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Abstract

This paper presents necessary and sufficient conditions for the ex-
istence of a finite-dimensional quasilinear utility function whose lexi-
cographically ordered utility vectors preserve a decision maker’s pref-
erence order on a mixture space.

1 Introduction

The aim of the paper is to identify and discuss axioms for a binary relation
� on a mixture space M that are necessary and sufficient for the existence of
a finite-dimensional quasilinear utility function U on M whose lexicograph-
ically ordered utility vectors preserve the ordering �. A set M is said to be
a mixture space if, for all 0 ≤ λ ≤ 1 and all ordered pair (x, y) ∈M ×M ,
there is a unique element xλy in M such that, for all x, y, z ∈ M and all
λ, µ ∈ [0, 1],

M1. x1y = x,

M2. xλy = y(1− λ)x,

M3. (xµy)λy = x(λµ)y.

M4. (xµy)λz = x(λµ)
(
y
λ(1− µ)
1− λµ

z

)
for which λµ 6= 1.

An n-dimensional utility function U = (u1, . . . , un) on M lexicographically
preserves the ordering � if, for all x, y ∈M ,

x � y ⇐⇒ U(x) >L U(y),

where U(x) >L U(y) means that U(x) 6= U(y) and uk(x) > uk(y) for
the smallest k for which uk(x) 6= uk(y). We say that U = (u1, . . . , un) is

∗Institute of Policy and Planning Sciences, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba, Ibaraki 305-8573, Japan; e-mail: nakamura@shako.sk.tsukuba.ac.jp

1



quasilinear if, for each k = 1, . . . , n,

uk(xλy) = λuk(x) + (1− λ)uk(y)

whenever 0 ≤ λ ≤ 1, uk(x) 6= uk(y), and uj(x) = uj(y) for all j < k.
Hausner (1954) was the first to develop a lexicographic extension of

the von Neumann and Morgenstern expected utility theory. His axioms
yield an infinite-dimensional “linear” utility function U on M , whose lexi-
cographically ordered infinite-dimensional utility vectors preserve � on M ,
where linearity of U means that every component u of U is linear on M ,
i.e., for all x, y ∈ M and all 0 ≤ λ ≤ 1, u(xλy) = λu(x) + (1 − λ)u(y).
Hausner noted that the dimension of U is finite if the dimension of M is
finite. Blume, Brandenburger, and Dekel (1991) used this fact to derive a
lexicographic probability system for decision making under uncertainty. In
general, however, Hausner’s nonconstructive method says nothing about the
size of dimensionality.

A hierarchical structure of finite-dimensionality was first axiomatically
explored by Fishburn (1971, 1982) who presented a direct and constructive
derivation of a finite-dimensional linear utility function U on a mixture space
M . Several applications of this structure have recently appeared in a series
of joint works by Fishburn and LaValle. For example, LaValle and Fishburn
(1991, 1992) developed lexicographic extensions of subjective expected util-
ity and derived the notion of matrix probabilities. Fishburn and LaValle
(1992) examined decomposition structures of lexicographically ordered mul-
tiattribute expected utility.

Fishburn’s hierarchical axiom is not preference-based so that it is not
described directly by the preference order � on M . Recently, Nakamura
(2000) developed such a preference-based hierarchical axiom which together
with two independence axioms, also employed by Fishburn’s hierarchical
structure, is necessary and sufficient for the existence of a finite-dimensional
linear utility function lexcicographically preserving� on a mixture space M .
This paper generalizes Nakamura’s result to the quasilinear case by intro-
ducing an axiom known as betweeness, dropping the independence axioms,
and weakening his hierarchical axiom. We also show that the hierarchical
axiom can be much simplified for the linear case.

The paper is organized as follows. Section 2 introduces and discuss a nec-
essary and sufficeint axiom system for the existence of a finite-dimensional
quasilinear utility function U lexicographically preserving �, and presents
the main theorem. Also, a simplified axiom system for the existence of a
finite-dimensional linear utility function is presented. Then Section 3 pro-
vides the sufficiency proofs of the theorems.

