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Abstract

This paper focuses on the problem of selling an asset by a specified deadline in which the decision is made between

1) proposing a selling price up front to an appearing buyer or 2) concealing the price and forcing the buyer to

make an offer. Our analysis indicates that under certain conditions there emerges a time threshold after which

the seller switches from concealing his idea of the selling price to proposing the price, or vice versa. For this

reason we call this problem the switching problem of asset selling.

Keywords: Dynamic programming; Optimal stopping problem; Optimal pricing problem

1 Introduction

Let us consider the problem of selling an asset up to a specified date in the future, the deadline, one

example would be selling a car by a deadline. From the standpoint of the seller, there are two facets to

the problem. On one hand, it is assumed that an appearing buyer offers a buying price to the seller. The

seller then decides whether or not to sell the asset for the price offered. In this case, the seller faces the

optimal stopping problem, i.e., his main concern is to determine up to when to continue the search for

a desirable price offered [5] [6] [7]. On the other hand, when it is assumed that the seller proposes the

selling price, the appearing buyer then decides whether or not to buy the asset for the price offered. In

this case, the seller faces the optimal pricing problem, i.e., he has to determine the price to propose to

each buyer appearing up to the deadline [1] [2] [3] [8].

The above situation gives rise to the following dilemma. The seller must decide at each point in time

whether to propose a price to an appearing buyer or to conceal the price and wait for the buyer to make

an offer for the asset. In this paper, we take into consideration the seller’s decision of whether to conceal

or propose a selling price. We can consider the following two scenarios:

1. Intuitively, if the deadline is still some distance away, the seller may be more willing to conceal his

selling price and wait for the appearing buyer to offer a price. This is because if the seller proposes a

price to the buyer, he faces the risk that this price may be substantial lower than the price the buyer

has in mind. Therefore, the seller may forgo the opportunity of earning a greater profit.

2. As the deadline draws near, the seller is more compelled to propose a selling price to the buyer. This

is because if he finds himself unable to sell the asset up to the deadline, he may be resigned to sell it

to a salvage dealer at a giveaway price or may even need to pay some costs to dispose of it.

However, we have to ask, does this conjecture always hold true ? In other words, can we always assert

that the seller should propose the selling price if the selling period is long and conceal the price if the

selling period is short ? Through discussion in the following sections, we will show that this conjecture

†E-mail address: shan@sk.tsukuba.ac.jp

1



does not always hold. In fact, in Section 7, we present some examples of scenarios which run counter to

this conjecture.

The above suggests that there may exist a time threshold(s) after which the seller may switch his

action from concealing the selling price to proposing the price, or vice versa. We shall call the above

problem the switching problem of asset selling and the model for this problem, the switching model. A

great deal of research has been done separately on the optimal stopping problem and the optimal pricing

problem. To the best of our knowledge, there is no work that links both problems. The purpose of this

paper is to propose a basic model on the above mentioned asset selling problem by taking the concept of

switching into consideration and to clarify the properties of its optimal decision rule.

Section 2 provides a strict definition of the model examined in the paper. Section 3 defines several

functions used to describe the optimal equation of the model derived in Section 4 and examines properties

of these functions. Section 5 describes the optimal decision rule of the model and Section 6 analyzes their

properties. In Section 7 we provide some numerical experiments and in Section 8 we present conclusions

of our research and suggestions for further work.

2 Model

The model discussed in this paper is defined on the seven assumptions below:

A1. Consider the following discrete-time sequential decision problem with a finite planning horizon. The

points in time are numbered backward from the final point in time of the planning horizon, time 0,

the deadline, as 0, 1, · · · and so on. Accordingly, if a time t is the present point in time, the two

adjacent times t + 1 and t − 1 are the previous and next points in time, respectively. Further, let

the time interval between times t and t − 1 be called the period t.

A2. A seller must sell an asset up to the deadline, i.e., time 0.

A3. An asset remaining unsold at time 0, can be sold at the salvage price ρ ∈ (−∞,∞). Here, ρ < 0

implies the disposal cost to discard an unsold asset.

A4. A buyer who requests an asset appears at each point in time with a probability λ (0 < λ < 1).

A5. When a buyer appears, the seller has to make a decision between two alternatives: 1) proposing a

selling price or 2) concealing the selling price and making the buyer offer a price.

1) If the seller chooses the first alternative, he proposes a price to a buyer. The buyer then decides

whether or not to buy the item based on this price. By w let us denote the reservation price of a

buyer, implying that the buyer is willing to buy an asset if and only if the selling price z proposed

is lower than or equal to w, i.e., z ≤ w. Here, assume that subsequent buyers’ reservation prices

w, w′, · · · are independent identically distributed random variables having a known continuous

distribution function F (w) with a finite expectation µ. Also, let f(w) denote its probability

density function, which is truncated on both sides (see Figure 2.1). Hence, for certain given

numbers a and b such that 0 < a < b < ∞ assume

F (w) = 0, w ≤ a, 0 < F (w) < 1, a < w < b, F (w) = 1, b ≤ w.

where

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w.
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Then clearly 0 < a < µ < b. Thus, the probability of an appearing buyer buying the asset,

provided that a price z is offered by the seller, is given by

p(z) = Pr{z ≤ w},

where 0 ≤ p(z) ≤ 1. Then it can be easily seen that

p(z)

{

= 1, z ≤ a · · · (1),

< 1, a < z · · · (2),
p(z)

{

> 0, z < b · · · (3),

= 0, b ≤ z · · · (4).
(2.1)
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Figure 2.1: Probability density function f(w).

2) If the seller chooses the second alternative, he will decide whether or not to sell the item judging

from the price being offered by the buyer. In this case, it is assumed that the buyer offers a price

ξ = αw (0 < α ≤ 1), less than or equals to his reservation price w. Here, let us call α the price

offering ratio, which measures the degree of a buyer’s desirability for an item. Thus, the greater

(lower) the buyer’s desirability is, the closer is α to 1 (0). Also, we assume that subsequent

buyers’ price offering ratios, α, α′, · · · , are independent identically distributed random variables

having a known distribution function Q(α) with a finite expectation µα > 0. In addition, we also

assume that α and w are stochastically independent. Thus we have

E[ξ] = µαµ. (2.2)

Further, let G(ξ) denotes the distribution function of ξ = αw, i.e.,

G(x) = Pr{ξ ≤ x} = Pr{αw ≤ x} = Pr{w ≤ x/α} = E
α

[

∫ x/α

0

f(w)dw].

Accordingly, the probability density function of G(x), g(x), is given by

g(x) = E
α

[1/αf (x/α)]. (2.3)

A6. Let h ≥ 0 be the holding cost of the asset remaining unsold for a period.

