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Abstract

‘We consider some implications of imperfect recall for existence and
subsetting results over various equilibrium concepts in extensive games.
Qur analysis focuses on commonly time-strucbured games which allow
us to see more clearly in games of imperfect recall. We find that in a
game of imperfect recall, a sequential equilibrium may not be a Nash
equilibrium, and a perfect equilibrium may not be a sequential equi-
librium. A perfect equilibrium exists in every one-player game, but
a sequential equilibrium may not exist. We also give sufficlency con-
ditions weaker than perfect recall, for the standard subsetting results
between perfect equilibrium, sequential equilibrium and Nash equilib-
rium.

1 Introduction

We give some results for various equilibrium concepts when the perfect re-
call condition does not hold. We restrict our analysis to commonly time-
structured games (Kline [5}). One reason for concentrating on these games
rather than Kuhn’s {7] more general class is to show that many of the same
types of phenomena are obtained in the restricted class, A benefit of using
commonly time-structured games is that it allows us to see more clearly in
games of imperfect recall.

The equilibrium concepts considered in this paper are Nash equilibrium,
sequential equilibrium, and perfect equilibrium. Our comparison is done in
finite n—player games and one-player games. We relate our findings to those
known for games of perfect recall.

In n—player games, & major finding is that the subsetting_ relationship
between sequential equilibrium and the other two solution concepts breaks
down when the game does not satisfy perfect recall, A sequential equilib-
rium may not be a Nash equilibrium, and a perfect equilibrium may not



be a sequential equilibrium (Figure 1). On the other hand, every perfect
equilibrium is a Nash equilibrium with or without the assumption of perfect
recall (Theorem 3.2). The fact that a sequential equilibrium may not be a
Nash equilibrium is shown to be related to the “local” nature of optimality
of sequential equilibrium as opposed to the “global® optimality assumed by
Nash equilibrium,

In one-player games, we find that a perfect equilibrium always exists
(Theorem 4.1), but a sequential equilibrium may not exist if the player
doesn’t have perfect recall. We relate the non-existence of a sequential
equilibrium to the fact that a player considering sequential rationality at an
information set does not consider the implications of sequential rationality
at his future information sets. This same feature is present in the notion
of a “time-consistent” strategy introduced by Piccione and Rubinstein [10).
We show that every sequential equilibrium is time-consistent (Lemma 4.2),
and thus non-existence of a time-consistent strategy implies non-existence
of a sequential equilibriurn. Battigalli (1] and Kline [4] showed that time-
consistent strategies may not exist in one-player games with imperfect recall.

In Section § we extend the subsetting results for n—player games and
the existence results for one-player games into some region of imperfect
recall. The standard subsetting relationship between perfect equilibrium,
sequential equilibrium, and Nash equilibrium holds in n—player games with
a condition on memory weaker than perfect recall known as “occurrence
memory” (Theorem 5.3). The subsetting relationship that every sequential
equilibrium is a Nash equilibrium can be maintained even further to a weak-
ening of occurrence memory known as “a-loss recall” (Theorem 5.1). By the
existence of a perfect equilibrium in a one-player game, and the subsetting
results of equilibria for occurrence memory, we obtain existence of a sequen-
tial equilibrium in a one-player game with occurrence memory (Corollary
5.4}). '

2 Extensive games and equilibrium. concepts

In Section 2.1 we define a commonly time-structured game based on Kline
[5]. The definition of an extensive game is based on Selten [11] and Kuhn
[7]. In Section 2.2 we define the solution concepts to be explored.

2.1 Commonly time-structured games

A finite extensive game T' = ((K,=X),P,U,C,p,h) is defined for a finite
set of players {0,1,....,n}. The chance player (nature) is player 0, and
N = {1,....,n} is the set of personal players. (K, =) is a finite tree which
means: (i) K is the finite set of nodes in the tree, (ii) = is a partial ordering
in K describing weak precedence with a smallest element zg € K called the



root node, and (iii) for each x € K, the set {y € K : y X } is completely
ordered by <.

