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Stochastic Analysis of Number of Corporations
in a Market Derived from Strategic Policies
of Individual Corporations
for Market Entry and Retreat

Ushio Sumita* Kouichi Yonezawa

Abstract

A stochastic model is developed for describing a market life cycle expressed in
terms of the number of corporations in the market. Each corporation independently
determines the probability of market entry if it is not in the market yet or the proba-
bility of market retreat if it is already in the market. These probabilities may depend
on time t, the number of corporations in the market at time ¢ and the number of cor-
porations which have retreated from the market by time ¢, Consequently individual

. corporations are expressed as temporally inhomogeneous Markov chains, and the whole

market state is given by the sum of such Markov chains. An algorithmic procedure
is developed for computing the probability distribution of the number of corporations
in the market based on spectral analysis of the temporally inhomogeneous Markov
chain combined with a bivariate generating function approach. Extensive numerical
experiments reveal somewhat surprising results concerning how the market would be
affected by interactions among individual corporations with different strategic policies.

Introduction

For understanding the growth and decline of a market, a traditional approach has been to
model a product life cycle based on analysis of consumer behavior. Bass{1969], for example,
developed a diffusion model by assuming that the conditional probability of a consumer
purchasing a product under consideration at time ¢ given that he/she has not purchased
the product by time ¢ would depend only on the number of consumers who have purchased
the product by time ¢, Horsky and Simon[1983] extended this model by incorporating the
level of the advertisement expenditure in addition to the number of consumers who have
purchased the product by time ¢ in the dependency structure of the conditional probabilities.
Horsky([1990] further strengthened the analysis by introducing the utility structure and
incomes of consumers as well as the price of the product into the model, which enabled one
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to combine a decision mechanism of consumers for purchasing the product with the product
life cycle analysis for the first time,

The diffusion process approach for modeling a product life cycle through analysis of
consumer behavior can be justified simply because there exist sufficiently many, consumers
despite their discrete nature. In order to analyze the growth and decline of a market from
corporate side, however, the diffusion process approach is inappropriate due to the limited
number of corporations which are potentially interested in entering into the market. The
principal tool employed for this type of the market analysis is an econometric approach
where the number of corporations in the market is expressed as a time series governed by
the total product sales in the market, technological progress, etc. Many extended models
have been developed and the reader is referred to Geroski and Mazzucato[2001] for an
extensive summary of the literature.

A major pitfall of the econometric approach above can be found in that it cannot di-
rectly connect strategic policies of individual corporations with the market state. The
purpose of this paper is to fill this gap by modelling individual corporations as temporally
inhomogeneous Markov chains and then expressing the market as a sum of such Markov
chains. Despite this rather simple model structure, the temporal inhomogeneity present
makes analysis fairly complicated. We conquer this difficulty via spectral analysis of the
underlying Markov chains combined with a bivariate generating function approach. By
capturing sophisticated interactions among individual corporations with different strategic
policies, our model will provide an insight into processes of how the market as a whole would

- be constructed through separate decisions by individual corporations, revealing somewhat
surprising results,

In this paper, the market state is defined in terms of the number of corporations in the
market. In parallel with a product life cycle, we introduce a market life cycle consisting
of the following four stages: the introduction stage; the growth stage; the maturity stage,
and the decline stage. Actual data on the automobile industry and the tire industry in

the United States are extracted from Simons{1995] and are depicted in Figures 0.1 and 0.2
respectively.
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It should be noted that the decline of the market is only in terms of the number of corpora-
tions in the market and does not necessarily mean the decline of the sales volume. The main
purpose of this paper is to develop an analytical model and a computational algorithm to
explore the relationship between the structure of strategic policies of individual corporations
and presence or non-presence of the market life cycle with four stages.