2



2 Axioms and Theorems

Let ∼ and � be defined in the ususal way: for all x, y ∈ M , x ∼ y iff
¬(x � y) and ¬(y � x), and x � y iff x � y or x ∼ y. The relation �
is asymmetric if, for all x, y ∈ M , x � y implies ¬(y � x), and negatively
transitive if, for all x, y ∈ M , x � y implies x � z or z � y. The binary
relation � is said to be a weak order if it is asymmetric and negatively
transitive.

The following two independence axioms are necessary for lexicographic
linear utility representations.

Independence Axiom I1. For all x, y, z ∈ M and all 0 < λ < 1, if
x � y, then xλz � yλz.

Independence Axiom I2. For all x, y, z ∈ M and all 0 < λ < 1, if
x ∼ y, then xλz ∼ yλz.

We say that axiom I1 (resp., I2) holds for a triple (x, y, z) if xλz � yλz
(resp., xλz ∼ yλz) for all 0 < λ ≤ 1. If (M ,�) has a lexicographic linear
utility representation, then axiom I1 (resp., I2) holds for every triple (x, y, z)
for which x � y (resp., x ∼ y).

It is well known that a weakly ordered � on M satisfies the following
Archimedean axiom together with axiom I1 if and only if dimension of a
linear utility function U that represents � must be one, i.e., U reduces to a
unidimensional linear function on M .

Archimedean Axiom AA. For all x, y, z ∈M , if x � y and y � z, then
xαz � y for some 0 < α < 1, and y � xβz for some 0 < β < 1.

We shall divide Archimedean assertions in axiom AA into two pieces for
the later discussion as follows:

Upper Archimedean Axiom UAA. For all x, y, z ∈M , if x � y and
y � z, then xαz � y for some 0 < α < 1.

Lower Archimedean Axiom LAA. For all x, y, z ∈ M , if x � y and
y � z, then y � xβz for some 0 < β < 1.

It will be shown in Lemma 5 of the next section that axioms UAA and LAA
are equivalent if a weakly ordered � on M satisfies the independence axiom
I1. We say that axiom UAA (resp., LAA) holds for a triple (x, y, z) if x � y,
y � z, and xαz � y (resp., y � xαz) for some 0 < α < 1.

In what follws, we shall introduce necessary and sufficient axioms for
quasilinearity. To this end, we need to relax the Archimedean axiom AA
and the independence axioms I1 and I2, since they are not necessary for
quasilinearity. First we examine a simple example to see the relations among
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essentiality, defined below, of lexicographic quasilinear representation and
axioms UAA, LAA, I1, and I2. Let U = (u1, . . . , un) be a lexicographic
quasilinear utility representation for (M ,�). Given x1, . . . , xm ∈ M , a
component function uk is said to be essential for an m-tuple (x1, . . . , xm)
if ui(x1) = · · · = ui(xm) for all i < k, and uk(x) 6= uk(y) for some x, y ∈
{x1, . . . , xm}.

Suppose that x � y, y � z, and uk is essential for (x, y, z). Then it is
seen to be necessary from the representation U that uk is essential for the
pair (x, y) (resp., (y, z)) if and only if axiom UAA (resp., LAA) holds for
(x, y, z). It should be also observed that axiom I1 holds for (x, y, z) (resp.,
(y, z, x)) if axiom UAA (resp., LAA) holds for (x, y, z). It also follows as a
necessary requirement that axiom I1 holds for triples (x, y, x) and (x, y, y)
whenever there is a component function uk that is essential for the pair (x, y).
Furthermore, axiom I2 holds for triples (x, y, x) and (x, y, y) whenever there
is no component function that is essential for the pair (x, y).

To illustrate the above relations, we consider the following example.