A7. By β (0 < β ≤ 1) let us denote the discount factor, implying that the monetary value of one unit a

period hence is equivalent to that of β units at the present point in time.

Throughout the paper, for explanatory convenience, let us define the following notations.

1. Symbol P means the decision of proposing a selling price to a buyer.
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2. Symbol C means the decision of concealing the selling price and forcing the buyer to offer a price.

3 Underlying Functions

This section defines the functions that will be used to describe the optimal equation of the model

examined in the paper. The properties of the functions verified in this section will be utilized in the

analysis of the model developed in Section 4.

3.1 Definitions

For any x let us define the following two functions [4]:

Ts(x) =

∫ ∞

x

max{w − x, 0}f (w)dw, (3.1)

Tp(x) = max
z

p(z)(z − x); (3.2)

the former is called the T -function of Type-S and the latter the T -function of Type-P . Further, by z(x)

let us designate the z attaining the maximum of the right hand side of Eq. (3.2) if it exists, i.e.,

Tp(x) = p(z(x))(z(x) − x). (3.3)

Further, for any x we shall define the following functions.

Ts(x) = Eα[αTs(x/α)], (3.4)

J(x) = Ts(x) − Tp(x), (3.5)

B(x) = λβ max{J(x), 0} + λβTp(x) − (1 − β)x − h (3.6)

= λβ max{Ts(x), Tp(x)} − (1 − β)x − h. (3.7)

Here let us define x?, a?, a◦, b◦, and x◦ as follows, if they exist.

x? = inf{x | z(x) > a}, a? = inf{x |Tp(x) > a − x}, (see [4]) (3.8)

a◦ = max{x | Ts(x) = µαµ − x}, b◦ = sup{x | Ts(x) > 0}, (3.9)

x◦ = max{x̂ | J(x) = 0 for all x ≤ x̂ < b}. (3.10)

Now by xB and xJ let us denote the solutions of B(x) = 0 and J(x) = 0, respectively, if they exist, i.e.,

B(xB) = 0, J(xJ) = 0.

If B(x) = 0 has multiple solutions, let us newly define the minimum of them by xB. If J(x) 6= 0 on

(−∞, b), then let x◦ = −∞. If J(x) = 0 has multiple solutions on (x◦, b), then let Xn, 1 ≤ n ≤ N , be

the subintervals on (x◦, b) such that J(x) = 0, and let xn
J

= minXn, 1 ≤ n ≤ N . Here without loss of

generality let x1
J

< x2
J

< · · · < xN
J

.

3.2 Properties

Proposition 3.1 In general, let r(x) be a continuous function which is nonincreasing on (−∞,∞).

Then if r(x) is strictly decreasing on (−∞, A) or (B,∞) for certain given finite A and B, so also on

(−∞, A] or [B,∞), respectively.
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Proof. See [4].

Lemma 3.1

(a) For any x and y we have

(x − y)F (y) ≤ Ts(x) + x − Ts(y) − y ≤ (x − y)F (x). (3.11)

(b) Ts(x) > 0 on (−∞, b) and Ts(x) = 0 on [b,∞).

(c) Ts(x) is continuous, nonincreasing, and convex on (−∞,∞).

(d) Ts(x) = µ − x on (−∞, a] and Ts(x) > µ − x on (a,∞).

(e) |Ts(x) − Ts(y)| ≤ |x − y| for any x and y.

Proof. See [4].

Lemma 3.2

(a) Tp(x) > 0 on (−∞, b) and Tp(x) = 0 on [b,∞).

(b) Tp(x) is strictly decreasing on (−∞, b].

(c) Tp(x) + x is nondecreasing on (−∞,∞).

(d) λTp(x) + x is strictly increasing on (−∞,∞).

(e) limx→−∞ Tp(x) = ∞.

(f) |Tp(x) − Tp(y)| ≤ |x − y| for any x and y.

(g) x? ≤ a? < a.

(h) Tp(x) = a − x on (−∞, a?] and Tp(x) > a − x on (a?,∞).

(i) z(x) ≥ a for any x.

(j) z(x) is nondecreasing on (−∞,∞).

(k) If x > (<) x?, then z(x) > (=) a†.

Proof. See [4].

Lemma 3.3

(a) Ts(x) is continuous, nonincreasing, and convex on (−∞,∞).

(b) Ts(x) > 0 on (−∞, b◦) and Ts(x) = 0 on [b◦,∞) where b◦ ≤ b.

(c) Ts(x) is strictly decreasing on (−∞, b◦].

(d) Ts(x) + x is nondecreasing on (−∞,∞).

(e) λTs(x) + x is strictly increasing on (−∞,∞).

(f) Ts(x) = µαµ − x on (−∞, a◦] and Ts(x) > µαµ − x on (a◦,∞).

(g) 0 ≤ a◦ ≤ a and a◦ ≤ µαµ ≤ b◦.

(h) limx→−∞ Ts(x) = ∞.

(i) |Ts(x) − Ts(y)| ≤ |x − y| for any x and y..

†Any one of z(x?) = a and z(x?) > a may occur due to the fact that z(x) might be a discontinuous function of x as
stated in Remark 6.1 of [4]. Fortunately, this fact does not directly relate to the discussions in this paper.

5



Proof. See Appendix A.

Lemma 3.4

(a) B(x) is strictly decreasing on (−∞, b].

(b) limx→−∞ B(x) = ∞.

(c) Let (1 − β)2 + h2 = 0.

1. xB = b.

2. x < (≥) xB ⇔ B(x) > (=) 0.

(d) Let (1 − β)2 + h2 6= 0.

1. xB uniquely exists with xB < b.

2. x < (=) > xB ⇔ B(x) > (= (<)) 0.

Proof. See Appendix B.

Lemma 3.5

(a) Let x ≤ min{x?, a◦}. Then J(x) = µαµ − a and min{x?, a◦} ≤ b◦.

(b) Let b◦ < b. Then J(x) is strictly increasing on [b◦, b) where J(x) < 0 for b◦ ≤ x < b.

(c) J(x) = 0 on [b,∞).

Proof. See Appendix C.

3.3 The shape of J(x)

Lemma 3.5 partially specifies the shape of the function J(x); its shape on the interval (min{x?, a◦}, b◦)

cannot be easily determined. In Section 6.3 we will see that the existence of the solution of J(x) = 0,

denoted by xJ , on the interval (min{x?, a◦}, b) plays a key role in clarifying the properties of the optimal

decision rule. Below, using two examples of density functions f(w), we depict some shapes of the function

J(x) obtained through numerical integration by the trapezoidal rule.

