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OPTIMIZATION OVER THE EFFICIENT SET

YOSHITSUGU YAMAMOTO

To the memory of Takahiro Umegaks.

ABSTRACT. Over the past several decades, the optimization over the efficient set has
seen a substantial development. The aim of this paper is to provide a state-of-the-art
survey of the development. Let C' be a px n matrix and let X be a polyhedral set of R™.
The linear multicriteria optimization problem (MC) is vector maximize{Cz |z € X }. A
point z € X is said to be an efficient point if there is no point £’ € X such that Cz’ > Cz
and Cz’ # Cz, and the set of efficient points is denoted by Xg. The optimization over
the efficient set (Pg) is the maximization of a given function ¢ over Xg. The difficulty of
(Pg) is due to the nonconvexity of the efficient set Xg. The existing algorithms for solving
(PE) could be classified into several groups such as adjacent vertex search algorithm,
nonadjacent vertex search algorithm, branch-and-bound based algorithm, Lagrangean
relaxation based algorithm, dual approach and bisection algorithm. In this paper we
review a typical algorithm from each group and compare them from the computational
point of view.

1. INTRODUCTION

The problem we consider in this paper is the optimization over the set of efficient points
of the linear multiple criteria program

vector max Cz

(MC) s.t. T € X,

where C is a p x n matrix with rows ¢*’s, and X is a polyhedral set of R™ defined as
X ={z|x e R* Az =b;xz > 0}. To avoid the technicality we assume throughout the
paper that X is nonempty and bounded. Let X denote the set of efficient points, whose
definition will be given in the next section. Then the problem is formulated as

max ¢(x)

(PE) s.t. x€ Xg,

where ¢: R™ — R is a continuous function to be maximized.

The main difficulty of the problem arises from the nonconvexity of the efficient set Xz,
which is the union of several faces of X. This problem was first considered by Philip [22],
in which an algorithm based on moving to adjacent efficient vertices is outlined when ¢ is
a linear funciton, and lots of papers followed his work.
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The purpose of this paper is to survey the existing algorithms for Problem (Pg) as well
as some variations. We will not discuss the merits and demerits of the algrithms because
we have not yet had enough computational experience to evaluate them. Theoretically
interesting algorithms do not always work efficiently, on the contrary, naive methods can
surpass sophisticated algotrithms in computation time. We should be careful not to nip
the promising algorithms in the bud.

After reviewing the well-known facts concerning problems (MC) and (Pg) in Section 2,
the adjacent vertex search algorithms and the nonadjacent vertex search algorithms will be
explained in Section 3 and Section 4. In Section 5 we introduce the face search algorithm,
which is based on the enumeration of faces that constitute the efficient set. Section 6 is
devoted to the branch-and-bound method based on the conical partition, and Section 7
to the Lagrangean relaxation methods. The dual approach and the bisection algorithm
will be explained in Section 8 and Section 9. Some other methods are briefly outlined in
Section 10. Some conclusion will be given in the last section.

2. Basic RESULTS OF LINEAR MULTICRITERIA PROGRAM

Throughout this paper we use the following notations: R* denotes the set of k-dimensional
real column vectors, RX = {z |2 € R*;2 >0} and Rt ={x|xeR2>0}. Ryis
the set of k-dimensional real row vectors, and Rg4 and R,y are defined in the similar
way. We use e and 1 to denote a row vector and column vector of ones of an appropriate
dimension. Xy denotes the set of vertices (extreme points) of X.

Definition 2.1. A point z € R" is said to be an efficient solution of Problem (MC) if
x € X and there is no point 2’ € X such that Cx < Ca2' and Cx # Cz/. We denote the
set of efficient solutions of (MC) by Xg. A point z € R™ is said to be a weakly efficient
solution of Problem (MC) if x € X and there is no point ’ € X such that Cz < Cx'.
We denote the set of weakly efficient solutions of (MC) by X .

Definition 2.2. Theset Y = CX = {y|y € RP;y = Cz for some 2 € X } is called the
outcome set. The set Y=< =Y + R” ={y |y € RP;y < Cz for some z € X } is called the
lower outcome set, and Y< =Y + R® _ = {y |y € RP;y < Cz for some z € X } is called
the strictly lower outcome set.

Definition 2.3. A point y € Y is said to be an efficient outcome if there is no point
y' € Y such that y <y and y # ¢/, in other words, Y N (y + RY) = {y}. We denote the
set of efficient outcomes by Yz. A point y € Y is said to be a weakly efficient outcome if
there is no point y’ € Y such that y </, in other words, Y N (y + RE ) = 0. We denote
the set of weakly efficient outcomes by Yy .

The following lemma is a restatement of these definitions.
Lemma 24. (i) Xp={z |z e X;CeeYr}. (i) Xw ={z |z € X;Cx c Y }.
Definition 2.5. For A € R,y and z € X let
(2.1) gr(z) =max{AC2' |2’ € X;C2’ > Cx} — \Cx,
which is called the gap function. When A = e, we omit the subscript A and denote g
simply by g.

As can be seen readily, € X is in Xg if and only if gx(z) = 0, and a point 2’ which
solves max { A\C2' | ' € X;Cx’ > Cx } is in Xg. The theory of parametric linear program
shows that gy is a piecewise linear concave function.



We first introduce the well-known results, whose proof can be found in, for example
Benson [6], Sawaragi, Nakayama and Tanino [28], Steuer [30], and White [41].

Theorem 2.6.

_J .| ®€ X;3\ € Ry such that

(2:2) Xe = {“ ACz > AC2! for Vo' € X
(2.3) _ g TEX Bz’ € R™ such that

' B Ca' > 0;Ca’ # 0; Az’ = 0;2% > 0 for i with 2; = 0
(2.4) =g %€ X;3(\ 4, v) € Rpyy X Ry X Ry such that

' o AC —puA+v=0vr=0
(2.5) _ gl ZE X;3(\ 1) € Ryt x Ry, such that

' - AC —pA< 0, Co —ub=0
(2.6) ={z|z e X;gr(z) =0},

Furthermore, there is an M > 0 such that Rp14 above can be replaced by the bounded set
defined by either

(2.7) A={A[A€Rp;A>eA1 < M}
or
(2.8) A={A|A€R;A>e;A1=M}.

Proof. The equivalence among (2.2), (2.3) and (2.4) follows from the duality theorem of
linear program. We will prove only that A defined by either (2.7) or (2.8) can replace R,
in (2.2), (2.4) and (2.5). By (2.2) X is the union of finitely many faces, say F!,..., FL
of X such that F* is the optimal set of maximizing XCz over X for some M € Ry 4. Let
of = 1/(min=y,.p AY) and M = maxe._, o’M\1, where 1 is the p-dimensional column
vector of ones. Then for £ =1,..., L (M/A1)X¢ lies in A defined by (2.8), and F* remains

the optimal set of maximizing (M/X1)MCx over X. m|
Denote
max ACz
(SCV) st. weX,

then (2.2) means that every efficient point is an optimal solution of the single criterion
problem (SC())) defined for some A\ € R,14. The condition (2.4) remains identical as
long as the set of binding constraints at 2 does not change. Therefore, if points  and z’
lie in the relative interior of the same face of X, we see that € Xz if and only if 2’ € Xg.

Theorem 2.7. The set Xg is connected. Any two vertices in Xg are connected by a path
of edges contained in Xg.