Example 1 Suppose that (M ,�) has a two-dimensional quasilinear rep-
resentation U = (u1, u2). Fix x, y, z, w ∈ M , and define u1(x) = 1,
u1(y) = u1(z) = 0, u1(w) = −1, u2(x) = 1, u2(y) = u2(z) = u2(w) = 0,
and, for all 0 < λ < 1, u2(xλw) = −1, u2(zλw) = 0, and

u2(xλy) =
{

1 if λ is rational,
0 otherwise,

u2(xλz) =
{

0 if λ is rational,
1 otherwise.

Since y ∼ z, x1
2y � x1

2z, and x 1√
2
z � x 1√

2
y, axiom I1 failes to hold for

(x1
2y, x

1
2 , x), and axiom I2 fails to hold for (y, z, x). Observe that u1 is

essential for (y, z, x) and (x1
2y, x

1
2z, x), but not for (y, z) and (x1

2y, x
1
2z).

Since u2 is essential for (x1
2y, x

1
2z) and (x1

2y, x
1
2z, x

3
4w), axiom I1 holds for

(x1
2y, x

1
2z, x

3
4w). Axiom I1 also holds for (z, w, x), (x, y, x), and (x, y, y),

since u1 is essential for (z, w, x), (z, w), and (x, y). Essentiality of u2 for
(y, x1

2w) implies axiom I1 holding for (y, x1
2w, y) and (y, x1

2w, x
1
2w). Since

u1 and u2 are not essential for (y, z), axiom I2 holds for (y, z, z) and (y, z, y).

Now we state necessary and sufficient axioms as follows, which apply to
all x, y, z, x1, . . . , xn+1, y1, . . . , yn+1 ∈ M , all 0 < λ < 1, and all positive
integers n.

Axiom A1. � on M is a weak order.

Axiom A2. If x � y, then x � xλy � y.
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Axiom A3. If x � y and y � z, then

xαz � y for some 0 < α < 1 =⇒ x1
2z � y

1
2z;

y � xβz for some 0 < β < 1 =⇒ x1
2y � x

1
2z.

Axiom A4(n). If, for i = 1, . . . , n, either xi = xi+1 or yi = yi+1, and,
for all 0 < λ < 1,

xi � yi and xiλxi+1 � yiλyi+1 whenever 1 ≤ i ≤ n is odd,
yi � xi and yiλyi+1 � xiλxi+1 whenever 1 ≤ i ≤ n is even,

then ¬(yn+1 � xn+1) if n is odd, and ¬(xn+1 � yn+1) if n is even.

A2 is known as the betweenness axiom, which requires that the independence
axiom I1 holds for triples (x, y, y) and (x, y, x) for all x, y ∈ M such that
x � y. A3 says that if either the upper or lower Archimedean axiom holds
for a triple (x, y, z), then a weak requirement of the independence axiom I1,
i.e., λ = 1

2 , holds respectively for (x, y, z) and (y, z, x). It will be shown in
Lamma 2 in the next section that axioms A1 and A2 force axiom I1 to fully
hold for (x, y, z) and (y, z, x) in respective cases. A4(n) is a relaxation of
Archimedean axiom AA in which n corresponds to a dimension of quasilinear
representations. Nakamura (2000) adopted a stronger vesion of A4(n) in
which it is dropped that, for i = 1, . . . , n, either xi = xi+1 or yi = yi+1.
Assuming that A1 and A2 hold, A4(1) is equivalent to the Archimedean
axiom AA.

The main theorem of the paper is stated as follows.

Theorem 1 Let n be a positive integer. Axioms A1–A3, and A4(n) hold
if and only if (M ,�) has an at most n dimensional lexicographic quasilinear
representation.

A proof for sufficiency of the axioms will be deferred to the next section.
Here we demonstrate neccesities of the axioms. Suppose that (M ,�) has a
lexicographic quasilinear representation U = (u1, . . . , un).