We write £ A y whenever it is not the case that @ < y. The strict
precedence relation < is defined by = <y and y A 2. When z < y, we say
x is a predecessor of y and also that y is a successor of z, The set X is
partitioned into the set of nodes without successors called terminal nodes
and denoted by Z, and the set of decision nodes denoted by X. P is a player
partition describing the decision nodes where each player moves,

U = {Up,U1,.....,Un} is the information pattern. U; is called player
i's information partition and an element u € U; is called an information
set of player i. Up is assumed to be made up of singleton sets. We use
U= |J U;todenote the set of all information sets in the game.

ieNu{0}

C is a choice partition which describes the alternatives available to each
player at each of his information sets. We use C, to denote the set of
alternatives at information set u. For an information set u, a choice ¢ € C,,
and a node 2 € K we writeu < z iff y < 2 for some ¢ € % and c is the choice
at ¢ leading to . For u,v € U we write u < v iff z <y for some z € u and
some ¥ € v. The last two elements of an extensive game are p, which assigns
to each information set u € Up, & completely mixed! probability distribution
over the choice set C,,, and h, which is a payoff function assigning a real
vector (hi(z), ..., tn(2)) to each endnode z € Z.

Commonly time-structured games: A finite extensive game I" with the
set of all information sets Uf is commonly time-structured iff there exists a
natural number-valued function T on If such that:

for all u,v € U, v < v implies T{u) < T'(v) (2.1)

Kline [5] showed that every commonly time-structured game is an ex-
tensive game according to the definition of Kuhn [7]. In a commonly time-
structured game, each player can order his moves across time with those of
the other players. Such an ordering allows us to assign a time to each infor-
mation set in the game. We use such an assignment in all the examples given
in this paper. The time assignment allows us to make simple meaningful
statements about a player’s forgetfulness.

For example, the game of Figure 1 is a one player game with U = {u,v}.
Using the time assignment we can say that the player forgets at time T =3
whether he moved at time T' = 2.

Kuhn'’s definition of an extensive game did not require such an ordering.
While all the results of this paper can be proved with Kuhn’s definition,
it is easier to reason through commonly time-structured games, and all the
interesting findings of this paper occur in such games.

!By completely mixed we mean that every choice c € O\, is chosen with strictly positive
probability.



Figure 1

2.2 Equilibrium Concepts

We focus on behavior strategies, which are contingent plans that allow a
player to randomize over the set of alternatives available to him at each
information set. A behavior strategy of player ¢ is a function b; that assigns
to each u € U;, a probability distribution by, over the set C); of choices at
u. We denote the set of behavior strategies of player 1 by B;. Each by, is
called a local strategy of player i at u. We denote the set of local strategies
of player ¢ at u by Bu,. An n-tuple b = (by,...,b,) of behavior strategies,
one for each player, is called a strategy combination. We will use (b}, b_;) to
denote the strategy combination obtained from b by replacing the behavior
strategy b; of player i by &, We will also use (¥}, b_;,) to denote the strategy
combination obtained from b by replacing the local strategy of the player ¢
moving at v by &,,.
. The first equilibrium concept is a Nash equilibrium (8], This equilib-
rium concept is based on the ex ante expected payoff of each player, For
a strategy combination b, the ex ante expected payoff of player 4 is defined
by H;(b) = Z‘ p(z,b)hi(2), where p(z,b) denotes the probability of reaching

. terminal node z when b is used in the game.

Nash Equilibrium: A strategy combination b* is a Nash equilibrium iff
for all ¢ € N, Hy(b) = H;(b},b_;) for all ¥, € B;.

Next, we define a sequential equilibrium [6]. For this, we need the notion
of a system of beliefs and the notion of expected payoff of a player conditional
on being at an information set. A system of beliefs is a function p on X

satisfying: (a) p(z) € [0,1] forall z € X, and (b) > p(z) =1foralluel,
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An ordered pair (b, 1} where b is a strategy combination and 4 1s a system
of beliefs is called an assessment.

Given a strategy combination b = (by, ...,b,), a node 2 € X, and a player
i € N, the expected payoff of player i condztzonal on being at « is defined by

Hip(b) = 3 p(z | 2,b)hi(2) where Z, = {z € Z : & < 2} and p(z | z,b) is
2EZ,

the p1‘obab111ty of reaching endnode z when we are currently at node = and b
is being used in the continuation of the game. For an assessment (b, 1) and
an information set u where a personal player 7 moves, the ezpected payoff of
player ¢ conditional on being at u is denoted by Hiy(b, p) = Z p(z) Hig (b).