For the proof of Theorem 2.7 see Theorem 9.19 and Theorem 9.23 in Steuer(30], Theo-
rem 3.31 in Sawaragi, Nakayama and Tanino [28], and Naccache [21].

Let x = (xp,zn) = (B~1b,0) be a basic feasible solution of X and let A = [B, N] and
C = [Cp, Cn] be the partitions of A and C corresponding to the basic and nonbasic parts
of z.

Lemma 2.8. (i) 2 = (zp,an) = (B71b,0) € Xg if and only if \(Cn — CpB~IN) —
vgB~™'N <0 for some A € Rpy4 and vp € Rpy such that vgrg = 0.



(ii) If v = (zg,xN) = (B7'6,0) is a nondegenerate basic solution, the above condition is
reduced to M\(Cny — CgB~'N) <0 for some A € Rpyy.

(iii) Let ¢ and a’ be the columns of Cy and N, respectively, corresponding to a nonbasic
variable z;. If \(Cy —CpB™'N) <0 and \(¢ — CgB~'a?) = 0 for some A € Rp4 4,
then the edge obtained by increasing x; is an efficient edge, i.e., contained in Xg.

Note that the condition A € Ry, above could be replaced by A € A. Then the condition
of Lemma 2.8 for an efficient basic solution = (B~'b,0) and a nonbasic varaible z; holds
if and only if

(2.9) max { A\(¢/ —CgB~'a?) | A € A;A\(Cy —CBB~'N) <0} =0.

The problems we consider in this paper are the following optimization over the efficient
set Xg and the weakly efficient set Xy :

max ¢(x)
(PE) st. € Xg
and
max ¢(x)
(Fw) s.t. =€ Xw.

For these problems we write ¢(Pg) and ¢(FPw ) to denote their optimal values, respectively.
Theorem 2.6 will provide several equivalent formulations of Problem (Pg). By (2.2) we
have a infinitely constrained equivalence

max ¢(x)
(P}) st. zeX; el
ACz > \C2' for all 2’ € X.

By (2.4) and (2.5) we have

max ¢(z)
(P2) st. z€X;AN€Au€Rp;v € Ry
AC —pA+v=0ve=0,
and
max ¢(x)
(P3) st. xzeX;NeAu€ Ry,

AC — pA <0;ACx — ub = 0.

Note that even if ¢ is linear, these problems contain a nonlinear equality constraint. Using
the gap function we obtain another equivalent form

4 max ¢(x)
(Pg) st. 1z € X;gaz)=0,

where A is arbitrarily chosen from R, and fixed. Since gx(z) > 0 for all z € X, the last
equality constraint gx(z) = 0 can be replaced by gx(z) < 0, which yields



max ¢(x)
(Pp) x € X;ga(z) <0.

Since gy is a concave function, the constraint gx(z) < 0 is a reverse convex constraint. See
[40] and [16] for the reverse convex constrained optimization problems.

3. ADJACENT VERTEX SEARCH ALGORITHMS

The algorithms proposed in Philip [22], Ecker and Song [12] and Fiilop [13] for a linear
function ¢, and in Bolintineanu [9] for a quasi-convex function ¢ are mainly based on
the two techniques: moving from an efficent vertex to an efficient neighbor with larger
objective function value via an efficient edge, and cutting off the portion of X where ¢
takes a smaller value than the incumbent objective function value. We assume for the
time being the quasi-convex function ¢ and will follow the line of Bolintineanu [9)].

For z,2’ € R™ let [x, 2] denote the line segment connecting « and 2’. Let v € Xy N XEg
and let

(3.1) Ng(z) = {2’ |2 € Xy N XEg;[z,2'] C Xg },

i.e., the set of efficient vertices linked by an efficient edge to . Then by the quasi-convexity
of ¢ we have the lemma.

Lemma 3.1. Let € Xy N Xg and suppose {2’ | 2’ € Ng(z);p(2') > ¢(x) } = 0. Then
x is a local mazimum point for (Pg).

The algorithm is outlined as follows. Here we denote the two halfspaces determined
by a hyperplane H = {z |2 € R%azx=a} by H; = {z|2€ R"ax>a} and H_ =
{z |z € R™*ax < a}, and their interiors by H,, and H__, respectively.

(0) (Initialization)
Set p=k =0, X° = X and find 2° € Xy NXg. If Ng(2°) = 0 then z° is the optimal
solution of (Pg). Otherwise, go to the major cycle (p).
(p) (Major cycle)
(p1) If {z | x € Ne(aP); d(z) > #(aP) } # 0, choose 2P+ from this set, p =p+ 1 and
go to (p).
(p2) Otherwise, let LP = {2 | ¢(z) < ¢(«P) } and go to (k).
(k) (Minor cycle)
(k1) Find v* € argmax{ ¢(z) | x € X*}. If ¢(aP) > ¢(v*) —e for some tolerance € > 0,
" then stop with 2P as an e-approximate optimal solution. Otherwise, go to (k2).
(k2) Find a supporting hyperplane HF of LP such that LP C H* and v* € Hf_+.
(k3) If there is an efficient edge [/, u”] such that [u/, u”|NH* # 0 and max{¢(v'), p(u")} >
@(aP), then set zP*! be one of v’ and u” with a larger objective function value.
Set p = p + 1 and go to (p). Otherwise, go to (k4).
(k4) Set X**1 = X*NHE, k=k+1 and go to (k).

The alogrithm generates a sequences of efficient vertices 29, 2!, ... and polytopes X9, X1,...

such that ¢(z°) < ¢(x!) < --- and X = X° D X! D ... Let u* denote the point at
which H* supports LP. It can be seen that if the angle between v¥ — u* and the normal
vector of H* pointing toward v* is less than some constant §, then limy_,, ¢(v*) = ¢(aP).
Then we see that for a given positive e the minor cycle does not repeat infinitely.

Lemma 3.2. If the above condition on the angle between v* — uk and the normal vector

of H* is satisfied, the minor cycle terminates after a finite number of iterations for each
D.



Proof. The condition implies limg_,oo ¢(v*) = ¢(2P), hence the stopping criterion o(xP) >
#(v*) — € will be satisfied within a finite number of iterations. O

The most costly and crucial step would be (k3) as well as (k1), in which a quasi-convex
maximization problem is to be solved. We will not go into detail of how to solve the
quasi-convex maximization problem. See for example Horst and Tuy [16].

Step (k3) is based on the following observation.

Lemma 3.3. Let F* = X* N H*, then Xg N F* C FE, where FE is the set of efficient
points of vector maz{Cz | z € F*}.

Proof. If € XgNF*, there is no point 2’ € X such that C2’' > Cz and Cz’ # Cz. Then
clearly no point in F* meets this condition, which means z € FE. O

This lemma shows that if we enumerate all the efficient vertices of FE, we can see if
there is the edge desired in step (k3). Namely, step (k3) is carried out by generating the
efficient vertices of F'* by a standard algorithm for linear multicriteria optimization such
as ADBASE of Steuer [31] till one of them turns out to be in Xg, and then for such a
point, checking if it lies on an efficient edge of X* with endpoints u’ and »” such that

max{p(w'), p(u")} > ¢(aF).

FIGURE 1. cutting plane H*

Lemma 3.4. Xz C X* fork=0,1....