In Section 1, an analytical Model is formally introduced, where strategic policies of in-
dividual corporations are expressed in terms of conditional probabilities of entry into and
retreat from the market. These conditional probabilities may depend on time ¢, the number
of corporations in the market at time ¢, X(2), and the number of corporations which have
retreated from the market by time ¢, Y'(t), This interdependence is the key to the potential
usefulness of our model. The state of a corporation is described as a temporally inhomoge-
neous Markov chain involving the conditional probabilities above, and the state of the whole
market is constructed through a sum of such Markov chains. Section 2 is devoted to spectral
analysis of the underlying temporally inhomogeneous Markov chain and the transition prob-
ability matrix at time ¢ is derived in a closed form. Based on a bivariate generating function
approach, the joint probabilities of (X (t), Y'(t)) at time ¢ are evaluated. A computational
algorithm is summarized in Section 3, and finally numerical results are presented in Section
4. By decomposing the set of corporations potentially interested in entering the market
into three categories: RT(Risk-Taking) corporations; RN{Risk-Neutral) corporations, and
RA(Risk—Aversive) corporations, numerical experiments reveal rather astonishing behavior

of the market size which cannot be explained by the behavioral characteristics of any single
category.

1  Model Description

We consider a situation that N corporations are potentially interested in entering into a
new product market, Of interest is to develop a stochastic model which captures the market
life cycle consisting of the four stages discussed in Section 0 through analysis of strategic
actions of individual corporations. More spemﬁcally, at time ¢ (¢ = 1,2, ) any corporation
is in one of the following three states:

1 The corporation is in the market. ' (1.1)

{ 0 The corporation has not entered the market yet.
2 The corporation has retreated from the market.

It is assumed that if any corporation retreats from the market, it never enters the market
again. At time ¢, each corporation makes an independent decision so as to determine its state
at time ¢ 4 1. However, the decision parameters may be time-dependent or may depend on
the market state at time ¢ involving all other corporations. Consequently each corporation
is modelled to follow a discrete time Markov chain on 8¢ = {0,1,2} which is temporally
inhomogeneous having state 2 as the absorbing state. The market as a whole can then be
described as an independent sum of such Markov chains. Despite this structural simplicity,
the temporal inhomogeneity presents considerable analytical complexity as we will see.

Let N = {1,:-+,N} be a set of corporations under consideration and let {N;(t) : ¢t =
0,1,2,- -} be a stochastic process describing the state of corporation i at time ¢. We define
two stochastic processes {X(f):+=0,1,2, -} and {Y(t):£=0,1,2,.. -} where

X(@®) =3 dvp=1s Y = Y Sinn=2y- (1.2)
ieN N

Here d¢py = 1 if the statement P holds and d;py = 0 otherwise. We note that X (t) is the
number of corporations in the market at time ¢, while Y'(¢) is the number of corporations



which have retreated from the market by time ¢. Consequently the bivariate stochastic
process {(X(t),Y(t)} : ¢ = 0,1,2,- -} represents the state of the whole market at time .
The corresponding state space Sy is then defined as

Su={{z,y):0<z+y <N, z,ye {0}UN}. (1.3)

The corresponding state probabilities and the bivariate generating functions are defined
respectively by

Q(t) = [m(m:y:t)](z,y)ESM; m(m,y,t) - P[X(t) =T, Y(t) = y] (14)
and '
Pluv,t)= 3 mlz,y, . (1.5)
(zy)ESM

In order to analyze the market excluding corporation ¢, we introduce the followings in
parallel with (1.2) through (1.6):

Xi)= > o=y Yilt)= 3 S (1.6)
JENA(3} FEM\{i}
Sy ={(2,9) 1 0L s +y < N-1, 2,y € (0FUN\ {i}}; (1.7)
@(t) = [mi(fﬂﬁy:t)](m,y}ESM\{;}; mi(z,y,t) = P[Xi(t) = 2,Yi(t) = yl; (1.8)
and
'l,bi(U,'U,t) = Z 'm,'(IB, Y, t)umvy. (19)
(@)ESnn 1}

Let p? (t) be the state probability vector of {N;(t) : ¢ = 0,1, -}, that is,

ET(*) = [p(t), P (t), pa(t)]; pis(t) = P[Ni(t) = 4,0 < 5 < 2. (1.10)

The corresponding bivariate generating function is defined by

0i(u, v, t) = pio(t) + patyu + pa(t)v. (1.11)

We assume that {N;(t) : t = 0,1,2,-+-} is a temporally inhomogeneous Markov chain
governed by one step transition probability matrix a,(t) at time t specified in the following

manner. At time ¢ = 0, no corporation is assumed to be in the market so that one has for
alljeN