1. Let F (w) be the uniform distribution function on [1.5, 2.5], i.e., a = 1.5 and b = 2.5. For Q(α),

we consider the uniform distribution functions on [0.1, 0.4] and on [0.7, 0.9]. For the former case, the

function J(x) has no solution on the interval (min{x?, a◦}, b) (see Figure 3.2(I)), and for the latter

case it has a unique solution, xJ (see Figure 3.2(II)).

2. Let the probability density function of F (w), f(w), be such that

f(w)















= 0.0570119511, on [0.1, 0.599],

= triangle, on [0.599, 0.7] with its maximum at w = 0.6,

= 0.06981913043, on [0.7, 3.0],















(see Figure 3.3(I)) (3.12)

and let Q(α) be a uniform distribution on [0.64, 0.74]. Then the equation J(x) = 0 has three solutions

on the interval (min{x?, a◦}, b) as shown in Figure 3.3(II).
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(I) α ∈ [0.1, 0.4]

x

J(x)

b

0

−0.5

−1

−1.3
−1 0 1 2min{x?, a◦}

(II) α ∈ [0.7, 0.9]

x

J(x)

xJ b

0.15

0.1

0.05

0

−0.05

−0.1

−0.15
−0.5 0 1 2min{x?, a◦}

Figure 3.2: The shape of J(x)

(I) Density function f(w)

w

f(w)

16

12

8

4

0
0 0.5 1 1.5 2 2.5 3

(II) J(x)

x

J(x)

x1

J x2

J x3

J

b

0.03

0.02

0.01

0

−0.01

−0.02

−0.03
−1 0 1 2 3

Figure 3.3: f(w) and J(x) where min{x?, a◦} < −1

4 Optimal Equation

Suppose that an item purchased at a certain past point in time remains unsold at a present time t.

Let vt(0) and vt(1) be the maximums of the total expected present discounted profit, respectively, with

no buyer and with a buyer. Then we have:

v0(0) = ρ, (4.1)

vt(0) = β(λvt−1(1) + (1 − λ)vt−1(0)) − h, t ≥ 1, (4.2)

vt(1) = max











C :

∫ ∞

0

max{ξ, vt(0)}g(ξ)dξ · · · (1),

P : max
z

{p(z)z + (1 − p(z))vt(0)} · · · (2),

t ≥ 0. (4.3)

Since we can rewrite Eq. (4.3 (2)) as maxz p(z)(z− vt(0))+ vt(0), using the T -function of Type-P, we can

express Eq. (4.3) as follows.
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vt(1) = max{

∫ ∞

0

max{ξ, vt(0)}g(ξ)dξ, Tp(vt(0)) + vt(0)}, t ≥ 0. (4.4)

Further, from Eq. (2.3) we have

∫ ∞

0

max{ξ, vt(0)}g(ξ)dξ =

∫ ∞

0

max{ξ, vt(0)}E
α

[1/αf (ξ/α)]dξ

= E
α

[1/α
(

∫ ∞

0

max{ξ, vt(0)}f (ξ/α)dξ
)

], t ≥ 0.

Let η = ξ/α. Then using the T -function of Type-S and Eq. (3.4), we get

∫ ∞

0

max{ξ, vt(0)}g(ξ)dξ = E
α

[1/α
(

∫ ∞

0

max{αη, vt(0)}f (η)αdη
)

]

= E
α

[α
(

∫ ∞

0

max{η, vt(0)/α}f (η)dη
)

]

= E
α

[α

(
∫ ∞

0

(

max{η − vt(0)/α, 0} + vt(0)/α
)

f(η)dη

)

]

= E
α

[α
(

Ts(vt(0)/α) + vt(0)/α
)

]

= E
α

[αTs(vt(0)/α)] + vt(0) = Ts(vt(0)) + vt(0), t ≥ 0.

Hence Eq. (4.4) can be expressed as

vt(1) = max{Ts(vt(0)), Tp(vt(0))} + vt(0), t ≥ 0. (4.5)

Substituting Eq. (4.5) into Eq. (4.2) produces

vt(0) = λβ max{Ts(vt−1(0)), Tp(vt−1(0))} + βvt−1(0) − h, t ≥ 1. (4.6)

Below, for expressional simplicity, let us denote

vt = vt(0), t ≥ 0.

Then using Eq. (3.5), we can express Eq. (4.6) as follows.

vt = λβ max{Ts(vt−1), Tp(vt−1)} + βvt−1 − h (4.7)

= λβ max{Ts(vt−1) − Tp(vt−1), 0} + λβTp(vt−1) + βvt−1 − h (4.8)

= λβ max{J(vt−1), 0} + λβTp(vt−1) + βvt−1 − h, t ≥ 1. (4.9)

Noting Eq. (4.1), from Eq. (4.9) we obtain

v1 = λβ max{J(ρ), 0} + λβTp(ρ) + βρ − h. (4.10)

Then from Eqs. (4.1) and (3.6) we get

v1 − v0 = B(ρ). (4.11)

Finally, define v = limt→∞ vt if it exists.

5 Optimal Decision Rule

From Eqs. (4.9), (4.1), and (3.5) the optimal decision rule can be prescribed for a given t ≥ 0 as

follows.

(a) If J(vt) ≥ 0, conceal the selling price and wait for the appearing buyer to offer a price. Accordingly,
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for a price ξ offered by the buyer appearing at that time, if ξ ≥ vt, then sell the item, or else do not;

in other words, vt becomes the reservation price of a seller.

(b) If J(vt) ≤ 0, propose a price to the appearing buyer. Then the optimal selling price for an item

remaining unsold at time t ≥ 0 is given by the z attaining the maximum of the right hand side of

Eq. (4.3 (2)) if it exists, denoted by zt. In addition, the zt for t ≥ 0 is given by the z attaining the

maximum of p(z)(z − vt) in Tp(vt) over (−∞,∞); in other words, zt = z(vt) due to the definition of

z(x) (see Eq. (3.3)).

6 Analysis

6.1 Monotonicity

Lemma 6.1 If ρ < (≥) xB, then vt is strictly increasing (nonincreasing) in t ≥ 0.

Proof. Let ρ < (≥) xB. Then B(ρ) > (≤) 0 from Lemma 3.4(c2,d2). Accordingly, we have v1 > (≤) v0

from Eq. (4.11). Suppose vt−1 > (≤) vt−2. Then from Eq. (4.7), Lemmas 3.3(e), and 3.2(d) we have, for

t ≥ 1,

vt = β max{λTs(vt−1) + vt−1, λTp(vt−1) + vt−1} − h

> (≤) β max{λTs(vt−2) + vt−2, λTp(vt−2) + vt−2} − h = vt−1.

Accordingly, by induction the assertion holds.

Lemma 6.2

(a) vt is bounded in t.

(b) vt converges to a finite v as t → ∞ where B(v) = 0.