Proof. Since Xg C X% = X, suppose Xg C X*. If Xp Z X*+1 thereis 2/ € Xy N Xg
such that 2’ ¢ HY. By the construction of H* we see ¢(2’) > ¢(a). Then by Theorem 2.7
there is an efficient edge [u/,u"] with [u/,u"] N H* # @ and max{¢(w'), p(u")} > $(aP).
This is contrary to the fact that X**! was generated. a
Lemma 3.5. When the algorithm terminates with 2P and v* satisfying ¢p(aP) > $(v*) —e,
2P is an e-approzimate optimal solution of (Pg).



Proof. By Lemma 3.4 we obtain

¢(Pg) = max {¢(z) |z € Xg }
< max{¢(z) |z € X*} = ¢(v)
< ¢(aP) + € < ¢(Pg) +e.
O

Theorem 3.6. The algorithm provides an e-approzimate optimal solution of Problem
(Pg) after a finite number of iterations.

Proof. The minor cycle terminates within finitely many iterations for each p as shown in
Lemma 3.2, and points 2P’s are efficient vertices of X satisfying ¢(z°) < ¢(z') < ---, and
hence distinct. Therefore the finiteness of Xy N XE and Lemma 3.5 imply the theorem. O

A preliminary computational experiment for small problems up ton=7,m =7,p =4
with a convex quadratic or linear objective function is reported in [9], where they observed
that the vertices, including those on the cutting planes, generated by the algorithm are
fewer than the efficient vertices of X.

When ¢ is a linear function dz, the algorithm is substantially simplified. Suppose we
have obtained 2P € XyNXg with {z | z € Ng(2P);da > daP } = () after several repetitions
of the major cycle. Then the lower level set is the half space LP = {z | da < dzP } and the
supporting hyperplane of this set is uniquely determined by H? = {« | dz = da? }. Then
the efficient vertices of F¥ = X N H* are enumerated to check if H* intersects an efficient
edge [u’,u"] of X such that max{du/,du”} > dzP. When no such edge exists, we conclude
from the connectedness of Xg that

(3.2) Xg CH* = {2 |de < daP}

and hence zP is an optimal solution of (Pg). Thus, k is never incremented through the
algorithm.

In the enumeration of efficient vertices of F* Fiilop [13] proposed a cutting plane algo-
rithm based on convexity and disjunctive cuts. Assume we have a vertex z € F* which is
not efficient, i.e., gx(Z) > 0, where g, is the gap fucntion defined in Definition 2.5. The
portion of F* with gx(x) > 0, which is a convex set, should be cut off and eliminated for
further enumeration. Fiilép proposed to introduce a convexity cut tz > 1 and reduce the
set F* to F*N{x |tz > 1}. Suppose the nondeneracy at Z and for each nonbasic variable
x; let 27 be the direction of edge of F* adjacent to Z obtained by increasing z;. Note that
2’ is easily obtained from the dictionary corresponding to Z. Let

(3.3) sj=sup{s|s€R;Cy>C(&+s);yecFr},
then we have the convexity cut as follows.

Lemma 3.7. Suppose s; > 0 for every nonbasic variable x; of T. Let t € R, be defined
by

: = 1/s; if 2; is a nonbasic variable and s; < oo,
¢ 0 otherwise.

Then tx < 1, and tz > 1 for all efficient points x of F*.



See Horst and Tuy [16] for further detail of convexity cut. Everytime a nonefficient
vertex is found, F* is reduced by the convexity cut, which might lighten the computational
burden. No computational experiment is reported in [13].

Ecker and Song [12] proposed to solve max {c'z |z € XN HE } fori=1,...,p to find
the next iterate aP+! before resorting to the vertex enumeration of F¥.

4. NONADJACENT VERTEX SEARCH ALGORITHM

The algorithms which trace the adjacent vertices needs a step of enumerating all efficient
vertices of a polyhedral set with a lower dimension. This section explains a nonadjacent
vertex search algorithm proposed by Benson [5] which dispenses with the vertex enumer-
ation.

We assume ¢(z) = dx. Suppose we have k + 1 points 2% z!,...,2*¥ € Xg and let
o = max{dz’ | j =0,1,...,k} and (P*) be the problem, which plays a central role, of
finding a point (z,\) € R™ x R, satisfying

k

ACx > \Ca/ for j =0,1,...,k
reX

A€EA

dz > oF.

(P¥)

Remark 4.1. If (Z, \) satisfies the constraints
ANCx > M\Cal for j=0,1,....k; ze€X; Ae€A

of (P*), we see that Z is an efficient point of the convex hull of 2°,...,z* and Z. In this
sense Problem (P¥) is an inner approximation of Problem (Pg).

We start with considering the case where Problem (P¥) has no solution.

Lemma 4.2. Suppose 2°,2!,...,2* € Xg and Problem (P*) has no feasible solution.

Then z* € argmaz{da’ | j =0,1,...,k} is an optimal solution of (Pg).
Proof. Since (P*) has no solution, if z € X satisfies
(4.1) ACzx > \C2' for all 2’ € X and for some \ € A

then dx < oF, i.e., 2 € Xg implies dz < oF. This and 2* € Xg yield the lemma. O

Before reviewing the method of solving (P¥) we will give the algorithm.
(0) (Initialization) Find an efficient vertex 2°, set k = 0 and go to (k).
(k) (Iteration k)

(k1) Find a solution (z,\) € R"™x R, of (P¥). If no solution exists, * € argmax{ da’ |
j=0,...,k} is an optimal solution of (Pg). Otherwise, set (z*¥+1, A*¥*1) be the
solution found.

(k2) Solve the linear program

max eCx
(Test¥) st. Cx>Czkt!
re X

for a solution 2. If eCZ = eCZ*+! go to (k3). Otherwise, go to (k5).



(k3) If Z+1 is a vertex of X, then set z*t! = #**1, k = k+1 and go to (k). Otherwise,
go to (k4).
(k4) Let F be a face of X such that Z"+! € relintF" and solve the linear program

max dx

k
(Face®) st. xze€eF

for an extreme point z**1. Set k = k + 1 and go to (k).
(k5) Solve (SC(A\k+1)) for a solution 2°*1, set k =k + 1 and go to (k),

where (SC (X)) is

max ACz
s.t. x2€ X.

Note that whether 281! is a vertex of X can be seen by checking the linear independence
of colunms of A corresponding to positive components of Z*+1.
There may be various ways of determining the face F' of (k4). One possible way is

(4.2) F={z|x€X;z;=0forj withzk*! =0}.
Benson proposes to define it by

(4.3) F={z|rzeX;let+u)lz=v},

where u is an optimal dual variable corresponding to the constraint Ca > Cz*+! of (Test*)
and v =max{(e+u)Cxlze X}
The following lemma shows that 27’s are efficient vertices of X.

Lemma 4.3. 2/ € Xy N Xg for j=0,1,....

Proof. Since it is clear that 2/ € Xy, we only show that 27 € Xg. When z**! is computed
in either (k3) or (k5), it is an optimal solution of either (Test*) or (SC(A**1)). Then
clearly z¢*! € Xg. When z*t! is generated in (k4), it lies in the face whose relative
interior contains the efficient point Z*t1. Then by Theorem 2.6 we see z**! € Xg. O

Now we show that the algorithm always generates a sequence of distinct vertices of Xg.
Lemma 4.4. "1 ¢ {27 |j=0,1,... k}.