It is easy to see that axiom A1 is necessary for the representation. For
axiom A2, assume x � y, so that there is an integer 0 ≤ k < n such that
ui(x) = ui(y) for i = 1, . . . , k and uk+1(x) > uk+1(y). By quasilinearity,
ui(x) = ui(xλy) for i = 1, . . . , k and uk+1(x) > uk+1(xλy) > uk+1(y) for all
0 < λ < 1. Hence x � xλy � y.

Suppose that x � y, z � w, and either x = z or y = w. Let uk and u`
be respectively essential for the pairs (x, y) and (z, w). Then it follows from
quasilinearity of U that k < ` if and only if xλz � yλw for all 0 < λ < 1.

To show necessity of A3, assume that x � y and y � z. Let uk and u`
be respectively essential for the pairs (x, y) and (y, z). If xαz � y for some
0 < α < 1, then by the preceding paragraph, k ≤ `. Since uk(y) ≥ uk(z)
and uk(x) > uk(y), it follows from quasilinearity that ui(xλz) > ui(yλz) and
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uk(xλz) > uk(yλz) for all 0 < λ < 1 and i = 1, . . . , k−1. Hence x1
2z � y

1
2z.

When yxβz for some 0 < β < 1, it similarly follows that x1
2y � x

1
2z.

To show necessity of A4(n), assume that the hypotheses of the axiom
hold with yn+1 � xn+1 if n is odd, and xn+1 � yn+1 if n is even. For
i = 1, . . . , n + 1, let uki

be essential for a pair (xi, yi). Then ki < ki+1 for
i = 1, . . . , n. However, kn+1 ≤ n, a contradiction. Hence A4(n) holds for U .

Since the independence axiom I1 imlplies axioms A2 and A3, it follows
from Theorem 1 that axioms A1, I1, and A4(n) are also sufficient for the ex-
istence of an at most n dimensional lexicographic quasilinear representation.
Our proof of Theorem 1 shows Fishburn’s hierarchical axiom with height m
for some m ≤ n holds. Fishburn (1982, Theorem 4 in Chapter 4) showed
that axioms A1, I1, and I2 together with his hierarchical axiom with height
m is sufficient for the existence of an m dimensional lexicographic linear
representation. Therefore, It turns out that axioms A1, I1, I2, and A4(n)
are necessary and sufficient for the existence of an at most n dimensional
lexicographic linear representation.

We show below that the extended Archimedean axiom A4(n) can be
further simplified. To see this, consider a simple case. We assume that
(M ,�) has a two dimensional lexicographic quasiliear representation U =
(u1, u2). Axiom A4(2) reads as follows: for all x1, x2, x3, y1, y2, y3 ∈M ,

Axioms A4(2) if either x1 = x2 or y1 = y2, either x2 = x3 or y2 = y3,
x1 � y1, y2 � x2, x1λx2 � y1λy2, and y2λy3 � x2λx3 for all 0 < λ < 1,
then ¬(x3 � y3).

The requirements of the axioms can be divided into following two statements
(i) and (ii).

(i) If yλz � x and x � zλw for all 0 < λ < 1, then

y � x � z =⇒ ¬(w � x);
z � x � w =⇒ ¬(x � y).

(Note: leting y1 = y2 = y3 = x, x1 = y, x2 = z, and x3 = w gives the former
claim. The latter follows from letting x1 = x2 = x3 = x, y1 = w, y2 = z,
and y3 = y.)

(ii) If xλz � y and yλw � z for all 0 < λ < 1, then

w � z � y =⇒ ¬(y � x);
x � y � z =⇒ ¬(z � w).

(Note: the first claim obtains by letting x1 = w, x2 = x3 = y, y1 = y2 = z,
and y3 = x. The second by letitng x1 = x, x2 = x3 = z, y1 = y2 = y, and
y3 = w.)

