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Abstract

This paper considers a bicriteria model to locate a semi-obnoxious facility within a convex
polygon, while employing Euclidean push and pull covering criteria. The partial covering
context is introduced into an ordinary bicriteria location framework. Although both objectives
are neither concave nor convex, low complexity polynomial algorithms to find the efficient
solutions and the tradeoffs involved are developed with the help of higher-order Voronoi
diagrams. Comparing the tradeoff for the full covering with the others enable decision makers
to understand what to extent the maximin and minimax criteria are improved at the expense
of uncovering. This is illustrated via numerical examples.

Keywords: partial covering; efficient location; tradeoff curve; higher-order Voronoi diagram;
semi-obnoxious facility

1 Introduction

For the last decade, the need for the location of semi-obnoxious facilities such as sewage treatment
plants, landfills, waste incineration plants, airports and cemeteries, i.e., incorporating both attrac-
tive and noxious aspects has been acknowledged in the literature. This need is particularly acute
today because emphasis shifts from seeking for the social welfare to evaluating the individuals’
environment. Indeed, one of the most difficult tasks faced by governments today is to impose
semi-obnoxious facilities on unwilling inhabitants. These facilities are by consensus necessary for
development and growth due to their positive external effects. However, they also burden the local
communities where they are located with negative external effects: see Lesbirel (1998), Quah and
Tan (2002). These facilities are also called NIMBY (not-in-my-backyard) facilities. Such positive
and negative external effects can be regarded as pulling and pushing forces. These push and pull
forces conflict of course, no single location can be optimal for both measures using each force.
Accordingly, a bicriteria approach has to be adopted in decision-making for the location of such
facilities, as advocated by Carrizosa and Plastria (1999).

In general maximin and minimax criteria have often been used to formulate such pushing and
pulling forces. In such models, only extreme distances determine the objective functions’ values.
This means that a small minority may affect the objective functions in similar way as a large
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majority. Hence, in siting semi-obnoxious facilities, many types of negotiation and compensation
through the transfer of benefits from host populations to a minority have been done in the form
of monetary or non-monetary means. For example, the governments have either: 1) often reset-
tled some inhabitants; 2) bought off intense opposition; 3) set up more facilities such as parks,
swimming pools, landscaping and clinics in the neighborhood of the semi-obnoxious facilities;
4) improved roads, schools, and public facilities; or 5) protected their property values for the
neighbors. On the other hand, many governments today face severe financial problems.

It often seems to be difficult to provide the same service to all inhabitants equally. So some
inhabitants far from the facility have been served in different manners such as alternative facilities,
or they have obtained subsidies and tax rebates in compensation for the local unavailability of the
facility. Thus, real-world location problems may require to take account of only part of the inhab-
itants. Therefore, rather than full covering formulations which have extensively been introduced
in past works, their partial-covering version may be more appropriate for semi-obnoxious facility
location. The aim of this paper is to present a polynomial-time algorithm for analytically tracing
out the efficient solutions and the tradeoffs within push-pull partial covering context.

Our model is related to several works pertaining to a partial-covering point of view. Brimberg
and ReVelle (1999), Carrizosa and Plastria (1998), Daskin and Owen (1999) allowed unserved
inhabitants to locate purely desirable facilities. In Daskin and Owen (1999), such location models
are called partial location problems. Inversely, Drezner and Wesolowsky (1994), Muñoz-Pérez and
Saameño-Rodŕıguez (1999), Plastria and Carrizosa (1999) allowed some inhabitants to stay in
the neighborhood of purely undesirable facilities to be constructed. To date, these existing works
considered the two aspects separately, either inhabitants attracting the facility or inhabitants
repelling the facility. Independent consideration of these two aspects may result in inefficient
outcomes.