Proof. Three cases should be considered. In (k3) z*+! is given by 2*¥+! = z*+1  which satis-
fies dzk+! > max {da? | j = 0,...,k}, and hence z**! differs from any point of 2, ..., z*.
By construction dz**! > dzF+! in (k4) and the same argument applies. Now suppose z*+!
is generated in (k5). Then Z¥t1 ¢ Xg, i.e., there is a point, say & € X with CZ > Cz*+!
and CF # Cz**+!. Since \**t1 > 0 we see A*T1C3 > A+HICz*+1. Since a**! solves
(SC(Ak+1)), we also see \Ns+1Cxk+! > MNe+1Cg for any « € X. Then for j =0,...,k

(4.4) Netloghtl > 3k+1og > Netloght! > M+l ogd
holds. This means that z*¥+1 & {2°,... 2F}. O

Note that in either case of (k3) and (k4) dz**+! > max {dz? | j =0,...,k}, i.e., monotone
increasing of the objective function value, but in case (k5) it may decrease. Combining
the above lemmas we have the following theorem.



Theorem 4.5. Suppose Problem (P*¥) is solved within a finite number of iterations. Then
the algorithm provides an optimal solution x* of Problem (Pg) after a finite number of
iterations.

Now we go back to Problem (P¥) and explain the algorithm proposed by Benson [4].
For a solution of (P¥) it suffices to solve

max dx ‘
k s.t. ACzx > ACa for j =0,1,...,k
(P%) re X
A €A

Let Y = {y|yeRPj—max{cz|ze X} <y <-min{cde|zeX}fori=1,...,p}
and A be a p-dimensional hypercube containing A, for example A = {A | A€ Rpje <A <
(M +p—1)e}. Then (P*) is equivelent to

max dx
st.  Ay+ACal <O0forj=0,1,...,k
y+Cax=0
reX
yey
A €A

The constraint A1 < M could be added, but is not necessary. The bilinear term Ay makes
the problem difficult to solve and hence should be relaxed. The algorithm is based on the
successive partition of the hypercube Y x A into smaller hypercubes and the relaxation
of the problem restricted to the smaller hypercubes to a linear program. Let Y!x N =
13- las, @] x [T5-,(8;, B:] be a smaller hypercube contained in ¥ x A. Note that Y’ x A’ =
[T, (lay, @) x [gi,,ﬁi]) by rearranging the coordinates and Ay is the sum of bilinear terms
Aiy; defined on [q;, @;) x [gi,ﬁi}. McCormic [20] shows that the convex envelope of A;y; on
the two-dimensional cube [q;, @] x [8,, ;] is given by the piecewise linear convex function
max{ B,yi + ;A — B, Biyi + %A — B;%i }. See also Al-Khayyal and Falk [1]. Then the
convex envelope of Ay is given by >°F_ max{ By + hi — gigi,_ﬁ_iyi + @\ — B;a; } and
the constraint Ay + ACz’? < 0 is relaxed to

]

(4.5) > max{ B,y + a)i — 8,4, Biyi + Wk — B } + ACa? 0.
=1
This constraint is again rewritten as
(4.6) Byi+ah — B, Swifori=1,....p
(4.7) _ﬁiy,-+a‘,~)\i—ﬁiai <w;fori=1,...,p
P

(4.8) > w4+ AC2’ <0.

=1

Thus we yield a linear programming relaxation of (P¥) restricted to a smaller hypercube
contained in Y x A. In Benson [4] (4.5) is further relaxed to a single linear inequality.

It would be a routine to construct a branch-and-bound algorithm based on this relax-
ation. If we employ the bisection procudure to divide a hypercube, i.e., to divide it into

10



two hupercubes with equal volumes such that the midpoint of one of the longest edges is
a vertex of both new hypercubes, we will see the following theorem.

Theorem 4.6. If the branch-and-bound procedure does not terminate after a finite number
of iterations, any acuumulation point of the sequence (x*,y*, \¥,w*) generated by the
procedure is an optimal solution of (P¥).

See for example Section 4 of Chapter VII in Horst and Tuy [16] for the convergence
proof.

5. FACE SEARCH ALGORITHM

In this section we introduce the algorithm for the Problem (Pg) proposed by Sayin [27],
which is based on the enumeration method of efficient faces in Sayin [26].

For a point € X let I(x) be the index set of zero components of z, i.e., I(x) =
{ilie{l,...,n};x;=0}. For I C{1,...,n} let
(5.1) FI)={z|z€ X;z;=0forie I},
which is a, possibly vacant, face of X. Then the eflicient set Xg as well as the feasible
region X is decomposed as

(5.2) xX= |J xnFD); xe= |J &XenFu)).
I1C{1,...n} IC{1,...n}

Therefore Problem (Pg) reduces to the family of following problems

max ¢(x)
(Pe(1)) s.t. x€ XgnF(I).
each of which is corresponding to I C {1,...,n}. For a mutually disjoint decomposition

of Xg see Corollary 3.3 in Benson [6]. Since XgNF(I) C X NF(I) = F(I),

max ¢(x)

(Pe(I)) st. e FI).

is a relaxation problem of (Pg(I)). Note that this is a linear program when ¢ is a linear
function.

Suppose we have at hand an incumbent, i.e., a point 2* € Xg, and the list of problems
(Pe(I)) to solve. At the beginning the list consists of the single problem (Pg(0)), which is
identical to (Pg) since F'(§) = X. Choosing a problem (Pg([)) from the list and solving
its relaxation (Pg(I)), we have the following cases.

1. (Pg(I)) is infeasible: Problem (Pg(I)) is fathomed and deleted from the list.
2. (Pg(I)) has an optimal solution z.
(a) ¢(x) < ¢(x*): Problem (Pg(I)) is fathomed and deleted from the list.
(b) ¢(z) > ¢(a*):
(i) x € Xg: The incumbent is updated as * = x, and Problem (Pg([)) is
fathomed and deleted from the list.
(ii) « ¢ Xg: Problem (Pg([)) is fathomed and deleted from the list, and for
each index k € {1,...,n} \ I Problem (Pg(I U {k})) is added to the list.
The last case where x ¢ Xg may need explanation. Whether & € relintF'(I) or x &
relint F'(I), we see that no point in relintF'(I) is efficient from Theorem 2.6. Since any
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point in the relative boundary of F(I) belongs to F'(I U {k}) for some k € {1,...,n}\ I,
Problem (Pg(I)) is fathomed and can be deleted from the list.
Several comments are in oder.

1. In the case of ¢ X, if 23 = 0, it remains optimal to Problem (Pg(/U{k})), which
therefore needs not be solved. Even if this is not the case, Probelm (Pg(I U {k}))
differs slightly from (Pg(I)).

2. As in Theorem 2.6 we can easily see whether the relative interior of F(I) has an
efficient solution. If not, Problem (Pg(I)) is fathomed. Note that F'(I) C X if and
only if relint F(I) N Xg # 0. See Theorem 3.2 of Benson [6].

3. The key issue of implementation would be the list-management as it is always the case
in the branch-and-bound method. Especially, a subset I = {i1,...,i¢} of {1,...,n}
would be generated from each of {ia,..., i}, {i1,93,--.,%¢}, --,{t1,..-,%6-1}. The
redundacy can be avoided by a simple technique. Even incorporating the technique,
the list grows very rapidly and becomes too larg to keep in the memory.

Due to the rapid growth of problem list, the computational experiment reported in Sayin [27]
is restricted in problem size.