Proof. (a) Let M be a sufficiently large number greater than b such that ρ < M and Tp(M) = 0 (see

Lemma 3.2(a)). First, note that v0 = ρ < M from Eq. (4.1). Since ξ = αw, for a < w < b we have

0 < αa < αw < αb ≤ b < M , hence
∫ ∞

0
max{ξ, M}dG(ξ) =

∫ ∞

0
MdG(ξ) = M . Further, from Eqs. (4.4),

(4.1), and Lemma 3.2(c) we have

v0(1) ≤ max{

∫ ∞

0

max{ξ, M}g(ξ)dξ, Tp(M) + M} = max{M, M} = M.

Suppose vt−1 ≤ M and vt−1(1) ≤ M . From Eq. (4.2) we get vt ≤ β(λM + (1 − λ)M) − h = βM − h =

βM ≤ M for t ≥ 1. Then from Eq. (4.4) and Lemma 3.2(c) we obtain

vt(1) ≤ max{

∫ ∞

0

max{ξ, M}g(ξ)dξ, Tp(M) + M} ≤ max{M, M} = M, t ≥ 0,

hence vt ≤ M and vt(1) ≤ M for t ≥ 0 by induction, implying that vt is upper bounded in t. Further,

noting Eq. (2.2), Lemma 3.2(i), and the fact that p(a) = 1 due to Eq. (2.1 (1)), from Eq. (4.3) we get

vt(1) ≥ max{

∫ ∞

0

ξg(ξ)dξ, p(a)a + (1 − p(a))vt(0)} = max{µαµ, a} ≥ a > 0, t ≥ 0.

Then from Eq. (4.2) we have vt ≥ β(1 − λ)vt−1 − h for t ≥ 1. For expressional simplicity, below let

η = β(1 − λ) where 0 < η < 1 due to the assumption of 0 < λ < 1. Then vt ≥ ηvt−1 − h for t ≥ 1. Since
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v0 = ρ from Eq. (4.1), from the above inequality we immediately obtain vt ≥ ηtρ− (1+η + · · ·+ηt−1)h >

ηtρ−h/(1−η) for t ≥ 1. Accordingly, the inequalities ρ ≥ 0 and ρ < 0 lead to, respectively, vt ≥ −h/(1−η)

and vt ≥ ρ − h/(1 − η); in other words, vt is lower bounded in t whether ρ ≥ 0 or ρ < 0. Hence, the

assertion holds.

(b) Since vt is bounded in t from (a) and monotone in t ≥ 0 from Lemma 6.1, it converges to a finite

v as t → ∞. Now, from Eq. (3.5), Lemmas 3.3(i), and 3.2(f) we have

|J(vt) − J(v)| = |Ts(vt) − Tp(vt) − Ts(v) + Tp(v)|

≤ |Ts(vt) − Ts(v)| + |Tp(vt) − Tp(v)|

≤ |vt − v| + |vt − v| = 2|vt − v| · · · (1∗).

Further, from Eqs. (4.9), (1∗), and Lemma 3.2(f) we obtain

|vt − λβ max{J(v), 0} − λβTp(v) − βv + h|

= |λβ max{J(vt−1), 0} + λβTp(vt−1) + βvt−1 − λβ max{J(v), 0} − λβTp(v) − βv|

≤ λβ max{|J(vt−1) − J(v)|, 0} + λβ|Tp(vt−1) − Tp(v)| + β|vt−1 − v|

= 2λβ|vt−1 − v| + λβ|vt−1 − v| + β|vt−1 − v| = β(3λ + 1)|vt−1 − v|,

which converges to 0 as t → ∞. Noting Eq. (3.6), we can express v = λβ max{J(v), 0}+λβTp(v)+βv−h

as B(v) = 0.

From Lemma 6.2(b) and Eq. (3.6) we obtain

0 = B(v) = λβ max{J(v), 0} + λβTp(v) − (1 − β)v − h. (6.1)

Lemma 6.3

(a) Let (1 − β)2 + h2 = 0. Then v ≥ b = xB.

(b) Let (1 − β)2 + h2 6= 0. Then v = xB < b.

Proof. (a) Let (1− β)2 + h2 = 0. Then from Eq. (6.1) we obtain 0 = B(v) = λmax{J(v), 0}+ λTp(v) =

λmax{Ts(v), Tp(v)}. If v < b, then Tp(v) > 0 from Lemma 3.2(a), leading to the contradiction of

B(v) > 0. Hence, it must be that v ≥ b. In addition, from Lemma 3.4(c1) we have xB = b.

(b) Let (1 − β)2 + h2 6= 0. Then the assertion is clear from Lemma 3.4(d1) and Eq. (6.1).

Lemma 6.4

(a) If vt > (<) x?, then zt > (=)a for t ≥ 0.

(b) If ρ < (≥) xB, then zt is nondecreasing (nonincreasing) in t ≥ 0.

Proof. Note Lemma 3.2(j) and the definition of zt (see Section 5).

(a) Immediate from Lemma 3.2(k).

(b) Evident from Lemma 6.1 and (a).

6.2 Switching Property

In this subsection we shall provide the definition of the switching property.
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Definition 6.1 If there exists a time threshold t∗ at which the optimal decision rule switches from

proposing a selling price to concealing the selling price or from concealing the selling price to proposing

the selling price, it is said to have the switching property.

Definition 6.2 If there exist time thresholds t∗1 < t∗2 < · · · < t∗N for N ≥ 1, then the optimal decision

rule is said to have the N -Switching property. If N = 1 (> 1), then it is said to have the single (multiple)

switching property.

Furthermore, for convenience in the later discussions, by 0-switching property we mean that the

optimal decision rule does not possess the switching property.

6.3 Optimal Decision Rule

In this subsection we describe the conditions under which the optimal decision rule possesses the

switching property.

Lemma 6.5

(a) If J(vt) ≤ (≥) 0 for t ≥ 0, the optimal decision rule has 0-switching property.

(b) If J(x) ≤ (≥) 0 on (−∞,∞), the optimal decision rule has 0-switching property.

Proof. (a) Evident from Eq. (3.5).

(b) Clear from (a).

Below, we provide a lemma that describes the optimal decision rule for the case where the equation

J(x) = 0 has a solution, xJ , on the interval (min{x?, a◦}, b), i.e., min{x?, a◦} < xJ < b. Note that

if J(x) = 0, then P is indifferent to C. In order to present the optimal decision rule in a neat form,

throughout the remainder of the paper, we will assign J(x) = 0 to J(x) ≥ 0 or J(x) ≤ 0 appropriately.

Lemma 6.6 Suppose the equation J(x) = 0 has a solution, xJ , on the interval (min{x?, a◦}, b), i.e.,

min{x?, a◦} < xJ < b.

