v. MM1 means an M/M/1 queue.
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Figure 8: Mean of the system time when the service times in a working vacation and in
a service period are exponentially distributed with v = 1.5, = 3.5, respectively, and
the length of a vacation is a constant v. MM1 means an M/M/1 queue.
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Figure 9: Variance of the system time when the service times in a working vacation and
in a service period are exponentially distributed with v = 1.5, u = 3.5, respectively, and
the length of a vacation is a constant v. MM1 means an M/M/1 queue.
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and its LST is given by

o) = (25 ) (85)

s+2/v

As we stated earlier, E, in (69) can be calculated by directly applying the residue
theorem. Thus we have

oAy R C) RV P — (SH[A)

2mi J g, s"0[1 — T2(5)] volds \s"[1 —7a(s)] ) |, 2
n—2 9
= Sniiy (n+1)(v — A)v* — 2nv

+(2 + Av)(Av + 2n + Anw) + vu[2 — 200 + n(4 — 20v) + (n + 1)vo]
Vv A+r)2— 4w

]. (86)

From (85), it is easy to verify that the mean of V(t) is v, v = (3/2)v, and v3 = 3v?.

Figure 10 and Figure 11 show the mean and variance, respectively, for the queue size.
Figure 12 and Figure 13 show the mean and variance, respectively, for the system time.
For comparison, the mean and variance of the queue size and the system time are also
plotted in the corresponding figures. It is observed that the most features in this case
are the same as in Example 1 except that the variances for the queue size and for the
system time increase very quickly as A increases.

9 Summary

In this paper, we have analyzed an M/G/1/WV queue. The PGF for the queue size
and the LST of the distribution function for the system time of an arbitrary customer
have been derived by utilizing the transient solution for the queue size in an M/G/1
queue. Two special cases are examined, i.e., the case when the length of the vacation
follows an exponential distribution and the case in which the service time in a vacation
is exponentially distributed. Several numerical examples are presented. It is observed
that when the vacation length is very large or very small an M/G/1/WV queue behaves
like an M/G/1 queue. It is also observed that the variance of the length of a vacation
influences strongly the variances of both queue size and system time.
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Appendices
A. Derivation of (42)

If the server does not work during a vacation, it follows that ¢(s) = 0, 7(s) = 0, and
N = 0. The PGF in (31) becomes

B(z) = Mdszlfowu—vu))dti,/]g g

omi BrS+A—Az v 27l Jp, S+ A — Az
= % / (1= V(g)ei-tgy = L AT ) _AU‘Z’((lA__z;Z) (A1)
Similarly, (12) can be written as
U(z) = 2% A Sf&%ds — d(A — \2). (A.2)
Substituting (A.1) and (A.2) into (34), we have
1=Xb [1—0(A=Az) z[¢p(A—Az) = 1][1 — B(\ — A2)]
I O (- s e e e e
(1 = A)[1 — 6(A = A2)]B(A — A2)
WA — A2) - 7] ’ (4.3)
which is (42). O
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B. Derivation of (55)

If the server is always on a vacation, we take the limit 7 — 0 in (47). Since ¥(n) =
14 O(n) and 7(n) =1+ O(n) in this limit, we have

[ )| PR )} U ek (7))} S
P T D00+ N — Ol = bl = (o) (2.9

and

lim n(1 = A0)[1 = (m)H{n+ Al — ()]} (2)
10 [1 = (n){n + A[l = 7(n)]} — bAn[l — 7(n)](n)
lim n(1 = Ab)[1 —4(n)]
=0 [1 = p(n)[{n + Al = 7(n)]} — Anb[1 — 7(n)]¥(n)
LY+ A=A + AL = 7(0)]} + (2 = Dp(n+ A = A2)[n + A(L — 2)]
[+ A1 = 2)][z —¥(n+ A= A2)]

I (1= Xb)
=lim
n—0 1 4 AlL nT(ﬂ)] _ N;[Lp@(g)]w(n)

L=+ A= A + AL — 7))} + (2 = Dp(n + A = Az)[n + A1 — 2)]
[+ A1 = 2)][z —P(n+ A= A2)]
(1= M) (2 — D)b(A — A2)A(L — 2)

(1 + % — %) A1 = 2)[z —¥(A — A2)]

where we have used
1—
717133 ;(n) T 1 —h/\h’
and
1—1(n) 1

From (A.4) and (A.5), we also have

lim 77(1 — /\b)[l — w(ﬂ)]{ﬂ + /\[1 — 7_(77)]} (nQ(z) _ 1) —0. (A6)

=0 [1 —p(n){n + AlL — 7(n)]} — bAn[l — 7(n)]4(n)
Using (A.5) and (A.6) in (47) yields

(1= AR)(L — 2)p(A — Az)

(z) = D= A2) — 2

which is (55). O
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C. Derivation of (56)

If the server never takes a vacation, we take the limit 7 — oo in (47). In this case we
have ¥ (o0) = 0, 7(0c0) = 0, and

i n(L = Ab)[1 = (n){n+ A1 —7(n)]} (2)
n—oo [L—(n){n+ Al — 7(n)]} — bAn[l — 7(n)](n)
— lim n(1 = A)[1 —2(n)]
n—oo [L—(n)[{n+ Al — 7(n)]} — Anb[1 — 7(n)]y(n)
A=A = A + AL = 7))} + (2 = D(n+ A = Az)[n + A1 — 2)]
[+ A(1 = 2)][z — ¥(n+ A = A2)]
— lm (1= 2b)[1 —9(n)]
7 1= ()] (1 + A7) — N1 — 7))

