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Abstract

Landmarks in an urban area, such as castles, isolated towers, tall buildings, great
hills and tall trees, are accents of turning point in a landscape. On the other hand, steel
construction and elevators have pushed buildings higher, so the views of the landmarks
have been obstructed by the buildings. This paper develops a simple analytical model
to examine how buildings height and density affect the area from which the landmark
is visible. The functional form of the probability of visibility from viewpoints will be
derived where the distance between the successive buildings is represented by a renewal
process.
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1. Introduction

Landmarks in an urban area, such as castles, isolated towers, tall buildings, great hills and tall

trees, are accents of turning point in a landscape. Typically, they are seen from many angles

and distances, over the tops of short buildings. They are identified by their contrast in size,

form, color, texture, function, or content of symbolism of sentiment with their surroundings.

Researches on both psychology and geography, for example, Cohen and Schuepfer (1980),

Allen, Kirasic, Siegel, and Herman (1979) have demonstrated that landmarks are visual

configurations for course-maintaining aids. In addition, there is a tendency for those who

are more familiar with an urban area to rely increasingly on systems of landmarks for their

guidance. So, the landmarks can be thought as features of community or regional landscapes,

as discussed in the famous book by Lynch(1960).

As pointed out by Felleman(1986), Landscape Institute et al.(2002), visibility studies

play an important role in landscape analyses. In particular, Felleman(1986), Aguiló and

Iglesias(1995) asserted that the landscape has to be evaluated based on the visibility from

observers on the surface of the terrain rather than form above. In order to identify the

area from which the landmark is visible, we have to specify the objects which block the

sightlines to the landmark through cross-section maps. Aguiló and Iglesias(1995) discussed

systematical calculation methods to detect the area visible from a fixed viewpoint, taking

account of topographical conditions such as an uneven plane. Recent remarkable progress

in computer graphics techniques enables us to define the area more easily by using standard

GIS packages: see Jones(1997), Hanna(1999), Landscape Institute et al.(2002).

On the other hand, steel construction and elevators have pushed buildings higher. Mod-

ern architects have frequently ignored the relationship between the buildings and the existing

landmarks. This is because the building height and building density usually are determined

upon the necessity to preserve adequate interior space. Tall buildings and high building den-

sity block the views to landmarks. Thus, the tremendous burden of building bulk occupying

the urban area has contributed to not only the congestion of people and traffic but also the

disappearances of landmarks. Controlling the building height and density will be necessary

for aesthetic considerations. Zoning regulates the land use to be administered in the public

interest by protecting the interests of each individual who invests in the urban community.

The zoning regulates building setbacks from property lines, volume envelope, sloping planes

from street lines, maximum height, lot coverage and so on. Thus the zoning has a profound
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effect on building height and density. To preserve the views to the landmark, an appropriate

zoning ordinance on building height and density must be established.

Of course, computer mappings of visibility are one of helpful means, but generated results

directly depend on individual study areas. Hence, it seems to be difficult to capture general

characterization finding from the results. Contrary to these studies, we set up an analytical

model in order to get some of the central features of the interaction between building controls

and the visibility of a landmark. This paper formulates a probability model in a cross-

section to investigate how location of viewpoints, building height and density and building

distribution affect the visibility from surrounding area. From physical considerations, it may

be reasonable to consider the location of buildings as random variables. We utilize renewal

process to express these locations. To restrict the number of possibilities that need to be

considered, we assume that all buildings within a zone have the same building height, and

they are distributed according to the same density on a flat region.

First, we demonstrate how the visibility from viewpoints changes according to their dis-

tance from the landmark. Although, of course, the perceptible size of the landmark becomes

smaller farther from the landmark, we concentrate on the simple question whether the land-

mark is visible or not. Second, we examine the impacts of the building height and density on

the visibility. Information about the sensitivity of building height and building density are

useful because relaxing a restriction of the building height and density may not be critical if

the change in the visibility is minor. Alternatively, it may be beneficial to impose the exist-

ing requirements of the building height and density if the visibility will decrease significantly.