(a) Let (1 − β)2 + h2 = 0.

1. Let ρ < xJ . Then the optimal decision rule has 1-switching property for t ≥ 0.

2. Let ρ ≥ xJ . Then the optimal decision rule has 0-switching property for t ≥ 0.

(b) Let (1 − β)2 + h2 6= 0.

1. Let xJ < xB.

i. Let ρ < xJ . Then the optimal decision rule has 1-switching property for t ≥ 0.

ii. Let ρ ≥ xJ . Then the optimal decision rule has 0-switching property for t ≥ 0.

2. Let xB = xJ . Then the optimal decision rule has 0-switching property for t ≥ 0.

3. Let xB < xJ .

i. Let ρ < xJ . Then the optimal decision rule has 0-switching property for t ≥ 0.

ii. Let ρ ≥ xJ . Then the optimal decision rule has 1-switching property for t ≥ 0.
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Proof. Noting the definition of xJ and the optimal decision rule in Section 5, we shall draw attention to

the changes in the sign of the function J(x) at x = xJ . In addition, note that v0 = ρ from Eq. (4.1).

(a) Let (1 − β)2 + h2 = 0. Then v ≥ b = xB due to Lemma 6.3(a), hence xJ < b = xB ≤ v by

assumption.

(a1) Let ρ < xJ . Then we get v0 = ρ < xJ < b = xB ≤ v. From Lemmas 6.1 and 6.2(b) we see that vt

passes through xJ as t increases from 0 to ∞. Hence there exists a t∗ ≥ 0 such that vt < xJ if 0 ≤ t ≤ t∗,

or else vt ≥ xJ . Thus the assertion holds from the changes in the sign of J(x) at x = xJ (see Note 6.1).

(a2) Let ρ ≥ xJ .

1. Suppose ρ < xB. Then xJ ≤ v0 = ρ < xB = b ≤ v. Hence xJ ≤ vt for t ≥ 0 due to Lemma 6.1, implying

that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision rule has 0-switching property for

t ≥ 0 from Lemma 6.5(a).

2. Suppose ρ ≥ xB. Then we have v0 = ρ ≥ xB, so vt ≥ v ≥ xB = b > xJ for t ≥ 0 from Lemmas 6.1 and

6.2(b), implying that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision rule has 0-switching

property for t ≥ 0 from Lemma 6.5(a).

(b) Let (1 − β)2 + h2 6= 0. Then v = xB < b due to Lemma 6.3(b).

(b1) Let xJ < xB.

(b1i) Let ρ < xJ . Then we get v0 = ρ < xJ < xB = v. From Lemmas 6.1 and 6.2(b) we see that vt

passes through xJ as t increases from 0 to ∞. Hence there exists a t∗ ≥ 0 such that vt < xJ if 0 ≤ t ≤ t∗,

or else vt ≥ xJ . Thus the assertion holds from the changes in the sign of J(x) at x = xJ .

(b1ii) Let ρ ≥ xJ .

1. Suppose ρ < xB. Then we get xJ ≤ v0 = ρ < xB = v. Hence xJ ≤ vt for t ≥ 0 due to Lemma 6.1,

implying that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision rule has 0-switching

property for t ≥ 0 from Lemma 6.5(a).

2. Suppose ρ ≥ xB . Then we obtain v0 = ρ ≥ xB = v. Hence we have vt ≥ v = xB > xJ due to

Lemmas 6.1 and 6.2(b), implying that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision

rule has 0-switching property for t ≥ 0 from Lemma 6.5(a).

(b2) Let xB = xJ . Then we have xJ = xB = v < b. If ρ < (≥) xJ , then v0 < (≥) xJ = xB = v, hence vt

< (≥) xJ for t ≥ 0 due to Lemmas 6.1 and 6.2(b), implying that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus

the optimal decision rule has 0-switching property for t ≥ 0 from Lemma 6.5(a).

(b3) Let xJ > xB. Then we have xJ > xB = v.

(b3i) Let ρ ≤ xJ .

1. Suppose ρ < xB. Then v0 = ρ < xB = v < xJ . Hence vt < xJ for t ≥ 0 due to Lemma 6.1, implying

that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision rule has 0-switching property for

t ≥ 0 from Lemma 6.5(a).

2. Suppose ρ ≥ xB. Then we get xJ ≥ v0 = ρ ≥ xB = v. Hence we have xJ ≥ vt ≥ v = xB due to

Lemmas 6.1 and 6.2(b), implying that J(vt) ≤ 0 or J(vt) ≥ 0 for t ≥ 0. Thus the optimal decision

rule has 0-switching property for t ≥ 0 from Lemma 6.5(a).
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(b3ii) Let ρ > xJ . Then we get v0 = ρ > xJ > xB = v. From Lemmas 6.1 and 6.2(b), we see that vt

passes through xJ as t increases from 0 to ∞. Hence there exists a t∗ ≥ 0 such that vt > xJ if 0 ≤ t ≤ t∗,

or else vt ≤ xJ . Thus the assertion holds from the changes in the sign of J(x) at x = xJ .

Note 6.1 Suppose there exists a t∗ ≥ 0 such that vt > (<) xJ if 0 ≤ t ≤ t∗, or else vt ≤ (≥) xJ . Then

we have the following cases:

1. If 0 ≤ t ≤ t∗, then J(vt) > (<) 0, or else J(vt) ≤ (≥) 0.

2. If 0 ≤ t ≤ t∗, then J(vt) ≥ (≤) 0, or else J(vt) < (>) 0.

3. If 0 ≤ t ≤ t∗, then J(vt) ≥ (≤) 0, or else J(vt) ≤ (≥) 0.

Lemma 6.7 Suppose the equation J(x) = 0 has 2 solutions, x1
J

and x2
J
, on the interval (min{x?, a◦}, b),

i.e., min{x?, a◦} < x1
J

< x2
J

< b.

(a) Let (1 − β)2 + h2 = 0.

1. Let ρ < x1
J
. Then the optimal decision rule has 2-switching property for t ≥ 0.

2. Let x1
J
≤ ρ < x2

J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

3. Let ρ ≥ x2
J
. Then the optimal decision rule has 0-switching property for t ≥ 0.

(b) Let (1 − β)2 + h2 6= 0.

1. Let x2
J

< xB.

i. Let ρ < x1
J
. Then the optimal decision rule has 2-switching property for t ≥ 0.

ii. Let x1
J
≤ ρ < x2

J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

iii. Let ρ ≥ x2
J
. Then the optimal decision rule has 0-switching property for t ≥ 0.

2. Let xB = x2
J
.

i. Let ρ < x1
J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

ii. Let x1
J
≤ ρ. Then the optimal decision rule has 0-switching property for t ≥ 0.