6. BRANCH-AND-BOUND ALGORITHM

This section is devoted to introducing the branch-and-bound algorithm for Problem
(Pw) with a concave function ¢ proposed by Horst and Thoai [15] and Thoai [39].
First they observe the following characterization of the weakly efficient outcome set Y .

Lemma 6.1. Let 9Y'S denote the boundary of Y. Then Yy =Y NOY'S.

Proof. This lemma follows the equivalence between y € Y NintY< and y € Y \ Y. If
y €Y NintYS, y < o for some y € Y<, for which there is 4" € Y such that ¢/ < y”.
Therefore y ¢ Yw. If y € Y \ Y, there is ¥ € Y with y < ¢/, and hence its neighbor
{z|z€Rp;y— (¥ —y) <z <y} is contained in Y'S. This implies y € int Y'S. O

Then Problem (P ) is rewritten as
(6.1) max {¢(z) |z € X;Cz € 9Y S }.

Introducing additional variables y € RP and t € R, it is cast into the following problem
called Master Problem

max t
s.t.  t < o(x)
(MP) reX
y=Cr
y € 9YS,

for which the following theorem holds.

Theorem 6.2. If x* is an optimal solution of (Pw ), then (x*,y* t*) with y* = Cx*,
t* = ¢(a*) is an optimal solution of (M P). If (x*,y*,t*) is an optimal solution of (MP),
then x* is an optimal solution of (Pw ) with ¢(a*) =t*.

Since we assume that the feasible region X is bounded, there is a point y° € RP whose
ith component y? satisfies

(6.2) W <min{y; |y€Y}=min{cz |z e X}
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Then
(6.3) Yw coysn@’ +RY) cYsny’ + RR).

The key idea of the algorithm is to decompose the truncated lower outcome set Y=< (3° +
RE) into cones with vertex at y° and consider a subproblem (M P(K)) with variable y
restricted to K

max ¢
st.  t<o(x)
(MP(K)) rxeX
y=Cx
yedYSNK.

There are two things to have done: to replace the concave function ¢ by a function easier
to handle, and to construct a polyhedral set containing Y N 0Y <N K. They propose a
piecewise linear concave function ¢ to replace ¢. Suppose we have a finite number of
points z!, ..., z* in the domain of ¢ and a subgradient s* € R,, of ¢ at z*. Then

(6.4) ®(z) = min{ ¢(z*) +s¥(x —2%) |i=1,...,k}
is a piecewise linear concave function which overestimates ¢, i,e., ®(z) > ¢(x) at any point

x. Furthermore note that the constraint ¢ < ¢(x) with ¢ replaced by @ is equivalent to
the k linear inequality constraints

(6.5) t<pat) +s(a—a)fori=1,...,k.

It is a matter of course that neither the variable ¢ nor the approximation @ is necessary if
¢ is a linear function.

Let r!,...,7" € RP be p extreme rays generating the cone K — y° and for each i =
1,...,p let * be the intersection point of the ray {y |y =94+ ar’;a >0} and OY=.
The intersection point ¥ is found by solving the linear program

(6.6) max{a |y’ +ar* <Cxjz e X;a>0}.

Once we have these points y!,...,y? and the hyperplane, say H, passing throuhg them
we see the following lemma. See Fig. 2.

Lemma 6.3. Let HT be the half space defined by H that does not contain y°. Then
(6.7) YNOYSNKCYNYSNKNHL,CYNKNH,.

Therefore as a relaxation problem of (M P(K)) we obtain

max ¢
st. t<¢@@)+s(r—at)fori=1,..., k.
(MP(K)) zeX
y=Cur
ye KNH,.
Let V be the p x p matrix consisting of columns y! —4°,..., 47 — ¢, then the last two

constraints are equivalent to

(6.8) Cx=Vu+y’ eu>1; peRE.
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FIGURE 2. Problem (M P(K))

Clearly the optimal value of (M P(K)) provides an upper bound of the optimal value of
(MP(K)).

Once the relaxation problem is so constructed, it will be a routine to make a branch-and-
bound algorithm and we omit the description. To guarantee the convergence, however, as
the process proceeds

1. the piecewise linear approximation ® of ¢ should become better, and
2. the conical partition should become finer.

Everytime an optimal solution (x(K),y(K),t(K)) of Problem (M P(K)) is obtained, the
set of points z!,...,2* is incremented by z(K), which improves the approximation ac-
curacy of ®. Concerning the conical partition, the desired property is referred to as

exhaustiveness and defined as

Definition 6.4. The partition procedure is said to be ezhaustive when 0, K* is a ray for
any nested sequence {K*},—, . of cones generated by the procedure.

See Horst and Tuy [16] for a full detail of exhaustiveness.

Theorem 6.5. Assume that the conical partition procedure is exhaustive. Then every
cluster point (x*,y*,t*) of the sequence of points (x¥,y",t") generated by the branch-and-
bound algorithm is a solution of Master Problem (MP). Hence z* is a solution of (Pw ).

Preliminary computational results are reported in Thoai [39] for linear case. He ran
the algorithm on randomly generated test problems with p = 2 to 4, m = 10 to 50 and
n = 35 to 250, and reported the average number of iterations, the maximal number of
cones stored at an iteration and the average CPU time.

7. LAGRANGEAN RELAXATION METHODS

White [42] considered Problem (Pg) with linear function ¢(xz) = dz and presented
several equivalent formulations. Dauer and Fosnaugh [11] considered the problem with
quasi-convex function ¢ and showed a way of converting it to a bicriteria problem, which
could be viewed as a Lagrangean relaxation of Problem (Pg). An, Tao and Muu [2] showed
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that there is no duality gap for a sufficiently large Lagrangean multiplier. We will explain
the common idea in terms of the Lagrangean relaxation method. The central role will be
played by the gap function g: X — R defined by

(7.1) g(z) =max{eCz’' |2/ € X;Ca’ > Cx} —eCu.

We call a point 2’ that attains the maximum above a projected point of z. It is easily seen
from the theory of parmetric linear program that g is a piecewise linear concave function
on X. As stated in Theorem 2.6 g(z) > 0 for € X, and z € Xg if and only if g(z) =0
for z € X. See Theorem 4.1 of Benson [6]. Thus Problem (Pg) is reformulated as follows:

max ¢(x)
(PE) st. zeX
g9(z) <0.

Note that the last constraint g(z) < 0 is a reverse convex constraint, which has been
attracting attention, see for example Horst and Tuy [16] and Tuy [40]. To solve Problem
(Pg) we combine the objective function ¢(x) with the constraint g(x) < 0 multiplied by a
Lagrangean multiplier 7 > 0 to have the Lagrangean relazation problem

z(m) = max ¢(z) — mg(x)
s.t. xzeX.

(Q(m))

In the sequel z(m) denotes an optimal solution of (Q(r)) and 2'(7) denotes its projected
point. Note that (Q(7)) is a quasi-convex maximazation and that the optimality is always
attained at a vertex of X. As we assume that X is a polytope, we reformulate Problem
(Q(m)) in terms of the vertices of X and obtain

(7.2) z(m) = max {¢(v) —mg(v) |v € Xv }.