E;T(O) = [1)0: O]; mj(a::ya O) - 5{m=y=0} for (w:y) S ‘SM\{j}° (1'12)
Suppose that ;r_)g"(t) and (t) are known for all j € A. Then g,(t) is determined by

1—oit) ailt) O

,(t) = 0 A 1-4() (1.13)
0 0 1
where .
a;(t) = Z mi(z, v, t)pi(tlz, y) (1-14)

ERNILI VN



and
By= > mi(z -1yt y). (1.15)
(= 9)ESan (i)
Here p;(t|z,y) is the probability that corporation i enters the market at time ¢ + 1 given
that it is not in the market at time ¢, X(¢t) = z and Y(£) = y. Similarly g(t|z,y) is the
probability that corporation 7 remains in the market at time ¢ + 1 given that it is in the
market at time ¢, X(t) = z and Y () = y. More formally, we define;

pi(tle, ) = PNt +1) = 1INi(8) = 0, X(t) = 2, Y (t) = 9] (L.16)

and
G(tlz,y) = PIN;(t + 1) = 1|N;(t) = 1, X (t) = =, Y (¢) = 9] (1.17)

When corporation ¢ is not in the market, both X(¢) and Y(t) are contributed by other
corporations. Accordingly o;(t) in (1.14) is expressed as a probability mixture of p;(t|,y)
with corresponding weights m;(t|z,y) over (z,y) € Sagiy. For evaluation of f(t) in (1.15),
the mixing weights become m;(t|z — 1,y) over (z,y) € Sp i) since corporation ¢ is already
in the market,

In summary, the state transition diagram
is depicted in Figure 1.1. Because of depen-
dence of individual entry and retreat probabil- AU -8 @
ities on time ¢, the number of corporations in
the market and the number of corporations

which have retreated from the market, the 1~ B(®
model enables one to understand how strate-
gic policies of individual corporations affect Figure 1.1; State Transition Disgram

the market state, as we will see in Section 4.

It can be seen that
p (t+1) =p (B, (t)- (L18)
Equation (1.18) enables one to specify o;(u,v,t + 1) through (1.11) for all £ € . Once

a,(t) of (1.13) is given, individual corporations make their decisions independently and one
has for each i € A/

vilmut+1) = JI eilwv,t+1). (1.19)
jeN\{i} _
By specifying the coefficients of 4®v¥ of (1.19), one can see that Eg"(t) and . (t) generate
pi(t+1) and m (¢ +1) for all i € A via (1.13) through (1.19),

We note that if we define

2.0 = I &b, (1.20)
k=0
then
g (t+1) = p (0)E,(1). (1.21)

Since p7'(0) = {1,0,0], p7(t + 1) is actually the first row of P,(t).



2 Spectral Analysis of Market Entry/Retreat Deci- -
sions by Individual Corporations

In this section, we analyze the spectral representation of the stochastic matrices g (t) of
(1.13) and P(t) of (1.20), which in turn enables one to capture the stochastic structure of
market entry/retreat decisions by individual corporations. A few preliminary lemmas are
needed.

For 0 < o, 5 < 1, we define

1-0
We also introduce J (@, §), J,(a, 8) and J (e, B) as follows:
1
J,(a, B) = w07 where u, = [ 1 } and 1] = [ 0 01 ] ; (2.2)
1
Ly(e, ) = uy(e, B)uz (2.3)
f(e,B)
where uy(a, ) = 1 and vl = [ 01 -1 ]',
0
and
La(0, B) = ugus (o, B) (2.4)
1
where uy = { 0 jl and v (o, ) = [ 1 —fla,8) gle,B) ]
: 0

When no ambiguity is present, we omit (a, f) and write u, = uo(a, 8), £, = J,(e, §), etc.
The following lemma then holds true.

Lemma 2.1
a) J;(a,B), 1 <1 <3, are dyadic cmd idempotent, i.e. Jz(a B)=J(,p), 1 <i<3.

b) L, B), 1 < i < 3, are matriz orthogonal to each other, ie. J. (e ﬁ)J (o, ) = 0 if
P44, 1< 4,5 < 3.