6



Assuming that axioms A1 and A2 hold, the two claims of (ii) can be
respectively restated as follows:

(a) If w � z � y � x and yλw � z for all 0 < λ < 1, then y � xαz for
some 0 < α < 1.

(b) If x � y � z � w and xλz � y for all 0 < λ < 1, then z � yαw for
some 0 < α < 1.

It will be clear from the proof of Thoerem 2 below that, assuming A1, I1,
and I2, (b) implies (a) and (i). It may be regarded that (a) and (b) are
respectively generalizations of the upper and lower Archimedean axioms.
Thus n dimensional version of (b) statement is described as axiom A4∗(n)
below, understood as applying to all x1, . . . , xn+2 ∈ M and all positive
intergers n.

Axiom A4∗(n). If x1 � x2 · · · � xn+2 and xkλxk+2 � xk+1 for all 0 <
λ < 1 and k = 1, . . . , n− 1, then xn+1 � xnαxn+2 for some 0 < α < 1.

Note that axiom A4∗(1) is tantamount to the lower Archimedean axiom
LAA.

The implication of A4∗(n) is stated as follows.

Theorem 2 Let n be a positive integer. Axioms A1, I1, I2, and A4∗(n)
hold if and only if (M ,�) has an at most n dimensional lexicographic linear
representation.

A sufficiency proof will be deferred to the next section.
Before moving on to sufficiency proofs of the theorems, we show a simple

example to illustrate a difference between quasilinear and linear representa-
tions. Let X be a nondegenerate real interval with P the set of all gambles
on X. A gamble is a simple probability distribution P on X such that
P (Y ) = 1 for some finite subset Y of X, and

∑
x∈X P (x) = 1. A mixture

of two gambles P and Q with respect to a number 0 ≤ λ ≤ 1 is defined to
be a comvex combination PλQ which is also a gamble yielding an outcome
x ∈ X with probability λP (x) + (1− λ)Q(x). Hence, P is a mixture space.

Let E(f(x), P ) =
∑

x∈X f(x)P (x) be the expected value of a real valued
function f on X with respect to P . Let � be a binary is preferred to relation
on P. Suppose that, for all P,Q ∈P,

P � Q ⇐⇒ (E(x, P ),−
∑
y∈X

(y − E(x, P ))2)

>L (E(x,Q),
∑
y∈X

(y − E(x,Q))2).

If elements in X represent amounts of money considered as potential incre-
ments to present wealth, this representation of � says that one gamble is
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preferred to a second if and only if the first has a larger expected monetary
return, or the first has a smaller variance whenever the expected returns
are equal. It is easy to see that (P,�) has a two-dimensional lexicographic
linear representation (x,−x2), i.e., for all P,Q ∈P,

P � Q⇐⇒ (E(x, P ),−E(x2, P )) >L (E(x,Q),−E(x2, Q)).

There is no reason, however, why the dispersion of monetary returns for a
gamble be measured by variances.

It might be appropriate to measure the dispersion by a more general
measure which may also depend upon the expected values. Let V be a real
valued function on the 2-dimensional Euclidean space R

2 for which V (τ, µ)
is nondecreasing in τ > 0 and nonincreasing in τ < 0, and V (0, µ) = 0
for all µ ∈ R. Then

∑
y∈X V (y − E(x, P ), E(x, P )) may be regarded as a

generalized variance of P , which may depend on mean values. Adopting V ,
a possible lexicographic quasilinear representation may read as follows: for
all P,Q ∈P,

P � Q ⇐⇒ (E(x, P ),−
∑
y∈X

V (y − E(x, P ), E(x, P )))

>L (E(x,Q),−
∑
y∈X

V (y − E(x,Q), E(x,Q))).

A more specific measure for the generalized variance V might be

V (x− µ, µ) = |x− µ|σ(µ),

where the σ(µ) = 2 case reduces to the above lexicographic linear represen-
tation.