An assessment (b, 11) is sequentially rational ot information set u of personal
player % ift Hiu(b, p} 2 Hiu((b}, b-), u) for all b € B;. An assessment (b, 1)
is called sequentially rational iff (b, 11) is sequentially rational at each per-
sonal information set in {. An assessment (b, u) is consistent iff there is
a sequence of completely mixed?® strategy combinations {b* 1, satisfying

E_ plz, b )
both kll*r{.lo b* = b, and for each u € U and each z € u, u(z) = hm S A

Sequential Equilibrium: An assessment (b, 1) is a sequential equzizbmum
iff (b, pt) is sequentially rational and consistent.

We say that a strategy combination b supports a sequential equilibrium
iff there is a system of beliefs ;2 such that the assessment (b, 1) is a sequential
equilibrium.

Finally, we define a perfect equilibrium [11}. It is based on the notion of
a perturbed game. A perturbed game I'. = (I',¢) is a pair such that T'is a
finite extensive game and  is a function assigning a minimum probability
gc > 0 to each choice ¢ at each personal information set u, and e must satisfy

_the further restriction that for all personal information sets u, 3 . < 1.
‘ CECu

A behavior strategy b; € B; is permissible in the perturbed game T iff
at each u € U;, by(c) > g for each ¢ € C,, We let B;. denote the set
of permissible strategies of player ¢ in the perturbed game I';. A strategy
combination b = (by, ..., by) is a Nash equilibrium of the perturbed game '
" iff for all ¢ € N, H(b) > Hi(¥,,b_s) for all ¥, € By.

Perfect Equlhbnum A strategy combination b is a perfect equilibrium in
I iff there is a sequence of perturbed games {T'*}$2, of T, and a sequence
of strategy combinations {6*}$2; such that (i) for each k, b* is a Nash
equilibrium of the perturbed game I'*, and (i} I'* — P and b* — b as
k — co.

2A strategy combination b¥ = (b}, ...6%) is completely mixed if it assigns a strictly
positive probability to each personal information set in' the game. Since p completely
mixes over chance moves, every node in the game tree is reached with posntwe probability
under a completely mixed strategy combination.



3 N-player Games

Most, of the analysis in game theory is on games with perfect recall. The
perfect recall condition is interpreted as the condition under which each
player remembers “what he observed” and “what he did.” The precise con-
dition on the information partition of a player in an extensive game is as
follows.

Perfect recall: The information partition U; satisfies perfect recell iff for
all u,v € Uy, all @,y € v and all ¢ € Cy,v <. = implies v <, .

The following results, listed in Theorem 3.1, are well known. We state
them here just for comparison with the results we will give for games of
imperfect recall,

Theorem 3.1 Let I' be a game with perfect recall for each player.

(a) If (b, 1) is & sequential equilibrium, then b is a Nash equilibrium.

(b) If b is a perfect equilibrium, then (b, 1) is a sequential equilibrium for
some system of beliefs g '

(c) A perfect equilibrium b exists.

Without perfect recall, existence becomes problematic for each of the
equilibrium concepts considered in this paper. However, regarding the sub-
setting relationships, perhaps less is known. We get the following result
without the perfect recall assumption.

Theorem 3.2 If b is a perfect equilibrium, then b is a Nash equilibrinm.

Selten ([11], first Lemma 3) proved the result of Theorem 3.2 for a game
of perfect recall. However, none of the arguments in his proof use the perfect
recall assumption. Hence, Selten’s proof is for games of imperfect recall.?

Notice that no mention of sequential equilibrium is made in Theorem
3.2. This is not a mistake, it is because there is no clear subsetting relation-
ship between sequential equilibrium and the other concepts for a game of
imperfect recall. '

The game of Figure 1 has a perfect equilibrium that is not a sequential
equilibrium, and a sequential equilibrium that is not a Nash equilibrium.