¢} dylan, Br)L (az,ﬁz)m (o1, ).

d) Lo, B)ds (0o, B2) = Iy(e) Bo).

e) Jy(au, ) (ag, Ba) =0

) dalon, Br)d, (e, Ba) = {f (e, B2) ~ flan, Bi)}ugvf.
)

4/ Usly i1 = Q.



h) HS‘L)SZFiz(QZ:ﬂQ) = U} -
1) Uyvs J (0, Bo) = 0.

Proof We first note that v]u;, = 1, 1 < i < 8, while vf (e, Blu(o, ) = 0, for i # j
1<14,j <3. Hence parts o), b), e}, g), h) and i) follow immediately. For part c), one sces
that

iz(aliﬁl)iz(a21ﬁ2) = y..2(al)ﬁ1)y.g‘g2(a2!ﬁ2)y—g
uy(ay, Br)vg
= éz(ah ﬁl)

since y{gg(ag? B2) = 1. Part d) follows similarly since vi (cn, Bi)us = 1. For part f), one
has

Iy(on, Br)dy (e, Ba) = wgui (o, Br)ug(er, Bo)us

= {f(c, B2) — fleu, Br) sy
comnpleting the proof. O
Lemma 2.2 Let g(a, B) be a3 x3 stochastic mairiz given by
l~a a 0 |

Q(a:ﬂ)z[ 0 g 1-p
0 0 1

0L f<1 (2.5)

Let f(a, ) be as in (2.1). Then the following statements hold true.
a) Yo, B) = Ly +BLy(e B) + (1~ @)y (e, B).
b) blon, Bu)blaz, Ba) = L, + Bifad (o, Bu) + (1 — o )(1 — eg)d (cva, a)

+ (1 — ay)Be{ flea, B2) — flou, Bu)uavd.

Proof It can be readily seen that w; and v7, 1 < i < 3, are right and left eigenvectors
of b(ar, B) associated with eigenvalues 1, 8, and (1 — a) respectively and part a) follows
immediately. Part b) can be proven from a) and Lemma 2.1. 0

From (1.13) and (2.5), one sees that

a,(t) = b(e(t), Bi¥)- (2.6)

Hence if temporal homogeneity is present, i.e. o;(t) = o;(0) and B;(¢) = 5;(0) fort = 1,2, -,
one sees from (1.20) and Lemma 2.2 a) that

Bty = a™(0)
= L, +BT0) L (n(0), B:(0)) + (1 — :(0))"** Ly (i (0), B:(0)).-

Because of temporal inhomogeneity, however, this simple structure disappears. We overcome
this difficulty by using Lemma 2.2 b), as shown in the main theorem of this section below,



Theorem 2.8 Let f(a, ), J,, J,(,8) and J,(a,B) be as in (2.1) through (2.4). Then

P.(t) in (1.20} is given by

t

Lty = L + ] Bilk)L,(c:(0), 5:(0))

k=0

ﬁ 1 (), (e, A0 + P

where a;(k) and B;(k) are as in (1.14) and (1.15) respectively, and

O = AW -1)+ [[{1 - (kA

k=0

x{F(ea(t), B:(2)) — flou(t = 1), Bt — 1))}t = 1,2,

starting with C(0) = 0.

2.7)

(2.8)

Proof The theorem can be proven by induction as follows. Fort =0, one sees from (2.6)
that P.(0) = ,(0) = b(c;(0), 3:(0)) and (2.7) holds true by Lemma 2.2 a). Suppose it is

true fort and consider t + 1. One sees that

Pt+1) =P t)alt+1)= g_m.l(t)g(a,-(t + 1), Bi(t + 1)).

Using the induction hypothesis and Lemmas 2.1 and 2.2, the above equation leads to

Be+1) = |4+ T ARL@0,60)
k=0

# T10 - L 0,50 + Ot

X [él + ﬁ,-(t + 1)_42( i(t + 1):ﬁi(t + 1))
+{1 -t + D} (u(t + 1), 80 + 1))]

and the theorem follows from Lemma 2.1.