Finally, most real-world building-distributions look as though they have been produced by

a process which has either deterministic or probabilistic components. We examine the vis-

ibility of random building-distribution and that of regular one to recognize the impact of

building-distributions.

The rest of this paper is organized as follows. The next section sets up our models under

renewal process, and then carries out the sensitivity analyses against the building height and

density. Section 3 considers the visibility under random distribution of buildings and that

under their regular distribution. Conclusions are drawn in Section 4.
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2. Model

2.1. Probability of visibility

Consider a cross-section with a perfectly even surface, which is divided into n zones, as

illustrated in Figure 1. We place a toll structure with height l at an origin, and measure the

distance from the structure along the horizontal axis to the right. The vertical axis measures

the height from the surface. We assume that the landmark is idealized as a point and it is

located at the top of the structure. This is indicated by a circle in the figure. Let bi be the

position of the boundary between the i-th and (i + 1)-th zones. For notational purposes,

b0 = 0. Different building height and density may be imposed on each zone. Within the i-th

zone, the building height and density are fixed at hi(≥ 0) and λi(≥ 0).

We are interested in how the probability of visibility from viewpoints with height v, to

the landmark varies with their positions, when buildings are probabilistically distributed over

the study area. Whether or not the landmark from each viewpoint is visible depends on the

height and position of buildings, the height and position of the viewpoint, and the landmark

height. However, the basic concept is that the landmark is visible from the viewpoint if and

only if the straight line from the viewpoint towards the landmark does not intersect any

building, as pointed out by Alonso et al.(1986), Felleman(1986), Jones(1997).

The analysis will be limited to the case of v ≤ hi ≤ l for any i, as shown in Figure 2.

Define the ratio of the two heights αi by αi ≡ l−hi
l−v , so we have 0 ≤ αi ≤ 1. When a building

exists between αir and r, it blocks view from the site at r to the landmark. Thus, if the

building location is confined to the i-th zone, the landmark is visible from the site at r if and

only if there exists no buildings along the interval between max{bi−1, αir} and min{bi, r}.
This is illustrated in Figure 2, where both axes measure the same with Figure 1. The length

of the interval, denoted as Ii(r), can be expressed as

Ii(r) ≡
{

min{bi, r} − max{bi−1, αir} for bi−1 ≤ r < bi
αi

;
0 otherwise.

(1)

Figure 3 shows the graph of min{bi, r} and that of max{bi−1, αir} by the broken and dot-dash

lines, respectively. As is evident on referring to this figure, Ii(r) is concave, piecewise linear

and continuous with respect to r. Also, Ii(r) with respect to r is maximized at r = bi.

Let Xj be the random variable which indicates the position of the j-th building. Hence,

its density is given by λi. We assume that these buildings are identically and independently

distributed each other. For convenience, we assume that Xj ≤ Xj+1, (j = 1, · · ·). The

random variable Yj is defined by Yj ≡ Xj+1 −Xj , so E[Y ] ≡ 1
λi

. Let fY (y) be its probability
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density function. Since Xj’s are identically distributed and are mutually independent, Yj’s

are according to renewal process. The random variable Z is defined by the distance between

the random point and its nearest building in the direction of the origin. By invoking the

renewal process, the probability density function of Z can be represented as follows:

gZ(z) = λi (1 − FY (z)) ,

where FY (x) is the cumulative distribution of Y . The development of gZ(z) is given in

Larson and Odoni(1981), Ross(1985). It should be noted that the building density λi is a

scale parameter. Accordingly, Xj

λi
is independent of λi, so do Yj

λi
and Z

λi
.