3 Sufficiency Proofs

Throughout the section we shall assume that M is a mixture space. We note
that M1 through M3 imply that, for all x, y ∈M and all α, β, γ ∈ [0, 1],

M5. (xβy)α(xγy) = x(αβ + (1− α)γ)y.

Sufficiency Proof of Theorem 1 Suppose that axioms A1–A3 and A(n)
for some integer n > 1 hold. We shall prove the sufficiency of the axioms in
three steps. In Step 1, we show that, for every nonempty closed preference
interval, defined below, there is a linear function on it that weakly repre-
sents � restricted to the interval. Then in Step 2, Fishburn’s hierarchical
axiom with height n together with axioms A1–A3 implies the existence of n-
dimensional lexicographic quasilinear representation. Finally, in Step 3, our
weak Archimedean axiom A4(n) implies the hierarchical axiom with height
m ≤ n.
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Step 1. Following Fishburn (1982), we define a closed preference interval,
denoted 〈x, y〉, by

〈x, y〉 = {z ∈M : x � z � y}.

It follows that 〈x, y〉 is empty if y � x, since � is a weak order. By N ,
we shall denote the set of all nonempty closed preference intervals with
nonindifferent end points, i.e., N = {〈x, y〉 : x � y}. When 〈x, y〉, 〈z, w〉 ∈
N , the minimal element in N that includes both 〈x, y〉 and 〈z, w〉 is easily
seen to be 〈x,w〉 ∪ 〈z, y〉.

The aim of the step is to prove the following claim.

Claim 1. Suppose that 〈x, y〉 ∈ N . Then there is a unique linear function
φxy on 〈x, y〉 such that φxy(x) = 1, φxy(y) = 0, and, for all z, w ∈ 〈x, r〉,
z � w =⇒ φxy(z) ≥ φxy(w).

The proof of the claim is deferred to the end of this step.
To prove the claim, we need the following three lemmas.

Lemma 1 (1) If x ∼ y, then x ∼ xλy for all 0 < λ < 1.
(2) If x � xαy or xαy � y for some 0 < α < 1, then x � y.
(3) If x � y and x � z, then x � yλz for all 0 < λ < 1; if y � x and
z � x, then yλz � x for all 0 < λ < 1.

Proof. (1) Suppose that x ∼ y and xαy � y for some 0 < α < 1. Then
we shall derive a contradiction. When y � xαy, a similar contradiction
obtains. Hence by the definition of ∼, the desired result obtains.

By A1, A2, and M2, xαy � (xαy)βy � y for some 0 < β < 1, and
(xαy)βy � xγ[(xαy)βy] for all 0 < γ < 1. We have

xγ[(xαy)βy] = xγ[x(αβ)y] (by M3)
= xγ[y(1− αβ)x] (by M2)
= [y(1− αβ)x](1− γ)x (by M2)
= y(1− γ)(1− αβ)x (by M3)
= x(γ + αβ − αβγ)y (by M2).

Let γ = α(1−β)/(1−βα), so γ+αβ−αβγ = α. Thus xγ[(xαy)βy] = xαy,
a contradiction.

(2) This follows from (1) and A2.

(3) This follows from (2) and A1. 2

Lemma 2 (1) If x � y and y � z, then

xαz � y for some 0 < α < 1 =⇒ xλz � yλz for all 0 < λ < 1;
y � xβz for some 0 < β < 1 =⇒ xλy � xλz for all 0 < λ < 1.
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(2) If x � y, y � z, xαz � y, xβz � y, and 0 < α < β < 1, then
xλ(xβz) � xλy and zλ(xβz) � zλy for all 0 < λ < 1.
(3) If x � y, y � z, y � xαz, y � xβz, and 0 < α < β < 1, then
xλy � xλ(xαz) and zλy � zλ(xαz) for all 0 < λ < 1.

Proof. (1) Suppose that x � y, y � z, and xαz � y for some 0 < α < 1.
When y � xβz for some 0 < β < 1, the proof is similar.

