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We consider a queueing system consisting of multiple identical servers and a common
queue. The service time follows an exponential distribution. The queueing system is fed
by a mixture of a semi-Markov batch and a Poisson arrival process and the capacity of
a waiting room is infinite. This system is denoted by SMPXI4+M/M/c throughout the
paper. The motivation to study the queueing system with semi-Markov process (SMP)
arrivals lies in the assumption that it can model the auto-correlated traffic on the high
speed network generated by a real time communication, for example, Motion Picture
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Abstract

We consider a multiserver queueing system having a mixture of a semi-Markov
process (SMP) and a Poisson process as the arrival process, where each SMP arrival
contains a batch of customers. The service times are exponentially distributed.
We derive the distributions of the queue size and the waiting times of both SMP
and Poisson customers. Based on the result of the analysis, we propose a model to
evaluate the waiting time of MPEG video traffic on an ATM network with multiple
channels. Here, SMP arrivals correspond to the exact sequence of Motion Picture
Experts Group (MPEG) frames and Poisson arrivals are regarded as interfering
traffic. In the numerical examples, the mean and variance of the waiting time of
the ATM cells generated from the MPEG frames of real video data are evaluated.
It is observed that the number of channels does not influence much on the waiting
time if the total transmission rate is kept constant.
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Experts Group (MPEG) -encoded variable bit rate (VBR) video.



The semi-Markov arrival process can be described as follows: There are L types of
customers numbered 1 through L. Customers arrive at time epochs 0 =Ty < T} < Ty <
. . Then A, := T, —T,_1, n > 1, is the interarrival time, and we set Ay := 0. Let
S denote the type of a customer arriving at epoch 7T,,. For a given sequence of arrival
epochs, all interarrival times are mutually independent. It is assumed that A,,; and
S(+1) depend only on S™ i.e.,

P{SCH) = A, <t[SO ... 8™ A .. A} =P{S"D =1 A, <t|SM};
l=1,...,L;t>0. (1)

Let
le(t) = P{S(TL-I-I) =m, An+1 S t‘S(n) — l}

be the probability that the arrival process moves from state [ to state m in time ¢. Let
P denote the probability that the arrival of type [ is followed by the arrival of type
m, and let Ay, (t) be the distribution function of the time interval A;, between those
successive arrivals. A;,, is also referred to as the state sojourn time. Thus, we have

le(t) = plmAlm(t); t 2 0;

where

le(oo) = Pim- (2)
Hereafter we use a matrix P= (p;;,,), which is a stochastic matrix. Let o := [m,..., 7]
be the stationary distribution of stochastic matrix P. Then, we have the relations

P1=1

?

and
P =m wl1=1, (3)

where 1:=[1,...,1].

Since Cinlar [2] first analyzed an SMP/M/1 queue, several queueing systems with
arrivals governed by a semi-Markov process (SMP) have been studied, for example, an
SMP/M/c queue [10, 18], an SMP/G/1 queue [1, 5, 15], and an SMP/PH/1 queue
[14]. On the other hand, Kuczura [8] studies a piecewise Markov process. Based on
this theory, Kuczura [7] analyzes a GI+M/M/1 queue in which the arrival process is a
mixture of a renewal process and a Poisson process. Yagyu and Takagi [19] consider an
SSMPX+M/M/1 queue, where the SSMP stands for a special semi-Markov process such
that the sojourn time in the state of SMP is determined only by the current state. Wu
and Takagi [17] extend this model to a more general case, namely, an SMPXI4+M/M/1
queue. The method for dealing with an SMPX4+M/M/c queue in this paper is also the
theory of piecewise Markov process.

The rest of this paper is organized as follows. In Section 2 we derive the formulas for
a birth-and-death process as preliminaries. In Section 3, a Markov chain that describes a
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queue size process in an SMPXI4+M/M/c system is introduced and the generating func-
tion for the steady-state queue size is derived. The stability condition of this system is
discussed in Section 4. In Appendix, we prove that the unknown constants contained in
the generating function for the queue size can be determined by the zeros of the denom-
inator for this generating function when the sojourn time in the state of SMP follows an
exponential distribution. The waiting time distributions for SMP and Poisson customers
are studied in Section 5. In Section 6, we use an SMPXI+M/M/c queue to model the
transmission of MPEG frames in multiple channels on an ATM network interfering with
other traffic. A numerical example using real data taken from the Jurassic Park video is
also given.

2 Transient Behavior of a Birth-and-Death Process

We first consider a birth-and-death process {X(¢);¢ > 0} for a population whose size
changes by the births and deaths of its individuals. X (¢) denotes the population size at
time t. The process {X (¢);¢ > 0} is a continuous-time Markov process with state space
{0,1,2,...} with X(0) =i (¢ > 0). In a short interval [t,t + At), X (¢) increases by one
with probability AAt, or decreases by one with probability iuAt if X (¢) = ¢ is less than
¢ (a constant positive integer), otherwise the death probability is cuAt. We define the
transition probability for the population size

Py(t) = P{X(t) = jIX(0) =i} 4,j=0,1,...; 120 (4)

and the generating function of its Laplace transform

where
Pr(s) = / e~ P (1), (6)

By the argument that the transition can occur only between adjacent states in a short
interval [¢t,t + At) for the birth-and-death process, we have the following Kolmogorov
forward equations:

Ploy(t) = =APo(t) +pPia(t),
Pil,j(t) = /\Pi,j—l(t) — (A +j/~‘)Pz',j(t) + (j + 1)NPz',j+1(t); 1<5<c—1,
Pl(t) = APij1(t) — (A +cp)Pj(t) + cpPijna(t); j>c

with the initial condition
P, ;(0)=46;; 4,j=0,1,...,

where d;; is the Kronecker delta.