In contrast with these works, our analysis deals with semi-obnoxious facilities which attract
and repel the inhabitants at the same time. Hence, we have to consider simultaneously two types
of negotiation in order to lessen opposition by affected minority groups. The first negotiation is
used to move out some affected inhabitants who oppose locating a facility in their neighborhood.
The second negotiation is used to withhold the service of the facility from some inhabitants. Thus,
our formulation attaches great importance to the major group, while it may not necessarily take a
serious view of some minor groups, so we hope it is more suitable for real semi-obnoxious facility
location decisions than the standard framework.

From the algorithmic point of view, our methodology generalizes the one by Ohsawa (2000)
and that by Ohsawa and Tamura (2003). Ohsawa (2000) gave a polynomial algorithm to compute
the efficient location and the tradeoff involved for a semi-obnoxious facility in which maximin
and minimax Euclidean distances are simultaneously used as push and pull objectives. Ohsawa
and Tamura (2003) provided a polynomial algorithm for its rectangular distance version. We
obtain the efficient locations associated with the push-pull partial covering bicriteria problems by
extending these two algorithms via higher-order Voronoi diagrams, which include the standard
and the farthest-point Voronoi diagrams as special cases.

The remainder of this paper is organized as follows. Section 2 characterizes geometrically the
solutions of partial anti-center and center problems. Section 3 shows the theoretical findings on the
bicritria model generated by these two partial problems. Section 4 takes up our sample problem
to better recognize the impacts of partial covering. Section 5 contains our conclusions.

2 Single-Objective Models

2.1 Formulations

Given a convex polygon Ω on a Euclidean plane where a facility can be built. Let ∂Ω be its
boundary, and |∂Ω| be the number of straight-line segments forming it. Let I and {p1, · · · ,p|I|}
be the index and location sets of the affected inhabitants on the plane, respectively. In what
follows, the index set I is used interchangeably with the location set {p1, · · · ,p|I|}. To avoid the
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technicalities of degenerate cases, we assume that |I| ≥ 2, and pi’s are in general position.
In the partial anti-center location problem, which is equivalent to the maxquantile location

problem in Plastria and Carrizosa (1999), in order to mitigate opposition to locating a facility to
be constructed, an exogenously specified number n− of inhabitants in the neighborhood of the
facility will be resettled farther from the facility, and it may therefore be considered that their
current location will be neglected. The problem then consists of finding the point within Ω which
maximizes the nearest distance from the facility to |I| − n− inhabitants. Hence, this is defined by

max
x∈Ω

(
Fn−(x) ≡ max

J−⊆I,|J−|=|I|−n−

(
min
u∈J−

‖x− pu‖
))

. (1)

Thus, the objective function Fn−(x) stands for the (n− + 1)-th nearest distance from x to the
original set I. This problem seeks for the center of the largest open circular disk enclosing n−

inhabitants. We denote its solution by a∗n− . It should be noted that n− = 0 means empty cover,
or the traditional maximin problem. Our formulation is also a special case of obnoxious facility
location in Muñoz-Pérez and Saameño-Rodŕıguez (1999).

In the partial center location problem, which is equivalent to the minquantile location problem
in Carrizosa and Plastria (1998), in order to reduce the covering distance, an exogenously specified
number n+ of inhabitants far from the facility will remain unserved. The problem is to determine
a point within Ω in such a way that the farthest distance from the facility to |I| − n+ inhabitants
is minimized. Its mathematical description is

min
x∈Ω

(
Gn+(x) ≡ min

J+⊆I,|J+|=|I|−n+

(
max
v∈J+

‖x− pv‖
))

. (2)

So the objective function Gn+(x) stands for the (n+ +1)-th farthest, i.e., (|I|−n+− 1)-th nearest
distance from x to the original set I. In other word, in this problem the smallest closed circular
disk uncovering n+ inhabitants is determined. We denote its optimal location by c∗n+ . It should
be noted that n+ = 0 means full covering or the traditional minimax problem.