First we show that xλz � yλz for all 1
2 ≤ λ < 1. Let 0 ≤ µ < 1. Note

that, by A1 and A2, x � y � yµz, and

xα(1−µ)
1−αµ (yµz) = xα(1−µ)

1−αµ (z(1− µ)y) (by M2)
= (xαz) 1−µ

1−αµy (by M4)
� y. (by A2)

Then by A3, M2, and M3, x1
2(yµz) � y 1

2(yµz) = y 1+µ
2 z. It follows from

Lemma 1(2) that x1+µ
2 z � y 1+µ

2 z, since

x1
2(yµz) = x1

2 [(y 1+µ
2 z) 2µ

1+µz] (by M3)
= x1

2 [z 1−µ
1+µ(y 1+µ

2 z)] (by M2)
= (x1+µ

2 z) 1
1+µ(y 1+µ

2 z) (by M4)
= (y 1+µ

2 z) µ
1+µ(x1+µ

2 z) (by M2)

Terefore, 1
2 ≤

1+µ
2 < 1, so that xλz � yλz for all 1

2 ≤ λ < 1.
Since x � y and xαz � y, we have

xλ(xαz) = (z(1− α)x)(1− λ)x (by M2)
= z(1− α)(1− λ)x (by M3)
= x(α+ λ− αλ)z. (by M2)
� y (by Lemma 1(3))

Then by M3 and A3,

(x(α+ λ− αλ)z)1
2z = xα+λ−αλ

2 z

= (x1
2z)(α+ λ− αλ)z

� y 1
2z.

Since x1
2z � y 1

2z � z, the analysis of the preceding paragraph applies to
obtain that for all 1

2 ≤ µ < 1,

(x
1
2
z)µz � (y

1
2
z)µz.

Letting µ = 2λ, this is rearranged, by M3, to give xλz � yλz for all 1
22 ≤ λ <

1
2 . This process continues indefinitely to conclude that, given any positive
interger n,

xλz � yλz for all 1
2n ≤ λ < 1

2n−1 .

10



This completes the proof of (1).

(2) Suppose that x � y, y � z, xαz � y, xβz � y, and 0 < α < β < 1.
The latter claim in (2) follows from (1). Since, by A2, x � xβz, we are to
show that xβz � xγy for some 0 < γ < 1, so that the former claim follows
again from (1).

Suppose on the contrary that there is no 0 < γ < 1 such that xβz � xγy.
Thus it follows from A1 and A2 that xλy � xβz for all 0 < λ < 1. Take
any 0 < δ < β−α

1−α . Then, by A2, xβ−α1−α y � xβz � z. We note that

(xβ−α1−α y)β(1−α)(1−δ)
K z = (y 1−β

1−αx)β(1−α)(1−δ)
K z (by M2)

= ((y(1− δ)x) 1−β
(1−δ)(1−α)x)β(1−α)(1−δ)

K z (by M3)

= (xδy)β(1−β)
K (xβz) (by M2, M4)

� xβz, (by A2)

where K = (1−α)(1−δ)−(1−β)2. Therefore, by (1), (xβ−α1−α y)λz � (xβz)λz
for all 0 < λ < 1. Let λ = α/β, so we obtain

(xβ−α1−α y)αβ z = xα(β−α)
β(1−α) (z (β−α)(1−α)

β−2αβ+α2 y) (by M2, M4)
= (xαz) β−α

β(1−α)y (by M4)
� (xβz)αβ z
= xαz. (by M3)

Since xαz � y, A2 gives

xαz � (xαz) β−α
β(1−α)y,

a contradiction.

(3) This is similar to (2). 2

Lemma 3 (1) If 〈x, y〉 ∈ N and λ > µ, then xλy � xµy.
(2) If 〈x, y〉 ∈ N and z ∈ 〈x, y〉, then there is a unique λ such that either

(a) z ∼ xλy, or
(b) xµy � z for all µ ≥ λ; z � xµy for all µ < λ, or
(c) xµy � z for all µ > λ; z � xµy for all µ ≤ λ.