The unique Nash equilibrium and perfect equilibrium is byy(c) = 1 and
b1 (R} = 1. However, this is not a sequential equilibrium. Sequential ratio-
nality at v requires by,(c) = 0 and by, (R) = 0 for any system of beliefs. This
alternative strategy combination when combined with the beliefs p(z') == 1,

3Incidentally, the results on subsetting of a “subgame perfect equilibrium” between
perfect and Nash equilibrium also hold for games of imperfect recall. The interested
reader is referred to Selten [11] for details on the solution concept called subgame perfect
equilibrium.



wz) = %, and u(y) = %—, forms the unique sequential equilibrium of this
game. The beliefs are obtained from any sequence of completely mixed
strategies converging to the sequential equilibrium strategy, for example,
the sequence defined by bf,(c) = ¢35 and b4,(R) = 7z for k=1,....,00.

One might wonder if any simple explanation can be given for our find-
ing that a sequential equilibrium might not be a Nash equilibrium. One
explanation is that sequential equilibrium is a concept of local optimality,
since it requires optimization at each information set, but not necessarily
for the whole game. On the other hand, both Nash equilibrium and perfect
equilibrium are global optimality concepts since they require optimization
over the whole game.

The distinction between local and global optimality can be related some-
what to one finding of Selten [11] regarding perfect equilibrium. He showed
that when the perfect recall condition is satisfied, the global optimality of
a perfect equilibrium can be obtained from the simultaneous satisfaction of
many local optimality conditions, one at each information set. The local
optimality conditions that suffice are optimality conditions for the “agent-
normal form game” of the original extensive game. Since every perfect
equilibrium is a Nash equilibrium (Theorem 3.1), these local optimality con-
ditions also suffice for the global optimality of a Nash equilibrium,

However, when we move to games of imperfect recall, these local optimal-
ity conditions might not be sufficient for the global optimality of a perfect
equilibrium or Nash equilibrium, as is shown in Kline ({3], Theorem 3.4).

The local optimality conditions of a sequential equilibrium are different
from the local optimality conditions defined by Selten [11] for the “agent
normal form game”. Nonetheless, the game of Figure 1 shows the insuffi-
clency of the local optimality conditions of a sequential equilibrium for the
global optimality of a Nash equilibrium in a game of imperfect recall,

4 One-player games

One-player games, or what are sometimes called decision problems, are sim-
pler in the sense that we do not have to consider the reasoning of many
players simultaneously. Thus, we might expect more results can be proved
in those games. Indeed that is the case. The main improvement is about
existence. '

Theorem 4.1 A perfect equilibrium exists in every one-player game.

 “We refer the reader to Selten (1975) for details on the agent normal form game: Basi-
cally, it is & game obtained from the original extensive game by attaching an independent
decision maker to each informatien set, and giving him control over only choices at that
information set, and assigning him the same payoffs as the player moving there in the
original game.



Selten [11] proved the existence of a perfect equilibrium in an n—player
game of perfect recall. Perfect recall was used to show the existence of a Nash
equilibrium in each perturbed game. In a one player game, we have existence
of a Nash equilibrium in every perturbed game with or without perfect recall.
Hence the above theorem holds. By this theorem, and Theorem 3.2, we
obtain the existence of a Nash equilibrium in every one-player game.

Figure 2

The existence of a sequential equilibrium, however, is not guaranteed in
a one-player game of imperfect recall. The one-player game of Figure 2 is
obtained from the game of Figure 1 by only changing the last payoff on the
right from 2 to 4. In this new one-player game, a sequential equilibrium does
not exist. At information set v, sequential rationality requires the player to
choose as he did in Figure 1, that is, b1y(c) = 0 and bj4{R) = 0 for any
beliefs, However, sequential rationality at u will now require him to choose
biu(R) = 1 for any beliefs that might be part of a sequential equilibrium in
this game. Hence, a sequential equilibrium does not exist.

The non-existence of a sequential equilibrium in this example can be
related to the non-existence of what Piccione and Rubinstein [10] called a
time-consistent strategy, They introduced this concept in a one-player game
as a potential solution when a player can update his strategy as he moves
through the game. Since we will compare this concept to a Nash equilibrium
in n—player games in the next section, we give an n—player generalization
of time-consistency here.