Taking the Laplace transform, we obtain

sPo(s) = dio = APio(s) + nbi, (s), (7a)
sPi(s) = bij+ AP _1(s) — (A + i) P(s) + (1 + VP 4(s);1 < j < c—1,(7b)
sPli(s) = 0+ AP 1(s) = (A +cp)Pli(s) + cull;4(s); j>e (7c)

Multiplying (7a)—(7c) by 2’ and summing over j from 0 to oo, then changing the order
of summation yields

Pi(s,z) = : (8)

K3

We note that the denominator on the right-side hand of (8) has a unique zero in the unit
disk, which is

CAtcepts— /(A eps)? —dehp
= N :

21

In order to determine ¢ unknown functions {F;;(s); 0 < j < ¢ — 1}, the same number of
equations are required. One of them is given by the condition that the numerator and
denominator on the right-side hand of (8) must vanish at z = z; since the generation
function P} (s, z) is analytic for |z| < 1 and R(s) > 0. Other equations are given by (7a)
and (7b). In the analysis of an SMPIXI4+M/M/c queue, however, it is not necessary to
find {P};(s); 0 < j < c— 1} explicitly.

3 Queue Size in an SMPX/4+M/M/c System

We now consider a queueing system SMPXI4+M /M /¢, which consists of ¢ identical severs
and a common queue with an infinite buffer served on a first-come first-served (FCFS)
basis. The queue is fed by a mixture of a semi-Markov batch arrival process and a
Poisson arrival process. The semi-Markov batch arrival process is an extension of the
semi-Markov arrival process described in Section 1 such that each arrival consists of a
batch of a random number of customers. Let g;(k) denote the probability of the batch
size being k for type [, [ =1,..., L. We say that the system enters state [ when a batch
of type [ arrives. The rate of the Poisson arrival process is denoted by A. The service
time distribution for each of SMP and Poisson customers is exponential with the same
mean 1/p.

We analyze the queue size in an SMPPXI4+M/M/c system. Let X (¢) denote the
number of both SMP and Poisson customers present in the system (queue size), including
the customers both in service and waiting, at time £. Since the queue size process
X (t) behaves exactly like a birth-and-death process, described in Section 2, between the
successive arrival epochs of SMP customers, we call the time segment between those
arrivals a Markovian segment. The start and termination of each Markovian segment
are caused by the arrivals of SMP customers. Thus the queue size immediately after an
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SMP arrival determines the queue size immediately before the next SMP batch arrival
in accordance with a Markov chain. This fact suggests that the queue size process of an
SMP[X]—i-M/ M/c system can be analyzed by the theory of a piecewise Markov process
proposed by Kuczura [7]. We do so by means of a discrete-time Markov chain of two
random variables {(X™, S(™);n =0,1,2,...}, where X(™ denotes the queue size seen
by nth SMP arrival, and S denotes the state of the underlying SMP immediately after
that arrival.

The state transition probability of the time-homogeneous Markov chain {(X ™), S();
n=20,1,2...} is given by

P{X™+) = j g+ — | X = § 5 =1} = pzngz(k)/ Py, (0)d Ay, (1)
k=1 0
,j=0,12,...50L,m=1,...,L, (9)

where P, ;(t) is transition probability of the birth-and-death process defined in (4). As-
suming that this Markov chain is ergodic, the limiting distribution

P(i,1) := lim P{X™W =4,8™ =1}; i=0,1,2,...;1=1,...,L (10)

n—o0
satisfies the balance equations
oo L oo )
P(j,m) = ZZZplmgl(k)P(z‘,o/ Piikj(0)dAm(t); §=0,1,2,...;m=1,... L,
i=0 1=1 k=1 0

(11)

7

and the normalization condition
oo L

ZﬁSP@0=1. (12)

We transform (11) to a complex integral, since we want to utilize (8) to convert
(11) in terms of the generating function for the queue size. Since P;;(s) is the Laplace
transform of P; j(¢), we have the inversion

1 b+ico
Pylt) = = / et P?, (5)ds, (13)

271 b—ioo

where b > 0, i :=+/—1, and the integration fbb_tzo denotes the Bromwich integral, being
written as [, hereafter. Substituting (13) into (11) yields

oo L oo
. oy 1 .
P(],m) = Zzzplmgl(k)P(z’l)%/B;T Pz'-l—k,j(s)alm(_s)ds;
j=0,1,2,...;m=1,...,L, (14)

where
am(8) ::/ e d A, (t)
0
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is the Laplace-Stieltjes transform (LST) of A;,(¢). Let us introduce the generating
function for {P(i,1);7=0,1,2,...} by

o

Oy(z) =Y _ PG,0)2; 1=1,...,L
i=0
By definition, we must have
(I)l(l):ﬂ'l; l:1, ,L. (15)

Multiplying (14) by 2z’ and summing over j = 0,1,2, ..., we obtain

ZplmZPZl Zgl 27r1/ Z ki (8)7 Qum (=) ds. (16)

Using (8) in (16) and changing the order of summation and integration, we get the
following set of simultaneous equations for {®;(z);l =1,...,L}:

- 1 2Gi(2)Pu(2) = (1 = 2)u i "o(c — J)Hi(j, 5)7°
?) :lzzlplmQ—ﬂ'i/Br zs — (1= 2)(cp — A2)

aym(—$)ds;

m=1,...,L, (17)

We note that H,;(j, s) can be written as

Hy(j,s) =Y di(k)P;(s); j=0,...,c—1; I=1,...,L, (19)
k=1
where
k—1
di(k) ==Y P, Dgi(k —i); k>1 (20)
1=0

is the convolution of P(i,l) and g;(¢). Tt is clear that )2, d;(k) Py ;(s) is a convergent
series for (s) > 0. From (7a) and (7b), we have

(s +A)H,(0,s) = pH,
(s+A+iu)H(j,s) = AH,

,8); l=1,...,L,
—1,8)+(j+ )MHl(j+1,3)+dz(j);
j=1,...,c=2 1=1,...,L. (21)

(1
(4

Following Kuczura [7], we may comment on the Bromwich integral in (17) as follows.
Since Py, ;(t) is the probability, the generating function P}, (s, 2) of P, ;(s) is analytic
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for |z| <1 and R(s) > 0. Hence the bracketed part of the integrand in (17) is analytic for
|z| <1 and R(s) > 0, since it is the convergent series of Y ° > "7 P(i,1)gi(k) P, (s, 2).
On the other hand, since A,(t) is the distribution function, ay,,(s) is analytic for R(s) >
0. For R(s) < 0, ay(s) may or may not be analytic. However, «;,,(s) is meromorphic
for R(s) < 0 in many cases, including the cases in which the distribution of A, is
exponential, Erlang, and a linear combination thereof.