3. Let x1
J

< xB < x2
J
.

i. Let ρ < x1
J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

ii. Let x1
J
≤ ρ ≤ x2

J
. Then the optimal decision rule has 0-switching property for t ≥ 0.

iii. Let ρ > x2
J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

4. Let xB = x1
J
.

i. Let ρ ≤ x2
J
. Then the optimal decision rule has 0-switching property for t ≥ 0.

ii. Let x2
J

< ρ. Then the optimal decision rule has 1-switching property for t ≥ 0.

5. Let xB < x1
J
.

i. Let ρ ≤ x1
J
. Then the optimal decision rule has 0-switching property for t ≥ 0.

ii. Let x1
J

< ρ ≤ x2
J
. Then the optimal decision rule has 1-switching property for t ≥ 0.

iii. Let ρ > x2
J
. Then the optimal decision rule has 2-switching property for t ≥ 0.

Proof. Noting the definition of xJ and the optimal decision rule in Section 5, we shall draw attention to

the changes in the sign of the function J(x) at x = x1
J

and x = x2
J
. In addition, note that v0 = ρ from

Eq. (4.1).
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(a) Let (1 − β)2 + h2 = 0. Then v ≥ b = xB due to Lemma 6.3(a), hence x1
J

< x2
J

< b = xB ≤ v by

assumption.

(a1) Let ρ < x1
J
. Then we get v0 = ρ < x1

J
< x2

J
< b = xB ≤ v. From Lemmas 6.1 and 6.2(b) we

see that vt passes through x1
J

and x2
J

sequentially as t increases from 0 to ∞. Hence there exist t∗1 and

t∗2 (0 ≤ t∗1 < t∗2 < ∞) such that vt < x1
J

if 0 ≤ t ≤ t∗1, x1
J
≤ vt < x2

J
if t∗1 < t ≤ t∗2, and x2

J
≤ vt if t∗2 < t.

Thus the assertion holds from the changes in the sign of J(x) at x = x1
J

and x = x2
J
.

(a2) Let x1
J
≤ ρ < x2

J
. Then we have x1

J
≤ v0 = ρ < x2

J
< b = xB ≤ v. From Lemmas 6.1 and 6.2(b)

we see that vt passes through x2
J

as t increases from 0 to ∞. Hence there exists a t∗ ≥ 0 such that vt < x2
J

if 0 ≤ t ≤ t∗, or else vt ≥ x2
J
. Thus the assertion holds from the changes in the sign of J(x) at x = x2

J
.

(a3) Let ρ ≥ x2
J
.

1. Suppose ρ < xB. Then x2
J
≤ v0 = ρ < b = xB ≤ v. Hence x2

J
≤ vt for t ≥ 0 due to Lemma 6.1,

implying that J(vt) ≥ 0 or J(vt) ≤ 0 for t ≥ 0. Thus the optimal decision rule has 0-switching

property for t ≥ 0 from Lemma 6.5(a).

2. Suppose ρ ≥ xB. Then v0 = ρ ≥ xB. Hence we have vt ≥ v ≥ xB = b > x2
J

for t ≥ 0 due to

Lemmas 6.1 and 6.2(b), implying that J(vt) ≥ 0 or J(vt) ≤ 0 for t ≥ 0. Thus the optimal decision

rule has 0-switching property for t ≥ 0 from Lemma 6.5(a).

(b) Almost the same as the proof of (a).

If the equation J(x) = 0 has N ≥ 3 solutions on the interval (min{x?, a◦}, b), x1
J
, x2

J
, · · · , xN

J
, such

that min{x?, a◦} < x1
J

< x2
J

< · · · < xN
J

< b, we can immediately generalize Lemma 6.7. Since this

generalization involves merely expansion of Lemma 6.7, we can easily prescribe the optimal decision rule

for N ≥ 3 solutions in almost the same way as the above.

7 Numerical Experiments

Using some numerical examples, we shall demonstrate the optimal decision rules for Lemma 6.6 and

for the cases in which J(x) = 0 has multiple solutions.

1. Let β = 0.99, λ = 0.5, and let F (w) be the uniform distribution on [1.5, 2.5], i.e., a = 1.5 and b = 2.5.

Hence the condition (1−β)2 +h2 6= 0 in Lemma 6.6(b) is satisfied. In addition, let Q(α) be a uniform

distribution on [0.7, 0.9]. Then clearly we have

p(z) =















1, z ≤ 1.5,

2.5 − z, 1.5 ≤ z ≤ 2.5,

0, 2.5 ≤ z,

from which we easily obtain

Tp(x) =











1.5 − x, x ≤ 0.5,

0.25(2.5 − x)2, 0.5 ≤ x ≤ 2.5,

0, 2.5 ≤ x,

Ts(x) =











2.0 − x, x ≤ 1.5,

0.5(2.5 − x)2, 1.5 ≤ x ≤ 2.5,

0, 2.5 ≤ x.

The solution of J(x) = 0, denoted by xJ , can be easily obtained by numerical calculation using

Eq. (3.5) and numerical integration (trapezoidal rule). In this case, we see that only one xJ exists,
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where xJ ' 1.1339. Figure 7.4 depicts two graphs of J(x) and vt with h = 0.05 and h = 0.4,

respectively.

(I) h = 0.05

x

J(x)

xJ

(1.1339)

v
(1.7609)

a2a1

v0v0

b

�-

0.15

0.1

0.05

0

−0.05

−0.1

−0.15
−0.5 0 1 2

(II) h = 0.4

xxJ (1.1339)v
(0.7762)

J(x)

b1 b2

v0 v0

b

-�

0.15

0.1

0.05

0

−0.05

−0.1

−0.15
−0.5 0 1 2

Figure 7.4: Optimal decision rule

(a) Suppose h = 0.05. Then we have xB = v ' 1.7609 > 1.1339 ' xJ from Eq. (3.6) by numerical

calculation.

1. Let ρ = 0.1. Then v0 = 0.1 < 1.1339 ' xJ , i.e., the condition in Lemma 6.6(b1i) is satisfied.

Figure 7.4(I) shows that vt is strictly increasing in t with v > xJ and that there exists a t∗ = 2

such that vt < xJ if 0 ≤ t ≤ t∗ or else vt ≥ xJ . Therefore, the optimal decision rule has

1-switching property for t ≥ 0.

2. Let ρ = 2.5. Then v0 = 2.5 > 1.1339 ' xJ , i.e., the condition in Lemma 6.6(b1ii) is satisfied.

Figure 7.4(I) demonstrates that vt is strictly decreasing in t with vt > xJ for t ≥ 0, i.e., J(vt) ≤ 0

for t ≥ 0. Thus the optimal decision rule has 0-switching property for t ≥ 0.