Time-Consistency: A strategy combination b = (by,...,8,) is time-consistent
iff for all 4 € N, if uw € U; and p(z,(b)) > 0 for some = € u, then
Hyu((b), 1) > Hi((V),0-4), ) for-all ¥, € B;, where p is any system of

beliefs that satisfies u(z) = % for all z € u,

vEu



Piccione and Rubinstein [10] noticed that for a one-player game of perfect
recall, the set of Nash equilibria and time-consistent strategies are equiva-
lent, They introduced the example of an “absent-minded” driver to show
that with imperfect recall, the set of Nash equilibria and time-consistent
strategies may be disjoint. Incidentally, the example they used was not
commonly time-structured. However, Battigalli [1] gave a commonly time-
structured example, and Kline ([4], Theorem 1) showed that this disjoint-
edness result occurs in a large class of commonly time-structured games.

The following result is that all sequential equilibria are time-consistent.
The converse need not hold, however, since time-consistency only restricts
behavior at information sets that are reached by the strategy combination
b, while a sequential equilibrium imposes restrictions at information sets
throughout the game tree.

Lemma 4.2 If (b, u) is a sequential equilibrium, then b is time-consistent.

Proof: Suppose that (b, 1) is a sequential equilibrium. Let u be an arbi-
trary information set of a personal player 2. Suppose that p(e,b) > 0 for

some x € u, Consistency of (b, x) implies that pu(z) = ~& ;'3 7+ Sequential
cu

¥
rationality of (b, u) implies that at w, Hz((b), #) = Hi((b},0-3), ) for all
b, € B;. Since u was chosen arbitrarily, b is time-consistent, 1

In the game of Figure 2, we cannot find a time-consistent strategy.
Time-consistency at v requires by,{c) = 0 and b1, (R) = 0. However, time-
consistency at u requires by, (R} = 1, and thus this game has no time-
consistent strategy. The non-existence of a time-consistent strategy in this
game implies the non-existence of a sequential equilibrium by Lemma 4.2
Kline ([4], Theorem 2) showed that the non-existence of a time-consistent
strategy in a one player game occurs in a large class of games with imperfect
recall, 'We return to this point and define this class of games in the next
section.

The example of Figure 2 highlights another, perhaps unexpected, feature
of a sequential equilibrium. The feature is that a player considering the
sequential rationality of his strategy at an information set, does not consider
the implications of sequential rationality at his future information sets.

In the game of Figure 2, the player considering the sequential rationality
of a strategy combination at v, does not consider the implications of sequen-
tial rationality at his future information set u. Sequential rationality at v
requires the player to choose byy(d) == 1 and b1,(L) = 1 for any beliefs. This
calculation ignores the fact that sequential rationality in the future, specifi-
cally at u, will require b1, (L) = 0. If the player took sequential rationality
at the future information set u into account, then he would clearly choose
biy(c) = 1 to maximize his conditional expected payoff at v.

This same feature is shared by the concept of a time-consistent strat-



egy. When I originally read Piccione and Rubinstein’s [10] paper on time-
consistency, I was under the impression that it incorporated the basic prin-
ciples of backward induction and what is commonly regarded informally as
“time-consistency”.

In fact, in [4], I wrote that under the time-consistency view: “the player
starts with a strategy, but each time his information set is reached he will
decide whether or not to change the strategy. If he changes his strategy, then
when he reaches a future information set he will consult the updated strategy
and decide whether to make further changes.” While I still helieve that this
is an accurate interpretation of the “time-consistency” view, it appears that
this view is at odds with the concept of a time-consistent strategy {10] and
the concept of a sequential equilibrium [6] as they are currently defined in the
game theory literature. A player using either of these solution concepts does
not take into account the fact that he optimizes at his future information
sets.

Kline [4] showed by the same type of example as the one given in Figure 2
here, that the concept of a sequential equilibrium may not capture backward
induction reasoning in a game of imperfect recall. On the other hand, a class
of games including some region of imperfect recall for which the concept of
sequential equilibrium does capture backward induction reasoning was also
given in Kline ([4], Thearem 5.1).

5 Extending Results

In this section we show that the standard subsetting results of perfect equi-.
librium, subgame perfect equilibrium, and Nash equilibrium for n—player
games can be extended to some region of imperfect recall.