Note that for each vertex v € Xy the function ¢(v) — mg(v) is a linear function with
nonpositive slope in variable 7. In Fig. 3 are shown these linear functions as well as z(m)
depicted by a bold piecewise linear line. Notice that horizontal lines, meaning g(v) = 0,
correspond to vertices in Xg. Though the following lemmas are straightforward from this

z(m)
A

N

—~

sup (Pg)

\ .,

¢ (V)-mg(v)

FIGURE 3. 2(m) and ¢(v) — mg(v)

observation, brief proofs will be given.
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Lemma 7.1. If g(a(m)) = 0 for some m > 0, then z(m) is an optimal solution of (Pg).
Proof. For any z in Xg, which is a subset of X, we readily see ¢(z(7)) = ¢(z(7)) —
mg(x(m)) = ¢(z) — mg(z) = ¢(x). O
Concerning z(7) we have the following property.

Lemma 7.2. Let 0 < 7w < 7' and let 2'(m) be a projected point of x(w). Then

(7.3) ¢(a'(m)) < ¢(PE) < 2(n) < 2(m).

Proof. Since the projected point always lies in Xg, the first inequality is trivial. By the
definition of z(«'), it holds that ¢(x) — 7'g(z) < z(n’) for any 2 € X and also for any
z € Xg. Then we see ¢(z) < z(n') for any € Xg, which implies the second inequality.
The last inequality is derived from z(7') = ¢(x(n)) — n'g(x(7)) < ¢(x(n')) —wg(z(n’)) <
¢(x(m)) — mg(a(n)) = z(m). O

This lemma means that z(7) gives an upper bound of ¢(Pg) and also 2/(r), the projected
point of z(m), gives a lower bound. Above two lemmas suggest that solution z(r) of (Q(r))
for a sufficiently large m > 0 solves Problem (Pg). In fact, because of the finiteness of Xy
we readily see the following theorem. See Fig. 3.

Theorem 7.3. There is a m* > 0 such that for any m > ©* x(7w) is an optimal solution
of (Pg).

An, Tao and Muu showed the same result for a convex funtion ¢ in Lemma 4 of [2].
Dauer and Fosnaugh showed in [11] that z(7) converges to ¢(Pg) as m goes to infinity for
a more general setting.

They also showed that when ¢ is a linear function dz and d is a linear combination of
rows ¢*’s of C, i.e.,, d = AC for some A € Ry, the n* in Theorem 7.3 is given by [|A[lcc-
Notice that this value is 1 if d = x¢* for some i =1,...,p.

Another transformation of Problem (Pg) in White [42] is based on Theorem 2.6. Note
that Problem (Pg) is equivalent to
(7.4) max{(z) |r € X;A € Ajpu € Ry uA — AC > 0;A > e; \Cx — pub=0}.

By multiplying the bilinear constraint by 7 we have its Lagrangean relaxation
(7.5) max { ¢(z) + 1(ACx —ub) |z € X;A € A;u € Ry uA—NC > 0;\ > e},

which is to maximize a bilinear objective function under linear inequality constraints.
Several properties of this relaxation are also discussed in White [42].

8. DuAL APPROACH

Nonconvex duality is one of the most promising subject in the global optimization. We
will not go into detail of the duality theory in this paper. The readers who are interested
in it should refer Atteia and El Qortobi [3] and Thach [32, 33, 34]. In this section we will
briefly explain the dual approach of Thach, Konno and Yokota [35].

Let

(8.1) XS={y|lye R:Cy<0;cty <0forsomei=1,...,p}.
Then the efficient set Xg is written as the difference of two convex sets.

Lemma 8.1.

(8.2) Xg =X\ (X + X3).
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Proof.
Xg = {x |z € X; %’ such that Cz’' > Cux;cta’ > ¢tz for some i}
= X \ {z | 32’ such that Ca' > Cx;c'2’ > c'x for some i}
= X \ {2 | 32/ such that C(z — 2’) < 0;¢(x — 2’) < 0 for some i }
=X\{z+y|z e X;Cy<0;cy <0 for some i }
= X\ (X + X5).

Then Problem (Pg) is written as

max ¢(a)
(Pe) st ze X\ (X +X5).

Since X is now assumed to be a polytope, we show that the set X + X< can be replaced
by the interior of a closed cone. Let E be the p x p matrix all of whose elements are unity,
and for a positive parameter s define a p x p matrix Cs, sets X5 and X, by

(8.3) Cs = +sE)C
(8.4) X5 ={y|Cy <0}
(8.5) X, = X \int(X + X5),

where I is the p x p indentity matrix. Note that X is also the difference of two convex
sets.

Lemma 8.2.
(8.6) Xs={z |2z eX;3Ne Ry \ {0} such that \Csx > \Csz' for all 2/ € X }.

Proof. Let x be a point in X,. By the separation theorem, there is a v # 0 satisfying
ve > vz forall z € X + X§. Hence vx > v(z + y) holds for all y such that Csy < 0.
Applying Farkas’ alternative theorem, we have v = AC; for some A € R, \ {0}, and hence
ACsx > ACsz holds for all z € X + XSS. Noting that 0 € X§ we see that A\Csx > AC,a’
for all 2/ € X, and hence z is contained in the set on the right side.

Suppose z maximizes ACsz over X for some A € R,y \ {0}. Then clearly it also
maximizes ACsz over X + X5 and does not lie in the interior of X + X5. a

By this lemma we see that X, coincides with Xg when s is sufficiently small.
Lemma 8.3. There is an § > 0 such that X = Xg if 0 < s < §.

Proof. To show that X C Xg, choose arbitrarily x € X;. Then by the above lemma,
there is a A € Rp4 \ {0} such that z maximizes A\C,s2 over X. Here we assume that A\1 =1
without loss of generality. Substituting the definition for Cs, we see A\Cs = (A + se)C.
This and the equality (2.2)

Xg = {z|xe X;3\ € Rpy4 such that \Cz > ACz’' for V2’ € X }

of Theorem 2.6 imply that z € Xg.
By Theorem 2.6 Xg is the union of finitely many faces F1,..., FL of X such that F* is
the optimal set of maximizing ACz over X for some A\* € R, such that A1 = 1. Choose
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s > 0 satisfying —2 </\fforall(le,...,Landall'li:1,...,p,andlet@fzx\f— 2

14+sp 14-sp
for£=1,...,L,i=1,...,p. Then we readily see that 6f > 0 and
(8.7) Mo =64,
This means that F¢ C X, by Lemma 8.2, and hence Xg C X,. O

We assume hereafter that 0 < s < §. Then Problem (Pg) is equivalently rewritten as

max ¢(x)
(Pe) st. z€Xg=X\int(X +X5).
For v € R, let
(8.8) §(v) =sup{o(z) |z € Xjva =1},

where £(v) = —oo when {z |2z € X vz > 1} =0.

Definition 8.4. For Z C R" the set {v |v € Ry;vz <1 for all z € Z } is called the polar
set of Z and denoted by Z°.

See for example Section 2.14 of Stoer and Witzgall [37], and Section E of Chapter 11 in
Rockafellar and Wets [25] for the properties of polar set. We here assume that 0 € intX,
int XS # 0 and ¢ is a concave function. Then by the nonconvex duality theory of Thach [32]
we obtain the following duality theorem between Problem (Pg) and its dual problem

max &(v)

(Ds) s.t. we (X +X5)e.