3 Development of Algorithm

In this section, an algorithmic procedure is summarized for computing P; T(t),

m(t) of (1.10), (1.8) and (1.4) respectively,

[ Input ]
N: the number of corporations

T the time periods for consideration

m,(t) and

Strategies of Individual Corporations : [pi(tz, Vlesesyngy, 0 SEST— 1L i €N



l(tle, evesigy 0SEST~L1EN
[ Output |
pl (1), m,(t), mt), ie N, 0<E<T
[ Algorithm |
[0] pl(0)=][1,0,0] for all i;lt +~ 0.
[1] LOOP: Find ¢;(u,v,t) using (1.11) for all i € .
[2]  Generate m,(2) by identifying the coefficients of ¥;(u,v,8) = J[ @iy, v,t) for all

i JeNM\{i}
tEN.
[8] Generate m(t) by identifying the coefficients of 1(u, v,t) = I »i(u,v,1).
JEN

[4] Compute (ay(t), fi(t)) based on (1.14) and (1.15) for all s € N
[5] Compute p{(t 4 1) as the first row of P,(t) based on Theorem 2.3.
[6] — (T >t«t+1)/LOOP

4 Numerical Results

The purpose of this section is to demonstrate the usefulness of the market life cycle
model developed in the previous sections through numerical examples. In particular, we
will see that the model enables one to capture how the market growth and decline would
be affected by strategic policies of individual corporations.

For numerical experiments presented in this section, N corporations are decomposed
into three categories, i.e. N =Ny UN; UMy, N;NN; = for i # j where

N @ the set of Ny = [V;| RT(Risk-Taking) corporations; (4.1)

Mo @ the set of Ny = [Ny} RN(Risk-Neutral) corporations; (4.2)
and

N3 @ the set of N3 = || RA(Risk-Aversive) corporations, (4.3)

where |A;| denotes the cardinality of M;, 1 < ¢ < 3. For computational simplicity, we assume
that all corporations within one category have a common strategic policy. RT corporations
tend to enter the market when the market size X(t) is small, but retreat from the market
rather quickly when X (t) becomes large. RN corporations incline to enter the market when
X (t) exceeds a certain level z9, continues to stay in the market as ¢ increases from zg to
another level, say x4, and then retreats from the market beyond z,. RA corporations decide
to enter the market only when X(t) is sufficiently large beyond z;, but retreat from the
market at the market size below z,. In other words, RA corporations tend to enter the
market after, but to retreat from the market before RN corporations.

Concerning the dependency structure of p;(¢|z,y) and g;(t|z,y) on ¢, z and y, two models
are constructed,



[Model I) Both p;(tjz,y) and ¢(t]z,y) depend only on t.
[Model 11} Both p;(t|z,v) and g(t|z,y) depend only on = and y.

4.1 Numerical Exploration for Model I

For Model I, [p;(t|z,v)] and [q:(t|z,y)] are assumed to be independent of (z,y) and
depend only on time £. Let H(A4, B,t) be defined by

H(A, B,t) = e~1AE-B)Y (4.4)

We note that the function ¢~ js symmetric about the y-axis with the maximum point

(0,1) and the points of inflection (:I:—%, % . Hence it may be appropriate to characterize
a

the three categories RT, RN and RA by making [pi(t|z,v)] and [g:(¢|,3)] of the form

H(A, B,t) with different parameter values A and B. For Model I, these parameter values

are summarized in Table 4.1.1 below, and the corresponding p;(t|z,y) and g¢f(t|z,y) are

depicted in Figures 4.1.2 and 4.1.3,

AB
RT | py(tlz,y) | 2 | 10
Qi(tlm’y) :2% 10
RN | pi(t]z,y) | 2 | 30
Qi(tlw:y) % 30
RA | piltls,y) | ¥ | 35
Qt(ﬂmsy) 3’3[22 35

Table 4.1,.1: 4 and B for Model 1

Figure 4,1.2: p¢(t]z, y) for Model I Figure 4.1.3: g¢(t|z, v} for Model I

- We note that RT corporations enter into the market rather quickly. Probability to stay in .
the market remaing high in an early stage and then decreases beyond this early period. For :
RN and RA corporations, these probabilities are shifted to the right with widening spread.