2.2 Geometrical Solutions

Let Ik
1 , · · · , Ik

t(k) be all possible subsets out of I whose cardinality is k, where t(k) ≡ |I|!
k!(|I|−k)! . Let

VIk
i

be the set of the points from which the largest distance to all pi’s with i ∈ Ik
i is equal to or

less than the shortest distance to the other points. Its formulation is given by

VIk
i
≡ {x | max

u∈Ik
i

‖x− pu‖ ≤ min
v/∈Ik

i

‖x− pv‖}. (3)

This set, when non-empty is called order-k Voronoi polygon associated with Ik
i . The union of

all VIk
i
’s is called the order-k Voronoi diagram. As special cases, the diagram satisfying k = 1

and k = |I| − 1 reduce to the ordinary Voronoi diagram and the farthest-point Voronoi diagram,
respectively. It follows from (3) that the VIk

i
’s are defined by the intersection of half-planes, so the

feasible region Ω can be partitioned into bounded convex regions delimited by ∂V k, where ∂V k

is the union of the boundaries of VIk
i
’s within Ω. The geometrical properties of the higher-order

Voronoi diagram can be found in detail in Lee (1982).
Since Fn−(x) = max

u∈In−+1
i

‖x − pu‖ for x ∈ V
In−+1

i

, the level set of Fn−(x) for a fixed α

within V
In−+1

i

, i.e., {x ∈ V
In−+1

i

| Fn−(x) ≤ α} is given by the intersection of the circles centered

at pu (u ∈ In−+1
i ) with radius α, so any level set within V

In−+1
i

has to be convex. The level sets

of the partial anti-center problem with n− = 1, and the order-two Voronoi diagram are illustrated
in Figure 1, where five inhabitants p1, · · · ,p5 are denoted by filled circles. Accordingly, we can
obtain the geometrically interesting result that the reflex vertices of any level set occur only along
∂V n−+1. This implies that the solution a∗n− has to lie at 1) a vertex of ∂V n− , or 2) a vertex of
∂Ω, as implicitly pointed out by Plastria and Carrizosa (1999).
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Figure 1: Partial anti-center location with n− = 1 and order-two Voronoi diagram

Figure 2: Partial center location with n+ = 1 and order-three Voronoi diagram
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It is evident from the definition of higher-order Voronoi diagrams (3) that the farthest order-
k Voronoi diagram coincides with the order-(|I| − k) Voronoi diagram. Hence, similarly as for
Fn−(x), Gn+(x) = min

u∈I−I
|I|−n+−1
j

‖x − pu‖ for x ∈ V
I
|I|−n+−1
j

. So the level set of Gn+(x)

within V
I
|I|−n+−1
j

consists of the union of the circles centered at pv (v ∈ I
|I|−n+−1
j ) with the same

radius. This implies that any vertex of a level set within V
I
|I|−n+−1
j

cannot be cusped. Figure 2

shows the level sets of the partial anti-center problem with n+ = 1, and the order-three (farthest
order-two) Voronoi diagram. Hence we see that the cusped vertices of any level set occur only
along a segment within ∂V |I|−n+−1. This implies that the solution c∗n+ must be at 1) a vertex
of ∂V |I|−n+−1, 2) a midpoint on ∂V |I|−n+−1 between two inhabitants, 3) a vertex of ∂Ω, or 4) a
foot of the perpendicular to ∂Ω from an inhabitant, as in Ohsawa (2000).

3 Biobjective Models

3.1 Formulation

The biobjective problem generated by combining the objective functions (1) with (2), which are
both neither convex nor concave, is called the push-pull partial covering model. We assume that
n− + n+ < |I| because none of the neglected inhabitants can simultaneously remain unserved. As
a special case, we term the problem with n− = n+ = 0 push-pull full covering model, which has
already been explored in Ohsawa (2000).