We start with a condition on memory known as a-loss recall which was
introduced by Kaneko and Kline [2] as a necessary and sufficient condition
for mixed strategies® to fully compensate for a player’s forgetfulness, This
condition allows a player to forget things he did and learned,

A-loss Recall The information partition U; satisfies a-loss recall iff for all
u,v € Uy, all x,y € u, and all ¢ € C,, if v <, z, then either: (1) v <,y or
(2) there exists w € U; and distinct d, e € Cy, satisfying w <z z and w <. ¥.

The games of Figures 1 and 2 do not satisfy a-loss recall. The game
of Figure 3 satisfles a-loss recall. It differs from the game of Figure 2 only
because the chance move has been put under the control of player 1 and

"Mixed strategies differ from the behavior strategies used in the current paper, One
difference is that the condition of a-loss recall does not guarantee that behavior strategies
fully compensate for a player's forgetfulness,

10



renamed w with choices a and 5.8 In this game, the player still cannot recall
at time T" = 3 if he moved at time T = 2. However, in the current game, he
also does not recall “what he did” at time T' =1,

Figure 3 |

The next result is that a-loss recall is a sufficient condition for every
sequential equilibrium to be a Nash equilibrium.

Theorem 5.1 Let I' be a game with a-loss recall for each player. If (b, ,u).
is a sequential equilibrium, then b is a Nash equilibrium.

This theorem is proved by the combination of Lemma 4.2 and a result
of Kline ([4], Theorem 1), that for every one-player game with a-loss recall,
the set of ez ante optimal strategies and time-consistent strategies coincide.
The generalization of ex ante optimal strategy to an n—player game results
in a Nash equilibrium. We state the n-player game version of Kline’s result
in Lemma 5.2, Tt is proved by applying the result of Kline {{4], Theorem 1)
to each personal player.

Lemma 5.2 Let I be a game with a-loss recall for each player, The follow-
ing two statements are equivalent,

(a) b is a Nash equilibrium,

(b} b is time-consistent.

The reader can now verify that Theorem 5.1 follows immediately from
Lemma 4.2 and Lemma 5.2

We might try to extend the result that every perfect equilibrium is a
sequential equilibrium to games with a-loss recall. The game of Figure 3,
shows that we cannot go this far, The only perfect equilibrium in this game

SKwvery one-player commonly time-structured game without chance moves satisfies a-
loss recall.

11



is b1w(h) = 1, biy{e) = 1, and b,(R) = 1. This is not supported by a
sequential equilibrium, however, since it is not sequentially rational at v.
This is, however, a time-consistent strategy since v is not reached by the
strategy, and thus thine-consistency has no restriction there,

As was mentioned earlier in Section 4, Kline [4] showed that the non-
existence of a time-consistent strategy in a one player game occurs in a
large class of games with imperfect recall. Specifically, Kline ([4], Theorem
2) showed that for every one player game I' that does not satisfy a-loss recall,
there is another game TV that differs from I' at most in terms of the payoffs,
and I does not have a time-consistent strategy. In the other direction, the
existence of a time-consistent strategy in every one player game with a-loss
recall was also shown by Kline([4], Theorem 2).

We find now, by the game of Figure 3, that the non-existence of a se-
quential equilibrium in a one player game is, in fact, a more serious problem
then the non-cxistence of a time consistent strategy.

We can extend the result on subsetting between perfect equilibrium and
sequential equilibrium to games that satisfy a stronger condition on memory
than a-loss recall, known as occurrence memory.

Occurrence Memory: The information partition U; of a player 1 satisfies
occurrence memory iff for all v,v € U, and all z,y € u, if v < x then v < 7.

This condition is due to Okada [9] and is interpreted as requiring a
player to recall everything he observed, though he might forget what he did.
A player with a-loss recall, on the other hand, may forget both things he
observed, and things he did. Every player with perfect recall has occurrence
memory, and every player with occurrence memory has a-loss recall ([4],
Lemma 4).

Figure 4

The game of Tigure 4 with Uy = {w, v} is a simple example of a player
with imperfect recall who has occurrence memory, All the other Figures
given in the paper involve players who have imperfect recall, but do not
have occurrence memory. In the example of Figure 4, the player ab time
T = 2 forgets only “what he did" at time 7" = 1.

12



Theorem 5.3 Let I be a game with occurrence memory for each player.
(a} If (b, u} is a sequential equilibrium, then b is a Nash equilibrium.