(b) Suppose h = 0.4. Then we have xB = v ' 0.7762 < 1.1339 ' xJ from Eq. (3.6).

1. Let ρ = 0.1. Then v0 = 0.1 < 1.1339 ' xJ , i.e., the condition in Lemma 6.6(b3i) is satisfied.

Figure 7.4(II) shows that vt is strictly increasing in t with vt < xJ for t ≥ 0, i.e., J(vt) > 0 for

t ≥ 0. Thus the optimal decision rule has 0-switching property for t ≥ 0.

2. Let ρ = 2.5. Then v0 = 2.5 > 1.1339 ' xJ , i.e., the condition in Lemma 6.6(b3ii) is satisfied.

Figure 7.4(II) demonstrates that vt is strictly decreasing in t with v < xJ and that there exists

a t∗ = 3 such that vt > xJ if 0 ≤ t ≤ t∗ or else vt ≥ xJ . Therefore, the optimal decision rule has

1-switching property for t ≥ 0.

2. Let f(w) be the density function as shown in Figure 3.3 (I). Also, let β = 0.99, λ = 0.5, and Q(α) be

a uniform distribution on [0.64, 0.74]. Then we obtained x1
J
' −0.3288, x2

J
' 0.4625, and x3

J
' 0.7471

using Eq. (3.5).

(a) Let h = 0.01 and ρ = −3. Then we obtained xB ' 1.3506 > x3
J

> x2
J

> x1
J

> −3 = ρ = v0 due

to Eq. (4.1). Figure 7.5(I) shows that vt is strictly increasing in t and passes through x1
J
, x2

J
, and

x3
J

sequentially. From Figure 7.5(I) we see that there exist t∗1 = 2, t∗2 = 5, and t∗3 = 12 such that

vt < x1
J

if 0 ≤ t ≤ t∗1, x1
J
≤ vt < x2

J
if t∗1 < t ≤ t∗2, x2

J
≤ vt < x3

J
if t∗2 < t ≤ t∗3, and x3

J
≤ vt if t∗3 < t.

Therefore, the optimal decision rule has 3-switching property for t ≥ 0.
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(b) Let h = 0.5 and ρ = 3. Then we obtained xB ' −0.4352 < x1
J

< x2
J

< x3
J

< 3 = ρ = v0 due to

Eq. (4.1). Figure 7.5(II) demonstrates that vt is strictly decreasing in t and passes through x3
J
, x2

J
,

and x1
J

sequentially. From Figure 7.5(II) we see that there exist t∗3 = 4, t∗2 = 5, and t∗1 = 8 such

that x3
J

< vt if 0 ≤ t ≤ t∗3, x2
J

< vt ≤ x3
J

if t∗3 < t ≤ t∗2, x1
J

< vt ≤ x2
J

if t∗2 < t ≤ t∗1, and vt ≤ x1
J

if

t∗1 < t. Therefore, the optimal decision rule has 3-switching property for t ≥ 0.

(I) h = 0.01

x

J(x)

x1

J x2

J x3

J v
b(1.3506)

(a)

v0
-

0.08

0.04

0

−0.04
−3.5 −3 −1 1 3

(II) h = 0.5

xx1

J x2

J x3

Jv
b(−0.4352)

J(x)

(b)

v0
�

0.08

0.04

0

−0.04
−3.5 −3 −1 1 3

Figure 7.5: Optimal decision rule

8 Conclusions and Suggested Future Studies

In this paper we proposed a basic model of an asset selling problem where the seller can switch

between proposing a selling price to the appearing buyer and concealing the price. From our analysis, we

obtained some conditions that guarantee the existence of the switching property. Below, we shall state

the two distinctive points derived from our analysis.

1. From Lemmas 6.6 and 6.7 we see that the optimal decision rule possesses the switching property even

for a simple case likes β = 1 and h = 0.

2. It is possible that the conjecture stated in Section 1 fails to hold. In fact, from Figure 7.4(I), we see

that there exists a t∗ ≥ 0 such that it is optimal to conceal the selling price for 0 ≤ t ≤ t∗ and to switch

from concealing the price to proposing the price for t∗ < t. This result runs counter to our conjecture.

In addition, from the Figure 7.5(I), we also see that there exist t∗1, t∗2, and t∗3 (0 ≤ t∗1 < t∗2 < t∗3 < ∞)

such that it is optimal to conceal the selling price for 0 ≤ t ≤ t∗1, to switch from concealing the price

to proposing the price for t∗1 < t ≤ t∗2, to switch from proposing the price to concealing the price for

t∗2 < t ≤ t∗3, and again to switch from concealing the price to proposing the price for t∗3 < t.

Finally, in order to make our approach more practical, the following should be considered for future

studies:

1. A general case where multiple items are to be sold.

2. A seller may have the opportunity of selling a product to a salvage dealer not only on the deadline

but also at any point in time before the deadline if he wishes.

16



3. A seller can advertise to attract customers by paying some cost, called the search cost. The intro-

duction of a search cost inevitably yields the option whether to conduct or to skip the search.

4. α and w are stochastically dependent.

Appendices : Proofs

A. Lemma 3.3

First note that since Ts(0) = µ from Eq. (3.1), we have Ts(0) = E [αTs(0)] = E [αµ] = µαµ > 0 by

assumptions.

(a) Evident from Lemma 3.1(c) and Eq. (3.4).

(b) If x ≥ b, then x/α ≥ b due to the assumption of 0 < α ≤ 1, hence Ts(x) = E[αTs(x/α)] = 0

from Lemma 3.1(b). From this result, (a), and the fact that Ts(0) > 0, there exists a supremum of x

such that Ts(x) > 0; the supremum is given by b◦ from Eq. (3.9). Accordingly, Ts(x) > 0 for x < b◦ and

Ts(x) = 0 for x ≥ b◦ where clearly b◦ ≤ b.

(c) Let x < b◦, hence Ts(x) > 0 due to (b). Here, note that Ts(x) is nonincreasing on (−∞,∞)

from (a). Now, suppose there exist x′ and x′′ with x′ < x′′ < b◦ such that Ts(x) is a positive constant

on [x′, x′′] and strictly decreasing on [x′′, x′′ + ε] with x′′ + ε < b◦ for an infinitesimal ε > 0 such that

x′ < x′′ − ε < x′′ < x′′ + ε < b◦. Since Ts(x
′′) = Ts(x

′′ − ε) and Ts(x
′′ + ε) < Ts(x

′′) by assumption, we

get
(

Ts(x
′′ + ε) − Ts(x

′′)
)

−
(

Ts(x
′′) − Ts(x

′′ − ε)
)

= Ts(x
′′ + ε) − Ts(x

′′) < 0, i.e., Ts(x
′′ + ε) − Ts(x

′′) <

Ts(x
′′) − Ts(x

′′ − ε), which contradicts the fact that Ts(x) is convex on (−∞,∞) due to (a). Therefore,

it follows that there do not exist x′ and x′′ such as defined above; hence, it must be that Ts(x) is strictly

decreasing in x < b◦, thus x ≤ b◦ due to Proposition 3.1.