Theorem 8.5. Let £(D;) denote the optimal value of (Ds), then
¢(Pg) = &§(Ds).
Proof. See Thach [32]. O
Since 0 € intX, (X + XS)° C (X5)°, which is identical to {¥Cs | ¥ € Rp+ }. Therefore
v € (X4+X$)°ifand only if v = 7C; for somey € R,y andsup{v(z +y) |z € X5y € X5} <

1. The latter condition can be replaced by sup{vz |z € X} < 1 from the definition of
X§ and v = 7C;. Letting

(8.9) I'={7]7 € Rpy;supzex 7Csz < 1},
we have

(8.10) (X+X5)°={1Cs|veT}.
Now let

(8.11) E(7) =sup{¢(z) |z € X;7Csx 2 1}.

The above argument yields an equivalent form of (Ds) in variable v € R,.

Theorem 8.6. Problem (D;) is equivalent to

max Z(7)
s.t. ~el.
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We will see that this problem is a quasi-convex maximization over a convex polyhedral
set.

Lemma 8.7. (i) I' is a convex polyhedral subset of R,.
(ii) 2 is a quasi-convex function.

Proof. The first assertion can be seen from the finitely constrained representation
F={vy|v€eRps;7Csx <1fora e Xy }.

To show the second assertion let v',v? be two point of the level set {7 |Z(7) < a},
meaning sup { ¢(x) | 2 € X;y*Cex > 1} < o for k = 1,2, and suppose sup{ ¢(z) | = €
X;(8y' + (1 = B)y*)Csx > 1} > a for some B € (0,1). Then there is & € X such that
(B + (1 - B)y*)Csz > 1 and ¢(Z) > a. For 7 either v1Cs& > 1 or v2C& > 1 holds.
Hence we obtain either sup{¢(z) | z € X;7!Csz > 1} > ¢(Z) > a or sup{¢(z) | = €
X;92Csx > 1} > ¢(&) > a, which is a contradiction. O

They exploited the outer approximation method to solve the dual problem in Theo-
rem 8.6 and proposed the following algorithm.
(0) (Initialization) Construct a polyhedral set I' such that I' C I'° and the vertex set of
I'0 is easily enumerated. Set k = 0 and go to (k).
(k) (Iteration k)
(k1) Solve the relaxed problem

max Z(7)
st. ~qelk

to obtain a solution v,
(k2) Solve the linear program

max Y*C,a
st. zelX

to obtain a vertex solution 2* and the optimal value o* = v*C,z*.

(k3) If ¢¥ < 1, meaning that v* is in I and solves max {Z(y) | ¥ € '}, then solve
max { ¢(z) | € X;7*Csz > 1} and obtain a solution z*. Stop with 2* as an
optimal solution of (Pg).

(k4) If o* > 1, meaning v* & T, reduce I'* to T*¥+*1 = I'* N {7 | yC,z* <1}. Set
k =k + 1 and go to (k).

Theorem 8.8. The algorithm terminates after a finite number of iterations and provides
an optimal solution of (Pg).

Proof. The theorem is readily seen from the fact that I" is a polyhedral set defined by a fi-
nite number of constraints each of which corresponds to a vertex of X and that {:L'k}k=o,1,,,,
generated by the algorithm is a sequence of distinct vertices of X.

The most costly step of the algorithm is (k1) the maximization of Z(v) over I'*. Thach,
Konno and Yokota [35] proposed to enumerate the vertex set of I'*+1 from that of T'* in
this step. Numerical results are reported in [35] with two different objective functions:
absolute deviation ¢(z) = — > i, wilz; — Z;| and linear function ¢(z) = — 37 | ws.
They used the enumeration method by Thieu, Tam and Ban [36] in (k1). They fixed
m = 20 and varied p = 2 to 5,n = 20 to 100, and concluded that the number of vertices
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generated through the computation does not grow very rapidly as long as p is kept small,
and also most of the computation time was spent in solving linear programs.

9. BISECTION SEARCH ALGORITHM

This section is devoted to the explanation of the algorithm proposed by Phong and
Tuyen (23] for Problem (Pg) with linear objective function ¢(x) = dx. The main idea
is the bisection method for locating ¢(Pg). Namely, they start with an interval [y, uo]
which is known to contain ¢(Pg), solve

(Pa) | Find 2 € Xg such that dz > a

for a = (€k + ux)/2 and then reduce the interval [{g,uk] to either [a,ux] when (P,) has
a solution or [lx,a] when (P,) has no solution. Thus after a finitely many iterations we
obtain an e-approximate solution.

For A € A let o(A) denote the optimal value of Problem (SC(A)), i.e.,

(9.1) o(A) =max{ACzx |z € X},
and
(9.2) Ta(A) =max {A\Cz |z € X;dx > a}.

Since X is the convex hull of its vertex set Xy and for A € A an efficient vertex solves
Problem (SC(\)), we see

Lemma 9.1. (i) o(A) =max{ACv|ve XgnN Xy } for A € A.
(it) o(-) is a piecewise linear convex function on A.

Proof. From (i) ¢ is the maximum of finitely many linear functions ACv each of which
corresponds to a vertex v of Xg N Xy. Thus it is piecewise linear convex. O

In the same way we obtain

Lemma 9.2. (i) 74()\) = max{ ACv | v is an efficient vertex of X N{x | dzx > a}}.
(it) Ta(A) < a(A) for any A € R,.
(1i1) To(-) is a piecewise linear convex function on A.
(iv) To(A) is a nonincreasing function in a € R.
Let us denote the epigraph of ¢ by epio, i.e.,
(9.3) epic = {(A\u) | (M) € Ax Ryo(A) S p}
For the existence of a solution of (P,) we have the following theorem.

Theorem 9.3. (i) Xgn{z|dz>a}#0if and only if o(X) = 74(A) for some A € A.
(ii) o(X) = 7a(A) for some A € A if and only if there is a vertex (A, i) of epio such that
i = To(A).

Proof. We show only the first assertion because the second assertion is clear from the
piecewise linearity of ¢ and the fact that 7, < 0.

Supposet x € Xg N {x | dx > a}, then ¢(A\) = ACxz for some A € A. Since dx > a,
ACz < 14(A) < g(A). Therefore a(\) = 74(N).

Suppose d(\) = 7o(A) and let  be a point that attains max { \Cz |z € X;dz > a} =
Ta(A). Then x maximizes AC'z over X, meaning z € Xg. a
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FIGURE 4. ¢ and 7,

Now let W be a subset of Xg N Xy and let

(9.4) ow(A) =max{ACv|ve W}
Then for any A € A
(9.5) ow(A) < a(N)

and we have the following corollary from Theorem 9.3 and the piecewise linearity of ow (A).

Corollary 9.4. (i) 7a(X) <ow(A) for any A € A, then XN {z|dx >a} =0.
(1t) Ta(A) = ow(A) for some X € A if and only if there is a vertex (A, i) of epiow such
that i < To(N).

This corollary means that we can check whether 7,(A\) = ow(A) at some A € A by
evaluating 7,()\) at vertices (M, 1) of epiow. If 7,(A) < [ for every vertex (X, ), we
conclude that 7, < o, and hence XgN{x | dz > a} = @ by (i) of Theorem 9.3. Otherwise,
i.e., we have found a vertex (A, 1) with 74(\) > fi. Two possible cases occur. If o(A) < [,
implying o(A\) = i = T4()\), we see that Xp N {z|dz >a} # 0 by Theorem 9.3. If
o(A\) > [i, a vertex U of X that attains max{\Cz |2z € X} is not in W. Then W is
incremented by this vertex ¥ to make a better underestimation owu(z) of a.

Lemma 9.5. The above procedure terminates after a finite number of incrementation of
W and shows whether XpN{a|dx > «} is empty or not.