As usual, x ∈ Ω is efficient if and only if there does not exist y ∈ Ω such that either 1)
Fn−(y) > Fn−(x) and Gn+(y) ≤ Gn+(x) or 2) Fn−(y) ≥ Fn−(x) and Gn+(y) < Gn+(x).
Throughout this paper, we consider the objective space with the horizontal (vertical) axis mea-
suring the values of Fn−(x) (Gn+(x)). Since the right and lower directions on the objective space
are better in terms of Fn−(x) and Gn+(x), respectively, any efficient location has no alternative
in southeasterly quadrant direction. Let E∗

n−,n+ be the efficient set, and t∗n−,n+ be the biobjecitve
values corresponding to E∗

n−,n+ in objective space. Since t∗n−,n+ shows the performance of all
alternatives within E∗

n−,n+ , we call t∗n−,n+ the tradeoff between Fn−(x) and Gn+(x).

3.2 Geometrical Solution

Since n− + n+ < |I|, Fn−(x) < Gn+(x). So at any point x ∈ Ω the curvature of the boundary
of the level set of Fn−(x) through x is greater than that of Gn+(x) through it. Hence, based on
Ohsawa and Tamura (2003), efficient solutions may only be found in ∂V n−+1 ∪ ∂V |I|−n+−1 ∪ ∂Ω.
Thus, we obtain the following proposition:

PROPOSITION 1 E∗
n−,n+ ⊆ ∂V n−+1 ∪ ∂V |I|−n+−1 ∪ ∂Ω.

When n− = n+ = 0 this proposition reduces to the result by Ohsawa (2000). In geometric terms
this is equivalent to saying that the southeasterly envelope of the loci (Fn−(x), Gn+(x)) for the
two-dimensional area Ω, that is, the tradeoff, is given by the southeasterly envelope of only the
loci for the set of line-segments ∂V n−+1 ∪ ∂V |I|−n+−1 ∪ ∂Ω.

As a consequence of Proposition 1, an algorithm for construction of the efficient solutions and
the tradeoffs can be given by modifying the method by Ohsawa and Tamura (2003) as follows:

Step 1. Delineate the order-(n− + 1) and order-(|I| − n+ − 1) Voronoi diagrams.

Step 2. Split the links within ∂V n−+1, ∂V |I|−n+−1 and ∂Ω into sublinks along which the (n−+1)-
th and (|I| − n+ − 1)-th nearest-point are both constant.

Step 3. Draw the loci (Fn−(x), Gn+(x)) in objective space for all x in each of these sublinks.

Step 4. Detect the south-eastward envelope of these loci.
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Figure 3: Efficient set for push-pull partial covering with n− = 1 and n+ = 1

Step 5. Specify the parts of sublinks corresponding to the envelope in geographical space.

Any higher-order Voronoi diagram for |I| inhabitants can be constructed in at most O(|I|2 log |I|)
time: see Agarwal et al. (1998), so Step 1 takes O(|I|2 log |I|). As shown in Lee (1982), the num-
ber of regions and edges of these higher-order Voronoi diagrams are both bounded by O(|I|2). In
addition, any link can be partitioned into sublinks along which the (n−+1)-th and (|I|−n+−1)-th
nearest-point are constant in O(|I|2) time. Hence, Step 2 can be done in O(|I|4 + |∂Ω||I|2). Since
Ω is convex, the planar graph ∂V n−+1 ∪ ∂V |I|−n+−1 ∪ ∂Ω has O(|I|4 + |∂Ω|) edges. As shown in
Ohsawa (2000), Gn+(x) can be expressed analytically in function of Fn−(x) for any point x on
a line segment l whose (n− + 1)-th nearest inhabitant is pi and (|I| − n+ − 1)-th nearest one, is
pj . So Step 3 runs in O(|I|4 + |∂Ω|) time. Step 4 requires O((|I|4 + |∂Ω|) log(|I|4 + |∂Ω|)) effort:
see Ohsawa (2000). Step 5 can be done in O(|I|4 + |∂Ω|) time. In total, our solution requires
O((|I|4 + |∂Ω|) log(|I|4 + |∂Ω|) + |∂Ω||I|2).
PROPOSITION 2 The efficient set E∗

n−,n+ and its tradeoff t∗n−,n+ can be found in O((|I|4 +
|∂Ω|) log(|I|4 + |∂Ω|) + |∂Ω||I|2) time.