Let p(r) be such probability from viewpoint located at r. In order to obtain p(r), we

begin to derive the probability of visibility cutted off only by the buildings along the i-th

zone, denoted as pi(r). Note that if either λj = 0 or hj = v for all j with j �= i, then

p(r) = pi(r). Hence pi(r) can be regarded as the probability of visibility for a simplest city

with only one zone where the building is higher than the viewpoint. Since the landmark is

visible from r is identical that no buildings exist along the interval with its length Ii(r), pi(r)

can be expressed as follows:

pi(r) = 1 − λi

∫ Ii(r)

0
1 − FY (u)du. (2)

This expression is intuitively reasonable because only the open space in front of the viewpoint

towards the landmark matters for its visibility. Since pi(r) is a decreasing function with

respect to Ii(r), pi(r) is also concave and continuous with respect to r. In addition, since

Ii(r) is maximized at r = bi, the visibility from r = bi is the worst. Furthermore, the buildings

within a zone cut off the visibility from its outer neighbors. Accordingly, we can characterize

the probability of visibility pi(r) in terms of viewers’ position as follows:

Property 1 Starting from r = bi−1, pi(r) gradually decreases to a minimum at r = bi, and

then gradually increases until r = bi
αi

with r.

This property means that the visibility due to the i-th zone pi(r) takes smaller values near

the outer boundary of the i-th zone.

Then we extend to the plural number of zones. Since pi(r) and pj(r) with i �= j are

probabilistically independent, we have

p(r) = Πn
i=1pi(r). (3)
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2.2. Building Regulation and Visibility

We have assumed that both the building height hi and the building density λi are given.

However, for many regulations which may be a balance between building bulk and exterior

space required for the evolution of an urban landscape, hi and λi vary over time, according

to social values in the corresponding era. We examine whose views will be affected by raising

either hi or λi, as in Blair(1986). Different from Blair(1986), we pursue the analytical finding.

We evaluate the partial derivatives of pi(r) with respect to hi and λi, which provide useful

quantitative information about its sensitivity against the building height and density, all

other things being equal. Their numerically larger absolute values imply that pi(r) is more

responsive to changes in the building height and density.

First, let us examine the effect of the building height hi on pi(r). Taking the partial

derivative of pi(r) with respect to hi gives

∂pi(r)
∂hi

= −λi (1 − FY (Ii(r)))
∂Ii(r)
∂hi

.

It follows from (1) that

∂Ii(r)
∂hi

=
{

1
l−v r for bi−1

αi
≤ r < bi

αi
;

0 otherwise.

Hence, we have

∂pi(r)
∂hi

=
{

γi
l−vr (1 − FY (Ii(r))) for bi−1

αi
≤ r < bi

αi
;

0 otherwise.

Since 1−FY (Ii(r)) is non-decreasing for bi ≤ r ≤ bi
αi

, the minimum location of ∂pi(r)
∂hi

subject

to bi ≤ r < bi
αi

is given by r = bi
αi

. The value of ∂pi(r)
∂hi

evaluated at r = bi
αi

is given by − λi
l−v

bi
αi

.

On the other hand, for bi−1

αi
≤ r ≤ bi,

∂pi(r)
∂hi

≥ − λi
l−vr ≥ − λi

l−v bi, where the first inequality

holds since 1−FY (Ii(r)) ≤ 1 and the last inequality holds since r ≤ bi. Comparing these two

results indicates that ∂pi(r)
∂hi

is minimized at r = bi
αi

. Thus, we have

Property 2 1) ∂pi(r)
∂hi

< 0 for bi−1

αi
≤ r ≤ bi

αi
; 2) ∂pi(r)

∂hi
is minimized at r = bi

αi
.

The first claim of this proposition states that raising building height of a zone cannot harm

the visibility from the interval [bi−1,
bi
αi

], i.e., the left-hand part of its zone anymore. An

intuitive explanation for this result is that the visibility there depends on whether or not

at least one building is located in front of them, no matter how high these buildings are.
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The second claim means that the most sensitive viewpoint against the building height is bi
αi

.

An underlying mechanism of this result is as follows. Raising building height makes some

buildings newly block the view from a fixed viewpoints. For a sufficiently small increment ε,

the length of the interval where such buildings are located is given by ε
l−vr, that is, the length

is in perfectly proportion to the distance of the viewpoint from the landmark. Therefore, the

most sensitive viewpoint is situated at the outer boundary.

Next, let us inspect the effect of the building density λi on pi(r). Taking the partial

derivative of pi(r) with respect to λi, while using that λi is a scale parameter, gives

∂pi(r)
∂λi

= −Ii(r) (1 − FY (Ii(r))) .