Proof. Clear from the finiteness of the vertices of X. O
The main technique used in the procedure is generating the vertex set of epi Owu(s) from

that of epiow. Note first that epiow is represented by finitely many linear inequalities
each of which corresponds to a vertex of W:

(9.6) epiow = {(\u) | (Mp) e AXRyju—ACv>0forveW}.

Suppose that we have known the vertex set of epiow, the second case above occurs and
we find a vertex © of X by maximizing ACx over X. This vertex will add an inequality
pu— AC? > 0, which cuts off the vertex (\,fi) of epiow. To generate the vertex set of
epi owyu(y) we have only to generate the vertex set of (epiow) N { (A u) | p—ACo=0}.
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There have been proposed a lot of algorithms for this purpose, e.g., Horst, de Vries and
Thoai [14], Chen, Hansen and Jaumard [10].

For a given tolerance ¢ > 0 we obtain an interval (£, ux] after finitely many bisections
such that (P,,) has no solution while(P,,) has a solution together with A € A at which
o coincides with 7,,. Then solve max { A\Cx | € X;dx > £, } to obtain 2*. This is an
e-approximate solution of Problem (Pg), i.e., 2* € Xg and dz* > dx — ¢ for any z € Xg.

In [23] is reported that an illustrative example of p = 2,n = 3,m = 4 required 11
iterations for € = 0.1.

10. OTHER METHODS

Benson and Sayin [8] consider four special cases of linear (Pg), and propose simple
linear programming procedures. Benson and Lee [7] consider (MC) with two criteria and
propose an algorithm for maximizing an upper semicontinuous function ¢. Since (MC) has
only two criteria, the outcome set Y is of dimension at most two, and Yz is of dimension
at most one, i.e., Y consists fo edges and vertices. However, unlike the set X, the linear
inequalities defining Y are not known and it offers difficulties of enumerating the efficient
edges and vertices of Y.

Thoai [38] considers the case where ¢(x) = p(Cz) and propose an outer approximation
algorithm. He assumes that ¢ is a quasi-convex function and nondecreasing in the sense
that ¢’ >y implies p(y') > p(y). It is seen that

(10.1) max{¢(Cz) |z € Xg} =max{¢(Cz) |z € X }.

Thus when ¢ is a linear function, Problem (Pg) can be solved by a linear programming
technique.

His algorithm makes a sequence of polyhedral sets Y* shrinking to the lower outcome
set Y=, solves the relaxation problem max { p(y) | y € Y } to find a solution y*, where YE
is the set of efficient points of Y*. If y* € Y<, any point € X with Ca = y* is an optimal
solution of (Pg). Otherwise, it generates a cutting plane defined by ¢¥(y) = 0 to cut y* off
the set Y'* and reduces Y* to Y**!N{y |y € Rp; €*(y) < 0}. Let y? = max{y; |y e Y=}.
Then the initial polyhedral set Y is given by Y° = {y |y € Rp;y <y°}. Since ¢ is
quasi-convex, a vertex of Y* attains max { p(y) | y € Y& }. Thus for solving the relaxation
problem he proposes to compute all the vertices of Y**! from the vertex set of Y*, for
which several algorithms have been proposed, e.g., Chen, Hansen and Jaumard [10], Horst,
de Vries and Thoai [14]. See also Section 4.2, Chapter II of Horst and Tuy [16]. The key
of the algorithm is the step of checking whether y* lies in Y< and generating the cutting
plane. Note that X = {a |z € R%; Az = b}, then y* € Y'S if and only if the system

(10.2) y*<Cx; Ax=b, x>0

has a solution x. By the linear programming duality theorem this is equivalent to

(10.3) max { \y* + ub | A\C + uA < 0;A >0} =0.

When this problem has a positive optimal value, y* ¢ Y < and further £5(y) = A*y+ukb = 0
is the desired cutting plane, where (\*, u*) is an optimal solution of this problem. In
Theorem 4.1 of Thoai [38] the procedure is shown to be finite. Thoai also considers the
nonlinear case, namely ¢(z) = p(c!(x),...,P(x)), ¢!(z)’s are concave functions, and also

X is a closed convex set defined by nonlinear inequalities. A preliminary experiment for
the quadratically constrained problems with quadratic ¢*’s shows that the most expensive
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step of the algorithm is the enueration of vertices, whose number grows rapidly as the
number p of criteria increases.

One of the often occured objective functions ¢ is ¢(z) = —c'z, i.e., (Pg) is to minimize
the ith objective function ¢z of Cz. To estimate the optimal value of this problem, the
process of using payoff table was proposed by several authors. See for example Section 9.13
of Steuer {30]. Consider the linear program

(10.4) max {cdlz |z € X}

and let 27 be its optimal solution for j = 1,...,p. Then the payoff table is the matrix
whose (i, j)-element is c*2?. The popular way of estimating min{c*z |z € Xg} is to

TABLE 1. Payoff Table

1 clat cl2? claP
p Pzl Pa? cPaP

scan the table and determine the minimum of each column. Notice that this column-wise
minimum value gives neither an upper bound nor an lower bound of min {c‘z | z € Xg }
because 27 might not be efficient. In order to ensure that z7 is efficient, lexicographical
maximization could be employed, i.e., to find z! first maximize ¢!z over X and obtain
the optimal value 2!, maximize c?z over X N {z | ¢!z = 2' }, and maximize c3x over X N
{z | ctx = z';¢22 = 22 } and so on. Then each column-wise minimum of the payoff table
thus obtained gives an upper bound of min{c‘z | z € Xg }. In Isermann and Steuer [19],
and Reeves and Reid [24] is reported how a good approximation is obtained from the

payoff table based on the computational experience of randomly generated problems.

11. CONCLUSION

Most of the algorithms reviewed in this paper anticipate a small number of objective
functions of Problem (MC) and convert Problem (Pg) to a global optimization problem
in p or so variables. However, there are interesting and important problems that do not
enjoy the low dimensionality of p. An example is the minimum maximal flow problem
that has a close relation with the uncontrolable flow problem raised by Iri [17, 18]. Let
(V,s,t, E,0%7,07,c) denote a network with node set V, arc set E, source node s, sink node
t, incidence function 8% and d~, and a nonnegative capacity c. for each arc e. A vector
z € RIEl is said to be a feasible flow if it satisfies the conservation equations and capacity
constraints:

(11.1) Z Te = Z ze forallveV
dte=v O0—e=v
(11.2) 0<z.<ceforallecE.

A feasible flow z is said to be a maximal feasible flow if there is no feasible flow 2’ such
that 2’ > = and 2’ # x. The flow value, denoted by v(z) is

(11.3) v(@)= Y ze— Y Ze

Ote=s O~ e=s
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The problem is to find the maximal flow with the minimum flow value. Let (MC) be
defined for C = I, the indentity matrix of dimension |E|, and the set of feasible flows X,
and let ¢(z) = —v(x). Then the minimum maximal flow problem reduces to Problem ( Pg).
Problem (M C) has the objective functions as many as the variables, we cannot apply the
algorithms that exploit the low dimensionality of p. Though an algorithm based on the
outer approximation is proposed in [29], it does not work efficiently. Further research is
expected.

Even when p is small, few algorithms are yet tried and tested, and we hardly derive any
conclusion about the efficiency of the algorithms. Organized computational experiment
should be carried out.
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