If we assume that oy,(s) is meromorphic for the left-half plane R(s) < 0, all the
poles of oy, (—s) are in the right-half plane R(s) > 0. Hence the integrand in (17) is
meromorphic in the right-half plane. Thus we can use the residue theorem to evaluate
the integrand over the contour consisting of the line (b + iR,b — iR) and a semicircle
of radius R in the right-half plane which connects b — iR with b + iR counterclockwise.
We can choose b and R such that all the poles of ay,(—s) are interior to this contour
for all [ = 1,...,L. Then the Bromwich integrals in (17) are evaluated only at the
poles of oy, (—s)’s. Therefore, (17) is not a set of integral equations but simply a set of
linear equations for {®;(z); | =1,..., L} containing unknown constants as coefficients.
These unknown constants are determined from the condition that the generating function
®,(z) is analytic for |z| < 1, the equations in (21) and other relations for {P(i,1); i =
0,...,c—3; [ =1,...,L}. In Appendix, we show explicitly how to determine ®;(z)
when the state sojourn time follows an exponential distribution.

4 Stability Condition for an SMPXM/M/c System

Let us discuss the stability condition for the SMPXI+M/M/c system. To do so, we
rewrite (17) as

B(2) = pim [zc;l(z)@l(z)wlm(z) (1— Z)Blm(z)} , (22)

=1

where

1 O (—$)
Vim(2) = omri /Br zs — (1 —2)(cu — A2) as, (23)

and

Blm( ) : L/ NZj;o(C_j)Hl(ja S)Z]alm(—s)ds. (24)

2 Br 28— (1—2)(cpp — A2)

Evaluating ¥y, (z) at z = 1 yields

Ty(1) = L/B (=) 4o _q. (25)



Differentiating ¥, (z) and evaluating at z = 1, we obtain

T 1 —5= h
d lm(z) = — udS/ GStdAlm (t)
dz » 271 J g, s? 0
0 1 — S —
= / dAym () — / ueStds
0 2m /g, s?

where @y, is mean of the distribution function Ay, (t). Evaluating B, (z) at z = 1, we
obtain

. 1 [ pYio(c—HH(,s)
Bim(1) = o/, = . m (—s)ds

= M/OOO d Ay (1)

27Tl Br S

c—1 oo

= [ dAn) Y= Yo dlh) [ Pt 0

7=0 k=1

where we have used the definition of H;(j,s) in (19). Thus, By, (1) is positive. These
results are used later.
Now, equation (22) can be written in matrix form as

&(2)F(2) = (2 — 1)1diag[B'(2)P], (28)

where ®(z) := [®1(2),...,Pr(2)],

F(z) =1, — 2G(2)Q(2), (29)
G(z) = : 5 o : (30)
pn\I’n(z) p12‘1’12(2) e p1L‘I’1L(Z)
A 21 Wo1(2 920 Wao (2 orWor (2
o) = | P :()p :()"p :() | (31)
le‘I’Ll(Z) pLz‘I’Lz(Z) , pLL‘I’LL(Z)
B;H(Z) 5;12(2) Ce ?12(2)
B(z) - | D207 B2l) Bule) | (32)
BLI(Z) BLQ(Z) BLL(Z)
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and I denotes an L x L identity matrix. In equation (28), diagX is a diagonal ma-
trix whose elements are taken from the corresponding elements of X, and Bt(z) is the
transpose of B(z).

Differentiating (28) and evaluating the result at z = 1, we obtain

@' (1)(I; — P) + wF'(1) = 1diag[B'(1)P], (33)

Here we have used F(1) = I, — P since G(1) = I, and Q(1) = P. Note also that ®(1) =
7. Multiplying (33) on the right by 1* := [1,...,1]" and noting that (I, — P)1* = 0, we
get

wF' (1)1 = 1diag[B'(1)P]1¢. (34)

To determine the left-hand side of (34), we differentiate (29) and evaluate the result
at z = 1, where we use (25) and (26). Then we have

F(1)=-Q(1)-G'(1)P - P, (35)
where
[ g1 0 0 ]
0 g 0
G'(1) = | 36)
0 0 ... g |
and
pul(A — ep)iny — 1] prof(A — ep)ane — 1] ... piz[(A — ep)ang — 1]
o) = paf(A — c:,u)dzl — 1] pal(A - c:u)dm —1] pan[(A — C:N)&ZL —1]
praf(A — C.,U)flm —1] prol(X — c.u)&m —1] . o[\ — C-,U/)&LL — 1]
(37)

Here g; is the mean batch size of type | customers. Multiplying (34) on the right by 1°
and substituting (36) and (37) yields

F)1t = —Q 1 -G'1)1t -1
-, -
Zplm[(c,u — Al + 1]
"L g1 1
_ | Xpmllen— Nt 1] | ” | ! 59
. g 1
Z Prm[(cp — N)apm + 1]
L m=1 d




Finally, multiplying (38) on the left by 7, we obtain

L
TF W1 =Y m Y pllesn— N +1] —g—1=(cp—Na—g, (39)

=1 m=1

where @ is the mean of interarrival time for SMP arrivals defined by

L L
0= MY Pmiim, (40)
=1 m=1

and g is the mean batch size given by

L
g:=>_ mg. (41)
=1

The expression in (39) is the left-hand side of (34). Thus we have

(cn—=Na—g=>_> Bin(1)pim- (42)

=1 m=1

From (27) we see that the right-hand side of this equation is positive. Hence we have
9

The condition in (43) means that the sum of the arrival rates of the SMP and Poisson
customers is less than the total service rate. Thus it assures the stability of our system.