For non-convex study area Ω, our algorithm is valid, but the time complexity increases.
For the same inhabitant set (|I| = 5) as in Figures 1 and 2, Figure 3 shows the efficient set E∗

1,1,
consisting of two points c∗1, w1, the (two-piece) path between w2 and w3, and the (two-piece) path
between w4 and a∗1. Figure 4 shows the loci corresponding to the boundaries ∂V 2 ∪ ∂V 3 ∪ ∂Ω.
The boundaries ∂V 2, ∂V 3 and ∂Ω in Figure 3, and the plots corresponding to them in Figure
4 are indicated by thin, broken and thick lines, respectively. Note that the tradeoff can not be
defined over the open interval (F1(c∗1), F1(w1)). This shows by example that, contrary to the full
covering case (see Ohsawa, 2000)), the tradeoffs do not form a connected set.

3.3 Sensitivity Analysis

We have explored the partial problems only for fixed n− and n+. Undoubtedly, as more inhabitants
are neglected, both objective functions (1) and (2) are improved. As a result, in the partial
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Figure 4: Tradeoff for push-pull partial covering with n− = 1 and n+ = 1

anti-center problem, the obnoxious level and the resettlement fee to move out the inhabitants
contradict. The tradeoff between them is examined in Plastria and Carrizosa (1999). In the
partial center problem, there is the tradeoff between the service level and the beneficial fee to
unserved inhabitants, which is explored in Carrizosa and Plastria (1998). To see the impacts
caused by varying n− and n+ over a narrow range, we take up following simple schemes via our
example as shown in Figures 1 and 2: 1) a full covering, i.e., n− = n+ = 0; 2) one inhabitant
to hate the facility is neglected, i.e., n− = 1, n+ = 0; 3) one inhabitant to desire the facility is
neglected i.e., n− = 0, n+ = 1; and 4) one inhabitant to hate the facility and one inhabitant to
desire it are neglected, i.e., n− = n+ = 1: see Figures 3 and 4.

The effect of varying n− and n+ can be observed in Figures 5 and 6, where four efficient sets
E∗

00, E∗
10, E∗

01 and E∗
11 and their corresponding tradeoffs t∗00, t∗10, t∗01 and t∗11 are identified by thin,

single-dot-dash, broken and solid lines, respectively. The set E∗
00 is formed of the path between c∗0

and s1, and the one between s2 and a∗0. The set E∗
10 consists of the path between c∗0 and v1, the

path between v2 and w1, and the one between v3 and a∗1. The set E∗
01 comprises the path between

c∗1 and u1, and the one between u2 and a∗0. Therefore, it can be concluded that the efficient set
changes significantly according to n− and n+, even though the efficient sets E∗

00 and E∗
01 overlap

each other from s2 to a∗0.
We understand from Figure 6 that the tradeoff of partial-covering t∗10 (t∗01, t∗11) is located at

the east (south, southeast) of that of full covering t∗00. An increase in n− and n+ will shift the
tradeoff to the right and the bottom, respectively, as we would expect. Thus, such sensitivity
analysis within a partial covering framework enables us to perceive clearly and quickly to what
extent the biobjective functions can be improved by relaxing the constraint that all inhabitants
can be covered.
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Figure 5: Four efficient sets

Figure 6: Four tradeoffs
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4 Conclusions and Future Research

This paper has formulated a new more realistic bicriteria location problem where partial covering
is introduced to model the siting of a semi-obnoxious facility. We have developed polynomial-time
algorithm to delineate the efficient location and the tradeoff associated with this problem. We have
shown that comparing the tradeoff for the full covering with the others enable decision makers
to understand what to extent the maximin and minimax criteria are improved at the expense of
uncovering through some illustrative examples.

Although a theoretical basis for the push-pull partial covering has been established, the full sen-
sitivity analysis against all possible combination of resettled inhabitants and unserved inhabitants
is possible topic for future research.
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