Figures 4.1.4 through 4.1.9 depict E[X (t)] and Var[X(t)] for (Ny, Na, N3) = (35,0,0),
(0,35,0) and (0,0, 35) respectively, capturing the characteristics of the three categories.
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Tlgure 4,1.4: E[X(t)} for (Ny, N2, N3} = Figure 4.1.5: E[X(t)] for (Ny, N3, N3} = Flgure 4,16 E[X()] for (N1, N3, N3} =

(35,0,0) (0, 35, 0) (0,0,35)
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Figura 4.1.71 V‘ar[X(t)] for (N1, N2, N2} =  Figure 4.1.8: Var(X(¢t}] for (N1, N2, N3) =  Figure 4.1.9: Var[X(t}] for (N1, Ny, N3) =
(35,0,0) (0,35,0) (0,0,35)

We observe that the peak of E{X(t)] shifts to the right in the order of RT, RN and RA.
While the maturity stage is hardly present and the market grows and shrinks rapidly for RT,
the market life cycle with four stages can be clearly observed for RN and RA. Concerning
Var[X(t)] for RT, RN and RA, it increases rapidly in the growth stage, drops a little bit
during the initial period of the maturity stage, becomes stable, grows again gradually toward
the end of the maturity stage, and drops in the decline stage.

Figures 4.1.10 and 4.1.11 exhibit E[X(t)] and Var[X(t)] for (Ny, Na, N3) = (5,15,15)
and individual contributions by RT, RN and RA.
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Figure 4,1,10: E[X (t)) for (N, N2, Ng) = (5, 15, 15) Figure 4.1,11: Var[X(t)] for (N1, Na, N3) = (5, 15,15}

Since market entry and retreat probabilities of corporation ¢ depend only on time £ and are
independent of other corporations, contribution patterns of the three categories are similar
to the previous figures for separate individual categories. However the market life cycle is
captured much better due to the shift of the peak to the right in the order of RT, RN and
RA. By the same reason, E[X(t)] during the maturity stage for (N, Nz, N3) = (5,15,15) is
much smaller than that for (N, No, N3} = (0,35,0) and (N, Na, N3) = (0,0, 35).



4.2 Numerical Exploration for Model I1
For Model 11, [p;(t|z,y)] and [g:(t|z, )] are assumed to be independent of time ¢ and

depend only on (z,y) € Smg). Let H(A, B,z) and H(C, D,y) be as in (4.4). Then it may
be appropriate to characterize the three categories RT, RN and RA by making [p;(¢|z, y)]
and [g;(t|z, )] of the form H(A, B,z) x H(C, D,y) with different parameter values 4, B, C
and D where numbers for 2 and y are replaced by percentages against the whole population
N = 35. For Model II, these parameter values are summarized in Table 4.2.1 below, and

the corresponding p;(t|z,y) and ¢;(t|z,y) are depicted in Figures 4.2.2 through 4.2.7.

ATBTCID

RT | pitle,y) | 22| 1] 0 | -
q:(tm)y) V2 _;' 0 -
RN | pi(tfz,y) | 22|20 | -
Qi(tlmly) %2‘ % _% %
RA | pitls,y) | B2 L] 0| -
altle,y) | 2 |3 [ 2]0

Table 4.2.1; A, B, € and D for Model 11

Figure 4.2,5; [g4(t]z, ¥}] of RT for Model 11 Flgure 4.2.6: {g¢(t|=, ¥)} of RN for Model II  Figure 4.2.7: {4;{t|, v} of RA for Model I

In order to observe the characteristics of RT, RN and RA separately, we first consider
three cases where corporations from only one category constitute the entire market. Fig-
ures 4.2.8 through 4.2.13 exhibit E[X(t)] and Var[X(t)] for the three cases (N, Ny, Nj) =
(35,0,0), (0,35,0) and (0,0,35).
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Figure 4.2.8: E{X(t}] for (N1, Ng,N3) =

(35,0,0)

Flgure 4.2.9: E[X{t)] for (N1, N2, N3) =

(ol 35,0)

Figure 4.2.10: E[X(t)] for (N1, N3, N3) =

(0,0, 35)

]
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Flgure 4.2,11: Var{X (t)] for (N1, N2, N3) =  Figure 4.2.12: Var{X(t)] for (N3, N2, Ng) =  Figure 4,2,13: Var[X(1)] for (N1, Nz, N3} =

(35,0,0) (0,35, 0) {0,0,35)

We observe that when the market involves only RT corporations, it grows and declines
very rapidly without having the maturity stage at all. On the other hand, when only RN
or RA corporations are present, the market can hardly be formed.