5 Waiting Times in an SMPX/4+M/M/c System

We proceed to investigate the waiting time for an arbitrary customer in an SMPX14+-M/M/c
system. In section 5.1, the waiting time distribution for an arbitrary SMP customer in
a batch is derived. In section 5.2, based on the theory of Markov renewal processes, the
waiting time distribution for an arbitrary Poisson customer is given.

5.1 Waiting time of an SMP Customer

We first consider the waiting time W of an arbitrary SMP customer. Let us focus on a
randomly chosen tagged customer included in a batch that arrives to bring state [. Let
G, denote the number of customers placed before the tagged customer in this batch, and
Wi (t) be the waiting time distribution of this tagged customer. The distribution of G,
is given by [16, p.46]

o0

Z o(k)

gl(k)z""“%; k=0,1,2,..., (44)
l
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and its generating function is

(45)

On the other hand, if the tagged customer in a batch of size k arrives and finds that the
number ¢ 4 k£ of customers in the system is great than ¢, he must wait untilt+k+1—c¢
customers depart before he enters service. Therefore, his waiting time has (i+k+1—c)-
stage Erlang distribution. Thus, W;(t) is given by

=5 F a5 wrn [[He e
Eban [
+ Zzgl(k) (i,1) /0 Cu(gﬁ):_‘z;w dy. )
Taking the LST of W;(t), we obtain
_ B
Qm—ﬁjﬁw%WMWWﬂ
+Z Z ai(k 1 —[B(s )]Z+k+1—c) ’ (47)

where B(s) := cu/(s + cp).
Finally we get the LST €Q(s) of the distribution function for the waiting time W of
an arbitrary customer as

- g Z au(s)

[B(5)]" <
9{72 (1 — G4[B(s )])‘1’1[3( )]

1 —
=1

L c—1c-1-k

D IPITIL ,Oﬁmwwﬁ} (15)

=1 k=0 =0

The mean E[W] and the second moment E[W?] of the waiting time are then given by

EW] = [ZglEl[X]—i-——ZZZglgl z—i—k—i—l—c)]—c_l,

=1 k=0 <=0 CH
(49)

11



m‘h

a(BIX? + (3~ 20 BX)) + 4P BIX]| + 2 - g + %

(c—1)(c—2)
(cp)? 7
(50)

ag(k)PE, (i +k+1—c)(i+k+2— c)} +

where

EX]=0"1), E[X})=0"1)+E[X]; I=1,...,L

5.2 Waiting Time of a Poisson Customer

We next consider the waiting time W* of an arbitrary Poisson customer. According to
the PASTA (Poisson arrivals see time averages) property, the number of customers that
an arriving Poisson customer finds in the system has the same distribution as the number
X* of customers present in the system at an arbitrary time in steady state. Thus we
will find the generating function ®*(z) for the probability distribution of X*.

To do so, note that the interval between an arbitrary time and the preceding SMP
arrival time corresponds to the backward recurrence time in the Markov renewal process
that counts the number of state transitions in the SMP. The joint distribution for the
backward recurrence time in state [ and the probability that the next state is m is given
by

1 Dim
J— €T >
Apm( AT / — Az t>0, (51)

where

E[A] = Z PimE[ A

m=1

is the mean sojourn time in state [.

Conditioning on the number of customers and the states of the SMP at the pre-
ceding and the next arrival points, and integrating with the backward recurrence time
distribution in (51), the steady-state distribution of X* is given by

P(X* :]) = izp(l,l)zoo:gl(k) /Ooo H—Fk,j(t)d"al(t); .7 = 01 152: R (52)

= F

A]Z E[A]szm/[l A (z)]dz; t>0
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is the conditional distribution function for the backward recurrence time in state [. The
mean interarrival time E[A] between the batches of SMP customers is given by

E[A Zﬂ'l Al

From (52), the generating function ®*(z) for X* is given by

L

=Y P =7 =Y PEDY k) / Z OFdAt).  (53)

=0 1=1
In the same way as deriving (17), we obtain

2Gi(2)il2) — (1= 2)u 35 70(c — ) Hi(j, )7
zs — (1 —2)(cpu — Az)

L

=Y,

where Hy(j,s); j=1,...,c— 1, are given in (18), and &(s) is the LST of A(t). Again,
the Bromwich integrals are evaluated only at the poles of &;(—s)’s in the right-half plane
R(s) > 0 in most cases.

The LST Q*(s) of the distribution function for the waiting time W* of an arbitrary
Poisson customer is expressed as

& (—s)ds, (54)

0 (5)= Y PLX" = )+ 3 POX = B
= [B(s) = (Bl + 3 POX = ) (1~ [BEP). 55)

The mean E[W*] and the second moment E[(W*)?] are then given by

cp

Ewmi(mm—wm+imw=mﬁww» (56)

J=0

(cp)

c—1

E[(W*)’]= % ((c —1(c—2) + (3 — 20) E[X"] + E[(X")?]

P(X c—J—l)(c—j—2)>, (57)

7=0

respectively, where F[X*] and E[(X*)?] are obtained from ®*(z).

6 Application to the MPEG Frame Sequence

Let us use the SMPIX] 4+ M/M/c system to model the traffic in multiple channels on an
ATM network in which the transmission of MPEG frames interferes with other traffic.
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The waiting time of an arbitrary ATM cell generated from MPEG frames is studied.
In Section 6.1, a brief description of MPEG coding scheme is given. In section 6.2, the
transmission of MPEG frame sequence with interfering traffic is modeled by an SMPX!
+ M/M/c system. Assuming that the MPEG frame arrival process is also Poisson, we
obtain the formula for evaluating the waiting time of an arbitrary ATM cell. In Section
6.3, some numerical results using the statistics of a real video film are presented.