This indicates that ∂pi(r)
∂λi

can be regarded as a function with respect to Ii(r). Since Ii(r)

is continuous and convex, ∂pi(r)
∂λi

has either a unique or two global minimum location(s).

Note that Ii(r) is independent of λi. If λi ≈ 0, then 1 − FY (Ii(r)) ≈ 1 for any r, so the

minimum location of ∂pi(r)
∂λi

will coincide with the maximum location of Ii(r), i.e., r = bi. As

λi is increased, 1 − FY (Ii(r)) will more contribute to the derivative ∂pi(r)
∂λi

than Ii(r). This

indicates that two minimum locations of ∂pi(r)
∂λi

originating from bi, will move towards bi−1

and bi
α which both maximize 1 − FY (Ii(r)), respectively.

Property 3 1) ∂pi(r)
∂λi

< 0 for bi−1 ≤ r ≤ bi
αi

; 2) for small λi,
∂pi(r)
∂λi

is minimized at r = bi. As

λi is increased, its two global minima move from r = bi to r = bi−1 and r = bi
αi

, respectively.

The first claim of this proposition implies that raising the building density will harm the visi-

bility from the whole of the zone. The second claim states that the most sensitive viewpoints

move from bi towards the opposite directions. To interpret the second claim, we consider

two extreme cases. When λi is very small such that buildings rarely exists, the number of

building in front of any viewer are almost zero. As a result, the impact of a small increment

in the building density on its visibility is approximately proportional to the length of the

open space necessary for visibility in the direction of the landmark, i.e., Ii(r). On the other

hand, when λi is very large such that buildings are crowed, the landmark is invisible from

almost all viewpoints. So constructing a new building does not affect visibility, except for the

viewpoints where have smallest open space necessary for visibility, i.e., the inner end of the

zone r = bi−1 and the farthest affected position r = bi
αi

. Combining these two extreme cases

indicates that as λi is increased, the most sensitive viewpoints against the building density

move from the location maximizing Ii(r) towards the one minimizing Ii(r).
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Comparing Properties 2 with 3 indicates that an increment in building density and height

causes different influence on the visibility of the landmark, even though increasing the building

density and height both harm such visibility. This finding does not seem to be in accord with

intuition. In addition, the visibility from the vicinity of bi
αi

is most sensitive to building

height. This indicates that loosening a limitation on building height may be critical in the

neighborhood of bi
αi

. Moreover, for small building density, raising the building density has

the greatest influence on bi, so loosening a limitation on building density may be critical

near bi. On the other hand, for large building density, two most sensitive locations against

building density exist such that bi is between them. As the building density is increased,

both locations move farther away from bi.

3. Examples

3.1. Random Distribution

As long as the renewal process of building distribution is maintained, no clear conclusions can

be derived. In fact, it is very difficult to get analytical expressions for p(r). Hence, we consider

two extreme cases: (1) random building-distribution; (2) regular building-distribution. In the

former, there are buildings scattered at random in each zone with its density λi. In the latter,

the buildings in each zone are distributed perfect regularly having rate λi. Thus, although

the former is produced by a purely probabilistic process, the latter is perfectly ordered in a

way such that the building locations are completely dependent upon one another.

For the random distribution, all buildings in the i-th zone are distributed in accordance

with a Poisson process having rate λi(> 0). Accordingly, the distance between successive

buildings is independent exponential random variable with its mean 1
λi

: see Ross(1985).

Hence,

FRAN
Y (y) = 1 − exp(−λiy), (0 ≤ y).

Going now back to (2) and (3) yields the probability in the random distribution pRAN (r)

pRAN (r) = Πn
i=1

(
1 − λi

∫ Ii(r)

0
exp(−λiu)du

)
,

= Πn
i=1 exp(−λiIi(r)),

= exp(−
n∑

i=1

λiIi(r)), (0 ≤ r). (4)

Since Ii(r) is continuous for r ≥ 0, pRAN (r) is also continuous for r ≥ 0.
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3.2. Regular Distribution

For the regular distribution, the distance between successive buildings in the i-th zone is

always 1
λi

apart. As a result, the cumulative distribution function of the distance between

successive buildings, dented as FREG
Y (y), is given by

FREG
Y (y) =

{
0, for 0 ≤ y ≤ 1

λi
;

1, for 1
λi

< y.