(d) Let y < x. Then noting Eqs. (3.4) and (3.11), we get

Ts(x) + x − Ts(y) − y = E[α
(

Ts(x/α) − Ts(y/α) + x/α − y/α
)

]

≥ E[α(x/α − y/α)F (y/α)] = (x − y)E[F (y/α)] ≥ 0,

so that Ts(y) + y ≤ Ts(x) + x. Thus Ts(x) + x is nondecreasing on (−∞,∞).

(e) Immediate from (d) and the fact that λTs(x) + x = λ(Ts(x) + x) + (1 − λ)x where λ < 1 by

assumption.

(f) Let A(x) = Ts(x) + x − µαµ. First, note that Ts(0) = µαµ, or equivalently, A(0) = 0 · · · (1∗).

Next, since µ > a by assumption, we have µ/α > a for all α ∈ (0, 1], hence Ts(µ/α) > µ − µ/α from

Lemma 3.1(d), so αTs(µ/α) > αµ − µ. Thus we obtain Ts(µ) = E [αTs(µ/α)] > E[αµ − µ] = µαµ − µ,

so A(µ) > 0 · · · (2∗). In addition, since A(x) is nondecreasing on (−∞,∞) from (d), noting Eq. (1∗) and

(2∗), we see that there exists a maximum x such that A(x) = 0, i.e., Ts(x) = µαµ − x; the maximum is

given by a◦ from Eq. (3.9). Therefore, A(x) > 0, hence Ts(x) > µαµ − x for x > a◦ and A(x) = 0, hence

Ts(x) = µαµ − x for x ≤ a◦, so A(a◦) = 0 · · · (3∗).

(g) Since Ts(a/α) ≥ µ − a/α from Lemma 3.1(d), we have αTs(a/α) ≥ αµ − a. Thus we obtain

Ts(a) = E [αTs(a/α)] ≥ E[αµ − a] = µαµ − a, so A(a) = Ts(a) + a − µαµ ≥ 0 = A(a◦) due to (3∗).

Since A(x) is nondecreasing on (−∞,∞) from the proof of (f), we have a ≥ a◦. Further, since A(0) = 0

from (1∗), we have Ts(0) = µαµ − 0, hence a◦ ≥ 0 due to Eq. (3.9). Accordingly, the former half of the
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assertion holds. Suppose µαµ < a◦. Then from (f) we get Ts(a
◦) = µαµ − a◦ < 0, which contradicts the

fact that Ts(x) ≥ 0 from (b). Hence, it must be that µαµ ≥ a◦. In addition, since 0 = Ts(b
◦) ≥ µαµ − b◦

from (f,b), we get b◦ ≥ µαµ.

(h) Immediate from (f).

(i) From Eq. (3.4) and Lemma 3.1(e) we get, for any x and y,

|Ts(x) − Ts(y)| = |E[αTs(x/α)] − E[αTs(y/α)]|

= E [α|(Ts(x/α) − Ts(y/α)|] ≤ E [α|x/α − y/α|] = |x − y|.

B. Lemma 3.4

(a) Let x ≤ b. Then Tp(x) is strictly decreasing in x ≤ b from Lemma 3.2(b) and Ts(x) is strictly

decreasing in x ≤ b◦ from Lemma 3.3(c). Since b◦ ≤ b from Lemma 3.3(b), clearly B(x) is strictly

decreasing in x ≤ b◦. If b◦ = b, then clearly B(x) is strictly decreasing in x ≤ b. Suppose b◦ < b. Let

b◦ < x ≤ b. Since Ts(x) = 0 due to Lemma 3.3(b) and Tp(x) ≥ 0 due to Lemma 3.2(a), we obtain

Ts(x) ≤ Tp(x). Hence we have B(x) = λβTp(x)− (1− β)x− h, which is strictly decreasing on (b◦, b] due

to Lemma 3.2(b). Thus it follows that B(x) is strictly decreasing on (−∞, b].

(b) Obvious from Eq. (3.7), Lemmas 3.3(h), and 3.2(e).

(c) Let (1 − β)2 + h2 = 0. Then B(x) = λmax{Ts(x), Tp(x)}.

(c1) If x ≥ b, then B(x) = 0 due to Ts(x) = 0 from Lemma 3.3(b) and Tp(x) = 0 from Lemma 3.2(a).

If x < b, then Tp(x) > 0 from Lemma 3.2(a), hence B(x) ≥ λTp(x) > 0. Thus xB = b by the definition of

xB.

(c2) Evident from the proof of (c1)

(d) Let (1 − β)2 + h2 6= 0.

(d1) Note that B(b) = −(1 − β)b − h < 0 from Eq. (3.7), Lemmas 3.3(b), and 3.2(a). From this

result and (a,b) it follows that xB uniquely exists. The inequality xB < b is immediate from B(b) < 0 and

(a).

(d2) Evident from (d1,a).

C. Lemma 3.5

(a) Let x ≤ min{x?, a◦}. Then since x ≤ x? ≤ a? from Lemma 3.2(g), we have Tp(x) = a − x

from Lemma 3.2(h). In addition, since x ≤ a◦ ≤ a due to Lemma 3.3(g), we get Ts(x) = µαµ − x from

Lemma 3.3(f). Therefore, from Eq. (3.5) we obtain J(x) = µαµ − x − (a − x) = µαµ − a. Further, if

a◦ ≥ x?, then min{x?, a◦} = x? ≤ a◦ ≤ b◦ from Lemma 3.3(g). If a◦ < x?, then min{x?, a◦} = a◦ ≤ b◦

from Lemma 3.3(g). Thus we have min{x?, a◦} ≤ b◦ whether a◦ ≥ x? or a◦ < x?.

(b) Let b◦ < b. Then from Eq. (3.5), Lemmas 3.3(b), and 3.2(a) we obtain J(x) = −Tp(x) < 0 for

b◦ ≤ x < b. Since Tp(x) is strictly decreasing on [b◦, b) due to Lemma 3.2(b), it follows that J(x) is

strictly increasing on [b◦, b).

(c) Let x ≥ b, hence x/α ≥ b. Then J(x) = 0 for x ≥ b due to Tp(x) = 0 from Lemma 3.2(a) and
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Ts(x) = 0 from Lemma 3.3(b).
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