6.1 MPEG Video Coding Scheme

forward prediction

bi di rectional prediction

Figure 1: Group of pictures (GOP) of an MPEG stream [9].

In the MPEG coding [9], a video traffic is compressed using the following three types
of frames.

e I-frames are generated independently of B- or P-frames and inserted periodically.

e P-frames are encoded for the motion compensation with respect to the previous I-
or P-frame.

e B-frames are similar to P-frames, except that the motion compensation can be
done with respect to the previous I- or P-frame, the next I- or P-frame, or the
interpolation between them.

These frames are arranged in a deterministic sequence “IBBPBBPBBPBB,” which
is called a Group of Pictures (GOP) as shown in Figure 1. The length of the GOP is 12
frames. The traffic stream generated by the MPEG coding is characterized by two fea-
tures, namely (i) the deterministic frame pattern in the GOP, and (ii) the distinguishable
frame size distributions for the three types of frames (I, B and P).

6.2 Traffic Model for MPEG Frame Sequence

We are now in a position to apply the analysis results of the SMPX/4-M/M/c system to
modeling the transmission of MPEG frame sequence on an ATM network with multiple
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channels interfering with other traffic. In this model, the Markov chain underlying the
SMP has twelve states corresponding to the frame pattern “'BBPBBPBBPBB” with
cyclic transitions. We index this sequence which represents the states in the Markov chain
as 0 through 11. As shown in Figure 2, for any given state, the transition probability to
the next state is unity, since the frame pattern is deterministic.

I
11B

Figure 2: State transition diagram of the MPEG frame pattern.

The stationary distribution of this Markov chain is given by
m== ; 1=0,...,11.

For the sake of simplicity in the expressions, we assume that the arrival process of the
frames is Poisson with rate « as a (very) special case of the SMP. Let G(z) denote
the probability generating function for the number of ATM cells generated from the /th
frame, [ = 0,...,11, and let ¢ be the number of channels for transmitting the MPEG
frames. Equations in (17) then become

¢m(z>=$ Gnea (s (2) = (L= (0= NHaa ()7 |5 m=0,... 11,

(58)
where
1
q(z) =2z — &(1 — 2)(cpp — Az).

We note that {H,,(j); j=0,...,c—1; m=0,...,11} are constants to be determined.

Hereafter state “—m ” should read state “12 —m”. Solving the set of equations in (58),
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we get

=Y ) [~ (0] TT G2
Cbm(z) _ k=0 J_OT,(Z) l=m—k :

m=0,...,11,  (59)

where
T(2) := [qg(2)]* — 2" [ [ Gu(2). (60)

It is shown in Appendix that there are twelve zeros of T'(z) in |z| < 1 under the
condition

ag+ A <cp. (61)

Here

1 11
g = E;gl

is the mean size of an MPEG frame. We also have the relations

(¢ +N)Hp,(0)=pH,(1); m=0,...,11,
(@+ A+ Jp)Hn(5) = AHm(j = 1) + (7 + DYuHm (G + 1) + din(5);
j=1,...,c—2 m=0,...,11, (62)

and
_ 1d'd,(2)

T i ;
i dzt |,

P(i,m) i=0,...,c—3 m=0,...,1L. (63)

In order to determine the unknown constants {H,,(j); m =0,...,11; j=0,...,c—1}
in (59) and {P(i,m); i =0,...,¢—3; m=0,...,11} included in d,,(j) in (62), 12(2c—2)
equations are required. Out of them, 12 equations are obtained from the zeros of T'(z),
and the remaining 12(2c — 3) equations are given by (62) and (63). This completes the
determination of parameters in our formulation.

6.3 Numerical Examples

Let us evaluate the waiting time of an arbitrary ATM cell in the model. The real video
film data for the Jurassic Park is prepared by Rose [11], and it can be downloaded from
the web site http://nero.informatik.uni-wuerzburg.de/MPEG/. In addition, we need to
assume some distribution for the number of cells in each frame (frame size) so that we
can calculate the distribution of the waiting time numerically.
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Table 1: Statistics for the frame size in ATM cells calculated from the MPEG frame
trace of the Jurassic Park video.

I-frame ‘ B-frame ‘ P-frame

| |
‘ mea ‘ var ‘ C.V. ‘ mean ‘ var ‘ C.V. ‘ mean ‘ var ‘ ‘
| 143.427 | 918.704 | 0.211 | 19.033 | 135.021 | 0.612 | 37.659 | 632.568 | 0. 667 |

Table 2: Parameters of the negative binomial distributions for the frame size of the
Jurassic Park video.

‘ I-frame ‘ B-frame ‘ P-frame

|
‘nl‘ b1 ‘TLB‘ bB ‘nP‘ pp ‘
119]0.132] 2 [0.105 | 2 |0.053 |

Frey and Nguen-Quang [3] and Sarkar et al. [13] propose the gamma distribution
for the frame size. As a discrete version of the gamma distribution, let us assume that
the distribution of the frame size is negative binomial. Thus the probability generating
functions for the frame size are given by

pz \™
Gl(z):<1_lqlz> s oq:=1—p; 1=0,...,11.

where, by referring to Figure 2, we set

by = p1, ny = ni, [ = Oa
p=ps, m=mng;, [=1,2,457,8,610,11,
pbr = pp, ny = np, l:37639

Table 1 shows the mean, variance, and coefficient of variation (c.v.) for the number
of ATM cells in each frame type for the Jurassic Park video, which have been calculated
by assuming that every frame is divided into a group of cells each with a payload of 48
bytes. The fitting parameters for the negative binominal distributions determined from
the statistics in Table 1 are given in Table 2.

To compare the influence of the number of channels, we keep the total transmission
rate at 10 Mbps, which corresponds to 2350 cells/sec, and vary ¢ from 2 to 3. For each
set of parameters we have exactly twelve zeros in the unit disk. The zeros of T'(z) for
¢ =2 and p = (2350/2) cells/sec are plotted in the complex z-plane in Figure 3.