ALl + A= 0] (14 20500 + 2 - D+ - 0a) (14 26

X
(1+@) [z = ¥(n+ A — \2)]
=1—\b. (A.7)
Since
1—2
ndz) —1=

2=+ X—Az)
AL = TP+ A = A2) A+ 1) = A2] = 9(n + A = A2)nln + A(L ~ 2)]
[+ A1 = 2){n + Al = ()]}

(A.8)

it follows that

lim n(1 = A)[1 = (m){n+ A1 -7(n)]}
n—oo [1—p(n){n + AL — 7(n)]} — bAn[L — 7(n)]b(n)
iy 1A= AD)[L = p(m)](L - 2)
n—oo [+ M1 —2)][z = ¥(n+ X — \2)]
AL =) (0 + A = A2)(A + 1) — Azl = (0 + A = Az)n[n + A1 — 2)]
[T —m{n+ A1 —7m)]} — Anb[1 — 7(n)](n)
iy A= AL = 9(m)](L ~ 2)
oo [+ A1 = 2)|[z —¥(n+ A = Az)]
o FAE ) + (2 D+ Ap(n+ A = A2) +7(n)[2A = (1 + Np(n + A = A2)]
(L= mH{n+ A1 =71} — Anb[1 = 7(n)]w(n)
iy A=A = m)](L ~ 2)
o0 (1 + W) [z = h(n+ A= A2)]

—2 (1+%) + ((z—I—l)—i—%) Y+ X—Az) +71(n) H - (1+%) ¢(77+/\—)\z)]
(1 =) (1+ 25220 —pf1 — 7))

[n€2(z) — 1]
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=(z = 1)A(1 — Ab). (A.9)
Substituting (A.7) and (A.9) into (47), we obtain

(=201 = 2)B(A = Az)
o(z) = B —Az) — 2

which is (56). O

D. Derivation of (83)

Suppose that the length of a vacation follows an exponential distribution with mean
v = 1/n and that the service times in a vacation and in a service period are exponentially
distributed with rate v and p = 1/b, respectively. We consider ®(z) in (70). First,
substituting ¢(s) = n/(s +n) and ¥(s) = v/(s + v) into (15), we have

IR R o
~ 27 Jp, s[1 — ()] < s+ A1 - TQ(S))) ¢(=s)d
_ Ap(n)[1 = 72(n)] __ Mi-n@m)] (A1)
[L=vmHn+A1 =n]}  2{n+All =nm)]}
From (3), 71(n) and 7»(n) are the roots of the quadratic
M= (n+A+v)z+v=0.
Thus we have
n=Amm)+nm-v-2 (A.12)
and
T2(n) = ) (A.13)
It follows that
1—-Xb
v—0bN

_ e =M{n+ A1 -n@}
p{n + AL — 2 (n)]} — Av[L — 7(n)]
(= ){An(m) + )] —v = AH{AnM) + )] —v = A+ A1 = n(n)]}
p{Alm(n) + 2(M)] = v = A+ Al = ()]} = Av[1 — 12(n)]
_ (p=N{Amm) =1+ In(n) — v}An(n) — v
pATL(n) — V] = Av[1 — ()]
(1 = VN2 — (v — 7y ()]} A7 (m) — V]

plATi(n) — v] = A Ay

(= N[y = 2Anm)Pn(n) — 1]/7i(n)
[A1(n) — v][pmi(n) — v]/m(n)
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(v = N)[A7i(n) — v]ri(n) — 1]
pri(n) — v '

From ¥(z) in (72) we obtain

(A.14)

. 1 z4+ (2 — 1)13(5()) R
U(2) =v— 22 —
v (z) Yori g |2s—(1=2)(v—A2) 9(=s)ds

_ 72(n)
_ +(z 1)1_72(7’)
—(1-2)(v—2Az)

l-—nmv—An(n)] _ (1 - Z) (V - )‘Z)

T1(n)

[Ari(n)z — v]mi(n)
[A11(n) — v][zv + A (n)22 — v7i(n) — A71(n)2?]
—ni(n)[Ani(n)z — V]
[A1i(n) — V][z — i()][AT1(n)z — V]

— —71(n)
" D) =z =) (A.15)

where we have used

n) _ @ _ v (A.16)

and

1= )+ (o)) = =3 = A [rlo) + 2] v

AT1(n)
=\ri(n) — 1)] +v [Tjn) - 1] 1- Tl(”ﬁ[(’;})_ Ari ()] (A.17)
Using (A.15) and (A.17) in (71) yields
1 z+4 (2 — 1)13—(;()5)
(z)= omi /BT zs—(1—2)(v— )\z)] 9(=s)ds
_ A E- DR
_nzn —(1-=2)(v—2XAz)
_ (L =n()]lv = An(n)] —71(n)
_< 71(n) ) ([)\71(77)—’/][2—71(77)]>
1 71(n)
= Tnm) (A.18)
It is easy to verify that
e = =
MI=2)z=BA =) \1- 2 [Z _ ﬁ} T 1=z —p) (A.19)
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Substituting (A.14), (A.15), (A.18) and (A.19) into (70) we obtain

®(2)
(,u AN[Ari(n) —v [7'1 —1] —71(n z

il (7 —u]z—n 1 =)
(,U N[ATi(n) = v [Tl —1] ,wrl — vz

/Ul < (k= A2)[1(n —2][/\71( )—V])

(=) (::é;; o
-(122) (Bez) (2= a2

which is (83). !
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