In Figures 4.2.14 and 4,2.15, E[X (t)] and Var[X ()] are depicted for the case (N1, Na, N3) =
(10, 15, 10) with separate three curves showing contributions of individual categories.
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Figure 4.2.14: B[X(¢}] for {N1, N2, Na) = (10, 16,10} Figure 4,2,15: Var{X(t}} for (Ny, N2, Na) = (10, 15, 10}

It should be noted that the market life cycle with four stages is clearly present. One
can see that RT corporations trigger the first market growth, and then retreat from the
market rather quickly, as the market growth is picked up next by RN corporations. RA
corporations then start to join the market creating the third market growth. Both RN and
RA corporations sustain the maturity stage. While RA corporations retreat from the market
gradually, RN corporations tend to stay on and then begin to retreat rapidly. Consequently
the decline stage is present largely due to RN corporations. As we saw in Figures 4.2.8
through 4.2.13, any category of corporations alone is incapable of creating the market life



cycle of this sort. It is remarkable to observe that interactions among the three categories
change the market behavior so drastically.

As for the variance, a peculiar move similar to the one found for Model I in Section 4.1
can be observed again. It increases rapidly during the growth stage, drops a little in the
initial period of the maturity stage due to quick retreat of RT corporations, begins to climb
slowly toward the end of the maturity period because of RN and RA corporations gradually
entering into and retreating from the market, and finally drops to zero during the decline
stage.

We next conduct numerical experiments to understand the effect of interactions among
the three categories in further detail. The total population N = 35 is fixed. In Fig-
ures 4.2.16 through 4.2.21, we assume no presence of RA corporations, i.e. N3 = 0, and
show E[X(t)] and Var[X(t)] for (N1, Np, N3) = (35,0, 0), (30,5,0), (25,10,0), (20,15,0),
(15,20,0), (10, 25,0), (9,26, 0), (8,27,0), (7,28,0), (6,29,0) and (5, 30,0).
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Figure 4,2,16: E[X{(¢t}] when N3 = 0 part 1 Figure 4,2.17: B[X(t)] when N3 = 0 part 2 Figure 4.2,18: F[X(t)] when N3 = 0 part 3
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Figure 4.2.19; Var[X ()] when N3 = 0 part 1  Figure 4,2,20: Var[X(¢)] when Ny = 0 part 2  Figure 4.2.21: Ver[X(t)] when N3 = 0 part 3

It can be seen that the maturity stage starts to appear and becomes longer as N;
decreases and N, increases up to Ny = 8 and N, = 27. However, beyond Ny = 7 or less,
the market loses its growth momentum and almost disappears as IV, decreases further. It
is rather astonishing to observe that the market life cycle with four stages is clearly present
for N; = 8, while it suddenly disappears for Ny = 7 or less.

We next observe the market evolution and decline when only RT and RA corpora-
tions interact each other without presence of RN corporations. We assume that N = 35
and N, = 0. In Figures 4.2.22 through 4.2.27, E[X(t})] and Var[X(t)] are exhibited for
(N1, Ny, N3) = (35,0,0), (30,0,5), (25,0,10), (24,0,11), (23,0,12), (22,0,13), (21,0,14),
(20,0,16), (19,0, 16), (15,0, 20), (10,0,25), (5,0,30) and (0,0, 35).
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Figure 4.2.22: B[X(t)] when Nz =0 part 1 +  PFigure 4,2,23: E[X(¢t)] when N = 0 part 2 Figure 4.2,24; B{X(t})] when Na = D part 3
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Flgure 4.2.25: Var{X (t)] when Nz = 0 part 1 Figure 4.2.26: Var[X(t)] when N3 =0 part 2 Figure 4.2.27: Var[X(t)] when N2 = 0 part 3

As N, decreases from 35 to 21 while Nj increases from 0 to 14, the market seems to
start forming the maturity stage by gradual entries of RA corporations triggered by rapid
entries of RT corporations. However, this momentum is much weaker than the case of the
RT-RN combination observed previously, and disappears when N; becomes 20 or less. We
may conclude that the ability of RA corporations to sustain the maturity stage is much
weaker than that of RN corporations.