Figures 4 and 5 show the mean and the variance, respectively, of the waiting time of
an arbitrary ATM cell for ¢ = 2, u = (2350/2) cells/sec. Figures 6 and 7 show the mean
and the variance, respectively, of an arbitrary ATM cell for ¢ = 3, u = (2350/3) cells/sec.
For completeness, the mean and variance for the waiting time of interfering Poisson cells
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Figure 3: Zeros of T'(z) in the unit disk for ¢ = 2, u = (2350/2) cells/sec.

are also plotted in corresponding figures. It is observed that the mean and variance for
the waiting time of MPEG cells increase as the arrival rate of the interfering Poisson
cells. It is also observed that the difference between the curves for ¢ = 2 and ¢ = 3 is
very small for both the mean and variance if we keep the total transmission rate at a
constant cu = 2350 cells/sec. In other words the number of channels does not influence
much on the mean and variance of the waiting time when the total transmission rate is
kept constant. This is just like the situation in an M/M/c¢ queueing system.

7 Summary

In this paper, we have first analyzed the queue size in an SMPX14-M/M/c system, where
the underlying SMP has L states. The formulas of the mean and variance of the waiting
time for both an arbitrary SMP customer and an arbitrary Poisson customer have been
derived. When the state sojourn times are exponentially distributed, we have proved
that there exist L? zeros in the unit disk in the denominator of the generating function
for the queue size if the arrival rate is less than the total service rate. Then we have
modeled the arrival of ATM cells in the MPEG frame sequence as an SMP batch arrival
process, whereas the interfering traffic is represented by Poisson arrivals. This model
captures two major features of the MPEG coding scheme: (i) the deterministic frame
pattern and (ii) the distinct distributions for the size of the three types of frames. The
waiting time of each ATM cell has been evaluated. It is observed that the mean and
variance of MPEG cells increase as the arrival rate of the interfering Poisson cells. It is
also observed that, just like the situation in an M/M/c queueing system, the number of
channels does not influence much on the mean and variance of the waiting time as far
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Figure 4: Mean waiting time for an arbitrary cell for ¢ = 2, u = (2350/2) cells/sec.
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Figure 5: Variance of the waiting time for an arbitrary cell for ¢ = 2, p = (2350/2)
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as the total transmission rate is kept constant.
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Appendix: Queue Size in an SMPX4+M/M/c System When the
State Sojourn Time Follows an Exponential Distribution

We show that the unknown constants contained in the generating function (17) can be
determined through the zeros of the denominator for this generating function in the unit
disk when the sojourn time in the state of SMP follows an exponential distribution.

If the state sojourn time A, follows an exponential distribution with mean 1/qy,,,
equation (17) is free from the Bromwich integral, and it is reduced to

B, (2) = I_ZI qli’:("z) [2Gi(2)®1(2) — (1 — 2)Bim(2)]; m=1,...,L, (A1)
where
Qim(2) ::z—%(l—z)(cu—)\z); Ibm=1,...,L, (A.2)
Bun(2) = 1 Y_(c — ) Hin()2 (A3
Hyn(j) ==Y di(k) P j(cum); G =0,...,c—1,
and
dy(k) = - PG, Dg(k —i); k>1. (A.4)
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We also have the relations

(s + N Hym(0) = uHyn(1); I,m=1,...,L,
(s + A+ ) Him () = AHim (5 — 1) + (7 + DpHim (5 + 1) + di(5);
j=1,...,¢—2; I,m=1,...,L. (A.5)

and
o l d’i@l (Z)

= ;
i dzt |,

P(i, 1) l=1,...,L, (A.6)
for {P(i,0); i = 0,...,c — 3} that appear in d;(j) in (A.5). Note that each Bj,(z) is
a polynomial in z. The set {B,(z); [,m = 1,..., L} contains cL? unknown constants
{Hm(j); 7=0,...,¢c—1; I,m =1,...,L}. In addition, the relations in (A.5) include
(¢ — 2)L unknown constants {P(i,1); i = 0,...,¢—3; I = 1,...,L}. Thus the total
number of unknown constants is cL? + (¢ — 2)L.

Now, equation (A.1) can be written in matrix form as

®(2)V(2) = 22(2)G(2)Q(2) — (1 — 2)1diag[B'(2)Q(z)], (A7)
where
H le(Z) 0 0
0 o\ 2 0
V(z) := ]-1;[1% ) ; (A.8)

-pn H q;1(2) pr2 H qj2(2) ... p1L H g;(2) ]

J#1 J#1 J#1
D21 H j1(2) P22 H 3j2(2) - .. par H ¢r(?)
Q(z) :== i#2 7#2 #2 , (A.9)

Pr1 H le(Z) Pr2 H qu(z) ---PLL H QjL(Z)
| J#L J#L J#L J
Bi1(2) Bia(2) ... Bip(2)

By1(2) By1(2) ... Bop(z
B(2) = '() .( ). ‘()

' ' ' : , (A.10)
BLI(Z) BLQ(Z) . BLL(Z)
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and G(z) is given by (45). We may rewrite (A.7) as
®(2)F(2) = (2 — 1)1diag[B'(2)Q(2)], (A.11)
where
F(z) :=V(z2) — 2G(2)Q(2). (A.12)

Let adjF(z) denote the adjoint matrix of F(z). Multiplying (A.11) on the right by
adjF(z), we have

(2 — 1)1diag[B'(2)Q(2)]adjF (2)

®(z) = det F(2)

(A.13)

Note that (A.13) contains the set of cL? unknown constants {Hy,(j); 7 =0,...,¢—
1; I,m=1,...,L}. We will show that there are L? zeros for det F(z) in the unlt disk
|z\ <1if the condition

ag+ A <cu (A.14)

is satisfied, which is the special case of the stability condition in (43). Here

1
=g (A.15)
Im
DILD D
=1 m=1

is the arrival rate of the batches of SMP customers, and g is the average batch size given in
(41). In order to determine the unknown constants { Hy,,,(7), P(i,1); 7 =0,...,¢—1; i =
0,...,c—3; I,m=1,...,L}, cL? + (¢ — 2)L equations are required. Out of them, L2
equations are obtained from the zeros of detF(z), and the remaining (¢ —1)L*+ (c—2)L
equations are given by (A.5) and (A.6).