(b) If b is a perfect equilibrium, then (b, i) is a sequential equilibrium for
some system of beliefs .

Since every player with occurrence memory satisfies a-loss recall, we
obtain part (a) of Theorem 5.3 from Theorem 5.1. We prove part (b).

Proof of Theorem 5.3 (b): Suppose that b is a perfect equilibrium.
There exists & sequence of perturbed games {T¥}, of T, and a sequence
of strategy combinations {b*}$2, such that (i) for each k, U* is a Nash
equilibrium of the perturbed game I'*, and (ii) T%* — T and 0% — b as
k - oo,

For each z € X, define the beliefs pu(z) = Jim % Then (b, 1) is

consistent, It suffices to show (b, ) is sequentlally ratlona.l
Let w be an arbitrary information set of personal player 7. For any
perturbed game k, since b* is a Nash equilibrium in T'*, it follows that:

H(b®) > H;(b:, 0%, for all i € BE. (5.1)

Here, B¥ denotes the set of permissible strategies of player ¢ in I'*. If we
let Z_y = {2 € Z : u 4 z}, then we can rewrite (5.1) as follows:

Z p(z,bk)hi(z) + Zp(y’bk)ﬂiy(bk) >

ZEZ—u 'ye'u-

Z p(z,(b;,bk +Zp(yr bl bk iy(béﬁblf«i%

2674 yéu

for all b; € B, (5.2)

Consider any strategy b} € BF that coincides with b} everywhere except
possibly at » and on S(u) = {v € U; : u < v}. Let B¥(x, S(u)) denote
the set of all such strategies. By occurrence memory, it follows that for any

€ BF(u,S(u)), we have 3 p(z, (0,05 Vhi(2) = 3 p(z,b¥)hi(2), and
zeZ_, €7 .y

p(y, (¥, b%,) = p(y,bk) for all y € u. By this we obtain from (5.2) that:

> p(y, 0F) Hyy (0F) >§:p(y, bk)H,y(b' be,) for all b; € BF(u, S(w)). (5.3)

yer yeu

13



Now if we define u(z,b¥) = —p-(-m—'f—zk— at each ¢ € w», and use the fact
vE

2 Pyb*)
that 3" p(y,0%) > 0 since this is a perturbed game, then we find that (5.3)
yeu

is equivalent to:

> el V) Hiy (0F) = 5™ pufw, ) Hiy (B, 05 for all B € Bf(u, S(u)). (5.4)
yeu yEu
Now take the limit as & — 0o to obtain from (5.4) by continuity of the
payoff functions and continuity of u that:

> @} Hiy (8) = 3 () Hiy (0, bs) for all 0} € By(u, S(u)) (5.5)
yeU ey
Observe that for any node y € u, Hy, (b}, b-;) = Hiy(b,b_;) for any two
strategies b; and b that agree at both u and everywhere on S(u). Hence,
from (5.5) we obtain:

> (@) Hiy () 2 S () Hiy (b, _5) for all b} € B, (5.6)

yeu yEU

Since » was chosen arbitrarily, (b, 1) is sequentially rational. [J

By Theorem 5.2 (b) and the perfect equilibrium existence result of The-
orem 4.1 we obtain existence of a sequential equilibrium for every one-player
game with occurrence memory. This is stated as the following corollary.

Corollary 5.4 Let I’ be a one-player game with occurrence memory. A
sequential equilibrium exists.

6 Conclusions

We discussed some of the implications of imperfect recall for subsetting and
existence results over various solution concepts. Perhaps the most interest-
ing findings had to do with the concept of a sequential equilibrium. We
showed that in a game without perfect recall, a perfect equilibrium may not
be a sequential equilibrium, and a sequential equilibrium may not be a Nash
equilibrium. Existence of a sequentlal equilibrium is problematic even in a
one-player game.

These findings were used to point out two perhaps unexpected features .
of a sequential equilibrium. First, unlike Nash equilibrium and perfect equi-
librium, sequential equilibrium is not a “global optimality” concept, but
rather a series of “local optimality” conditions. Second, sequential equilib-
rium does not require a player at an information set to take into account
that he will optimize at future information sets. This second feature leads
to existence problems in games of imperfect recall.
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