The fact that RA corporations lack the ability to sustain the maturity stage alone can
also be observed from a different angle. By comparing Figure 4.2.14 for (Ny, Ny, Ns) =
(10,15, 10) with Figure 4.2.17 for (N, Ny, N3) = (10,25, 0), one realizes that the maturity
stage for the former is shorter than that for the latter. One may then suspect that RA
corporations indeed contribute to shorten the maturity stage. In order to examine this
point, we next fix N == 35 and N; = 10, and change {N,, N3). E[X(t)] and Var[X(t)]
for (Ny, N3, Ns) = (10,25,0), (10,20,5), (10,15,10), (10,14,11), (10,13,12), (10,12,13),
(10,11, 14), (10,10,15), (10,5,20) and (10,0,25) are depicted in Figures 4.2.28 through
4,2.31.
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Flpure 4,2.28: B{X(1)] when N1 = 10 part 1 Flgure 4,2,29: B[X ()] when Nq = 10 part 2
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Flgure 4.2.30: Vor[X(t)] when N = 10 part 1 Figure 4,2.31: Var[X{#)] when N} = 10 part 2

It can be clearly seen that the maturity stage becomes shorter as N; decreases and Ny
increases. Furthermore the shape of the market life cycle experiences a sudden distortion at
(N1, N3, N;) = (10, 11, 14} and the market loses its growth momentum and almost disappears
beyond Ny = 10 or less,

5 Concluding Remarks

In this paper, an analytical model is developed for understanding the market life cycle
through strategic policies of individual corporations potentially interested in enbering into
the market, Strategic policies of individual corporations are expressed in terms of probabil-
ities of entry into and retreat from the market, which may depend on time ¢, the number
of corporations in the market at time ¢, X(¢), and the number of corporations which have
retreated from the market, Y'(¢). Accordingly, each corporation is modelled as a tempo-
rally inhomogeneous Markov chain, and {(X(),Y(t)) : t > 0} is expressed as a sum of
such Markov chains, Through spectral analysis of the underlying temporally inhomoge-
neous Markov chains combined with bivariate generating function approach, a numerical
algorithm is developed for computing the joint probability distribution of (X {t),Y (¢)) for
t=1,2,-.., capturing the characteristics of the market life cycle in terms of E[X(¢)] and
Var[X(t)).

Concerning entry and retreat probabilities of individual corporations, two models are
considered. In Model I, these probabilities depend only on time ¢, and do not depend on
(X{(#),Y(t)), while in Model II, they depend only on (X (t),Y(t)) and do not depend on
time ¢, For Model I, there is no interaction effect among the three categories, and a direct
surn of strategic policies of individual corporations constitutes the market life cycle as a
whole. Nevertheless, we could still observe the market life cycle with four stages largely due
to RN and RA corporations, For Model II, the market life cycle cannot be expressed as a
straightforward sum of individual corporations because of sophisticated interactions among
the three categories, RT, RN and RA. Each category plays a distingunishable role in forming
the market life cycle. The characteristics of each category can be summarized as follows.

A) No category alone can constitute a typical market life cycle with distinguishable four
stages, -

B) RT corporations trigger the creation of the market, motivating RN and RA corporations
to join the market,

C) RN corporations play a major role in the growth stage and the maturity stage, stabilizing
the market state.



D) RA corporations also contribute to form the maturity stage but take a leading role in
initializing the decline stage.

In summary, Model II enables one to understand how strategic policies of individual corpora-
tions collectively form the market life cycle with four stages. While individual corporations
make their own decisions separately, the market as a whole may emerge in a way that can-
not be explained in terms of the characteristics of individual categories. Constructing this
mechanism through an analytical model is the major contribution of this paper.
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