Differentiating (A.11) and evaluating the result at z = 1, we obtain

&'(1)(I, — P) + 7F'(1) = 1diag[B(2)P]. (A.16)

Here we have used F(1) = I, — P since V(1) = G(1) = I, and Q(1) = P. Note also
that ®(1) = . Multiplying (A.16) on the right by 1* and noting that (I, — P)1* =
we get

#F' (1)1 = 1diag[B*(1)P]1". (A.17)

To determine the left-hand side of (A.17), we differentiate (A.12) and evaluate the
result at z = 1. Then we have

F(1)=V'(1) - G(1)Q(1) - G'(1)Q(1) - G(1)Q'(1)
—V'(1) =P - G'(1)P - Q(1), (A.18)
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where

_ | \ -
ZOZ]1+CM 0 0
j=1 @
- Qo+ ¢ A
0 Yy T H 0
V(1) = ‘= ap : (A.19)
L
0 0 . ZO&jL‘i‘C,U,—/\
i j=1 QL i
i o1+ e — A Qo + ClL — A oL+ e — AT
pllZ%PHZ%mplLZ%
1 i 1 2 J#1 L
o1+ e — A Qo+ Clt — A oL+ eu— A
pmzimzu_“]mz%
Q'(1) = 2 72 2 7z YT

oz~.—|-c - A a-.—i—cu—)\
Ple%szﬂ—---

oL +ep— A
pLLZJL—

- Q1 5 Qo ;
L G#L J J#L J J#L

a’jL

(A.20)

and G'(1) is given by (36). Multiplying (A.18) on the right by 1* and substituting (A.19),

(36), and (A.20) yields

FO1'=v'(D)1'-1'-G'(1)1' - Q’(1)1t
- -
o1 +cp— A Qg + Cph —
> D P
j=1 gt . b=l ik
L 91
ajo+cp— A ok + i
o B 1Y I P B P > T —
== @52 Tl T T e g2 ik
L . ! L L .
o1+ e — A o +cp —
> o Dpuk)
L j=1 J d | k=1 J#L J

Finally, multiplying (A.21) on the left by 7r, we obtain

L L

Gkl
=1 k=1 =1 =1
Z Qi + Cu — A

L L
- E T E Dik o
=1 k=1 £l ik
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:zL:mzL:OékH‘CM )\_1_9

=1 k=1

B L L L ozjk—i-cu A L L Qi+ cp— A
Zﬂlzplk +Z7rlZp — 0

=1 k=1  j=1 =1 k=1
: L
However, from the relations ) ;_, mpy = 7, k=1,..., L, we have

L L L Qi +cpu— A L ak+c,u A
Zﬁlzplkz == - ik —ZZ == - Zﬁlpzk
1=1

j=1 kljl

_Zﬂ' ZCM]]C+C/L )\

k=1  j=1 ik

Thus we get

mF' (1)1" = (cu — N) Zmz Pik _ =2 - 9. (A.22)

a
=1 k=1 'tk

Q

From the stability condition (43), we must have
ag + A < cpu, (A.23)

which is the condition in (A.14).

Recall that ®(1) = m. Since det F(1) = det[I, — P] = 0, the point z = 1 is the
common zero of the denominator and the numerator for the right-hand side of (A.13).
Thus we investigate the value of the derivative of det F(z) at z = 1:

d
= det F(2)

Theorem 1 If ag+ A < cu, then v > 0.

Proof. To determine ~, we use the well-known relations in linear algebra:
F(z)adjF(z) = det F(2)I;, = adjF(2)F(2). (A.24)

Differentiating the second equality, evaluating the value at z = 1, and multiplying on
the right by 1°, we obtain

1' = adjF(1)F'(1)1". (A.25)

An expression for adjF(1) may be found as follows. Evaluating (A.24) at z = 1 and
using det F(1) = 0, we have

PadjF(1) = adjF(1) = adjF(1)P.
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Since P is an irreducible stochastic matrix, the first equality implies that each column of
adjF(1) is a multiple of 1* (recall that P1* = 1*). Similarly, the second equality implies
that each row of adjF(1) is a multiple of 7 (recall that 7P = 7). It follows that there
is a constant h such that

adiF(1)=h | : |. (A.26)

We claim that adjF(1) is a positive matrix [6, p.359]. From the form of (A.26), it is
enough to show that the diagonal elements, say, x;, [ = 1,... , L, of adjF(1) are positive.
To see this, note that

R = (—1)l+l det[F(U)(l)] = det[IL_1 —_ P(l,l)]a

where P is the matrix P with its /th row and /th column removed. Since P is
irreducible, the spectral radius of P is strictly less than unity. This implies that
det[I;_y —tP )] # 0 for real ¢ satisfying 0 < ¢ < 1. Since this determinant function of ¢
is positive for ¢ = 0 and never zero, by continuity it is also positive for t = 1, i.e., x; > 0.
Thus adjF(1) is positive, and we conclude that A > 0 in (A.26).

Substituting (A.26) into (A.25) and noting (A.22) yields

'y:h(cuoj)\ —g). (A.27)

Using h > 0 and the condition (A.23), we see that + is positive. a
We next show that there are L? zeros for det F(z) in the unit disk. To do so, we use
a lemma in [4, p.239]: Let f(z,t) be a function analytic for z within and on a closed
contour C, and continuous for t in some interval . If f(z,t) #0 for z € C and t € T,
then the number of zeros of f(z,t) inside C is the same for all t € T.
For our purpose, let

f(z,t) :==det F(z,1),
where
F(z,t) := V(2) — 2tG(2)Q(2).