Using (2) and (3), the probability in the regular distribution pREG(r) is expressed as

pREG(r) = Πn
i=1

(
1 − λi

∫ min{Ii(r),
1
λi

}

0
du

)
,

= Πn
i=1 max{1 − λiIi(r), 0}, (0 ≤ r). (5)

Since Ii(r) is continuous and piecewise linear for r ≥ 0, pREG(r) is also continuous and

piecewise linear for r ≥ 0. Since 1 − λiIi(r) ≤ exp(−λiIi(r)) for any r(≥ 0), making a

comparison (4) with (5) yields

Property 4 pREG(r) ≤ pRAN (r) for any location r(≥ 0).

Thus, for fixed building height hi’s and densities λi’s, the visibility in the regular distribution

is always worse than that in the random one from any viewpoint. This result is hardly

surprising. Since the average distance from a viewpoint to its nearest building in the direction

of the landmark in the regular distribution is always smaller than that in the random one.

3.3. Monocentric City

In order to understand the extent to which visibility is affected by the layout of building

regulation, we consider a monocentric city which is the simplest theoretical model in urban

economics. The city is divided into three zones by their boundaries b1 = 100(m), b2 = 200(m)

and b3 = 300(m). Thus, the city is envisaged as a central business district of radius b1 where

is surrounded with a circular high-rise residential area of radius b2, and a circular low-rise

residential area. The height and density of buildings of these three zones are restricted

as follows: h1 = 15(m), h2 = 10(m), h3 = 5(m), λ1 = 0.02(1/m), λ2 = 0.01(1/m) and

λ3 = 0.005(1/m). Hence, the regulation on building height and density of monocentric city

is more tighten with the distance from the CBD, as most real-world cities. A landmark

with height l = 30(m) is located on the center of the CBD. We evaluate the probability of

visibility from the viewpoint with its height v = 1.5(m) and location r, when all buildings

are distributed either randomly or regularly.
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The probabilities of visibility pRAN (r) and pREG(r) can be represented by the solid and

dotted curves in Figure 4, respectively. On the basis of the examples, we can show some

distinct characteristics of the visibility of a landmark located at the CBD. First, roughly

speaking, in the monocentric city, both probabilities pRAN (r) and pREG(r) have U-shaped

structures. Second, these probabilities have local minima near bi’s and local maxima in the

neighborhood of bi
αi

’s, . Thus, we see that the visibility is the worst near bi’s. Of course, this

is consistent with Property 1. Finally, comparing the solid curve with dotted curve indicates

that the graph of pRAN (r) is always above that of pREG(r), which coincides with Property 4.

In order to confirm Properties 1 and 2, the probabilities p2(r)’s for the random distribution

are graphically depicted in Figure 5. Five types of graphs are constructed, corresponding to

five values of the building height h2 (h2 = 5, 7.5, 10, 12.5, 15(m)). Similarly, in order to

confirm Properties 1 and 3, p2(r)’s for the random distribution corresponding to five building

densities λ2 (λ2 = 0.005, 0.075, 0.01, 0.015, 0.02, (1/m)) are graphically depicted in Figure 6.

Clearly, these numerical results agree with Properties 1, 2 and 3.

4. Concluding Remarks

In this paper, visibility is defined with respect to the landmark where stands out from its

surroundings visually. Although our discussion was presented in the context of an analytical

framework, our findings seem to be useful in characterizing the interaction between the vis-

ibility of a the landmark and building regulations at the conceptual level. First, we showed

that the probability of visibility has U-shaped structures, and the visibility of the landmark

is the worst when the observer is located at the outer end of zones. Second, we demonstrated

that the impact of building height on the visibility is rather different from that of building

density. Finally, we proved that the visibility under the random building-distribution is bet-

ter than that under regular building-distribution. Note that the landmark is visible from

a viewpoint if and only if the viewpoint also is visible from the landmark. Therefore, our

findings are applicable to the visibility from observation platforms to cities.
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