We choose a closed contour C := {z;|z| = 1} and an interval 7 := {t;¢t € [0,1)}.
Obviously, f(z,t) is analytic in C and continuous for ¢ € Z. We first prove that f(z,t) # 0
for z € C and t € Z, and then prove that there are L? zeros for f(z,1) = det F(z) in C
using the above lemma.

Theorem 2
(a) detF(z,t) #0 for |z| =1 and t € [0,1).
(b) detF(z) #0 for |z| =1, z # 1.
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Proof. We consider det F(z,t) for |[z| =1 and ¢ € [0, 1]. Note that det F(2) = det F(z,1).
Then F(z,t) can be written as
F(z,t) = V(z) — 2tG(2)Q(2)
=V(z) — 2tG(2)L(2)V(2)

=1, — 2tG(2)L(2)|V(2), (A.28)
where
[ Pl P12 bir 7
(111(2) (]12(2) (hL(Z)
P21 D22 PaL
L(z) - (121(2) (]22(2) (]2L(Z) ‘ (A.29)
P PrL2 pLL
_QL1(Z) QL2(Z) QLL(Z)_

Therefore we have
det F(z,t) = det[I; — 2tG(2)L(z)] - det V (2). (A.30)

Since

1 1
r(2)| = | Tt A+ ez = 02+ | 2 Lo+ A+ u= O+ ] =
J

o7

for |z| =1, we see that

L L
112
k=1j=1

It follows that det V(z) # 0 for |z| = 1.

We next prove that Iy — 2¢G(2)L(z) is nonsingular for |z| = 1 and ¢ € [0,1) and
that I, — 2G(z)L(2) is nonsingular for |z| = 1, z # 1. These are equivalent to that
det[I; — 2tG(z)L(z)] and det[I, — 2G(z)L(2)] are invertible, respectively. To do this, we
use the notion of maximum row sum matrix norm [6, p.295] and a corollary in [6, p.301].
We state it as follows: Suppose there is a L x L matriz Ay, = {a;;}. The mazimum row
sum matriz norm of Ay s defined by

|det V(2)| = >1, forlz|=1.

L
I1Asllo = i >l
‘7:

A matriz Ay is invertible if there is a matriz norm (e.g.|||-|||oo) such that |||[I,—ALl|| < 1,
if this condition is satisfied,

o

Azl - Z(IL - AL)k
k=0
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From (45) and (A.29) we have

I, — 2tG(2)L(2)

[ pb11 D12 bir T
1 — ztG4(z —z2tG1(z ... —ztG4(z
@ TN AP
Db21 D22 barL
—2tGy(2) 1 — 2tGo(z) oo —2tGo(2)
z z z
_ 21(2) 022(2) @i(2) | (A31)
Pr1 Pr2 pbrLL
—ztGG —ztG 1 — 2tGr(z
| ¢ L(Z)CIM(Z) ¢ L(Z) QLQ(Z) L( )QLL(Z) i
For our purpose, we define
A(z,t) =1 — 2tG(2)L(2), (A.32)
and then
I, — A(z,t) = 2tG(z)L(%). (A.33)

The absolute sum of ith row for ztG(z)L(z) on |2| = 1 and 0 < ¢ < 1 is satisfied the
following relations

iﬁﬁ®£&f¢”ﬁ§%=¢WW (A1)
Thus we have
H‘IL—A(Z,t)‘HOO Stmlax‘Gi(z)‘. (A.35)

For case (a) in which |z| =1 and ¢ € [0, 1), we see that

[ =2 0fl], = [[ls@mefl], < mexfo| <1

For case (b) in which |z| =1, z # 1 and ¢t = 1, since |G;(2)| < 1, we see that
H‘IL - A(z,t)m = H‘ZG(Z)L(Z)‘H < maX‘Gi(z)‘ <1
From the Corollary [6, p.301], it follows that I, — 2¢G(2)L is nonsingular for both
|zl =1,t€[0,1),and |2| =1, 2 # 1,t = 1. From (A.30), we conclude that detF(z,t) # 0
for |z =1,t € [0,1) and detF(z) # 0 for |z| =1, z # 1. O
Theorem 3 If v > 0, det F(2) has L? — 1 zeros in |z| < 1, and it has a simple zero at

z=1.
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Proof. Our proof follows [4, p.241]. We first observe that det F(z,0) = det V(z) has L?
zeros in |z| < 1, because each element ¢;;(2) in V(z) has a single zero at

A tept o — /(N ep+ ay)? — dedp
B 2X
in |z| < 1. From Theorem 2, we have det F(z,t) # 0 for |2 = 1 and ¢ € [0,1). Thus,

according to the above lemma, there are L? zeros of det F(z,t) in |z| < 1 for all ¢ € [0, 1).
We next investigate det F(z,¢) at ¢t = 1. Note that

Zij

detF(1,1) = det F(1) = det[I, — P] = 0.

If v > 0, the point z = 1 is a simple zero of the function det F(z,1) = det F(z). Since
det F(1,1) = 0, then det F(1 — £,1) < 0 for small ¢ > 0. By continuity in ¢ € [0, 1),
there is small 7 so that det F(1 —¢,1 — 7) < 0. However, det F(1,0) = det V(1) = 1
and det F(1,¢) # 0 for 0 < ¢t < 1 as shown above. By continuity, det F(1,¢) > 0 for
0 <t <1, so in particular, det F(1,1 — 7) > 0. Therefore, det F(1 — &;,1 — 7) = 0 for
some 0 < €7 < €. The same argument holds for 7 — 0, so the simple zero at z = 1 is
the limit of zeros from inside the unit disk. It follows that det F(z,1) = det F(z) has L?
zeros in |z| < 1. From Theorem 2(b), det F(z) has L? — 1 zeros in |z] < 1. O
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