Proof. (1) Assume that x � y and λ > µ. Then x � xµy, by M1 and
M2 if µ = 0, and by A2 if µ > 0. Hence xλy � xµy, by M1 if λ = 1, and by
M2, M3, and A2 as follows if λ < 1: xλy = y(1− λ)x = (y(1− µ)x) 1−λ

1−µx =

(xµy)1−λ
1−µx = xλ−µ1−µ (xµy) � xµy.

(2) Given x � z � y and x � y, suppose first that x ∼ z, so z ∼ x � y.
Then z ∼ x1y = x by M1, and x1y � xµy for any µ < 1 by (1), so that
z ∼ xλy for a unique λ. A similar proof applies when z ∼ y. Finally,

11



suppose that x � z � y. It then follows from Lemma 1(3), M3, A1 that
there is a unique 0 ≤ λ ≤ 1 such that

xαy � z for all α > λ,
z � xβy for all β < λ.

There are three possible cases: z ∼ xλy for (a), xλy � z for (b), and z � xλy
for (c). 2

Parts (b) and (c) in Lemma 3 reflect the absence of the Archimedean
axiom AA. Note that in Fishburn (1982, Chapter 4), (1) and (2) in Lemma
3 are respectively named the conditions J1 and J2∗.

Proof of Claim 1. Suppose that 〈x, y〉 ∈ N . Define a real valued function
φxy on 〈x, y〉 as follows: for every z ∈ 〈x, y〉, let φxy(z) = λ for a unique λ
whose existence is assured by Lemma 3(2). Then φxy(x) = 1, φxy(y) = 0,
and, for all z ∈ 〈x, y〉,

xλy � z for all λ > φxy(z),
z � xλy for all λ < φxy(z).

Therefore, z � w whenever φxy(z) > φxy(w).
To show linearity of φxy, let z and w be in 〈x, y〉 with α = φxy(z) and

β = φxy(w), and fix a 0 < λ < 1 since linearity in λ is obvious when
λ ∈ {0, 1}. We are to show that φxy(zλw) = λφxy(z) + (1− λ)φxy(w).

If z ∼ w, then by the definition of φxy, α = β. Thus Lemma 1(1) gives
φxy(zλw) = α, so that φxy(zλw) = λφxy(z) + (1− λ)φxy(w). In the sequel,
we shall assume that z � w. We have five cases to examine:

Case 1. 0 < β ≤ α < 1,
Case 2. either w = y and 0 < α < 1, or z = x and 0 < β < 1,
Case 3. either w = y and α = 1, or z = x and β = 0,
Case 4. either β = 0 and 0 < α, or α = 1 and β < 1,
Case 5. either α = β = 0 or α = β = 1.

Case 1. First we assume that 0 < β < α < 1. Let µ > α, so that xµy � z.
Suppose that z � (xµy)νw for all 0 < ν < 1. Since 0 < β, it follows

from Lemma 2(1) and M3 that (xµy)νw � (xµy)νy for all 0 < ν < 1. Thus,

z � (xµy)νy (by A1)
= x(µν)y (by M3)

Since µ > α, let ν be such that ν > α/µ. Thus z � x(µν)y for µν > α, a
contradiction. Hence we must have (xµy)γw � z for some 0 < γ < 1.

By Lemma 2(1), (xµy)λw � zλw for all 0 < λ < 1. Let β < ν < α.
Then

xνy = (xµy) νµy � w.
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Thus we have

(xµy)λ(xνy) = x(λµ+ (1− λ)ν)y (by M5)
� (xµy)λw (by Lemma 2(2))
� zλw (by A1)

Since µ and ν are arbitrary as long as β < ν < α < µ, we obtain that
xγy � zλw for all γ > λα+ (1− λ)β.

It similarly follows from the preceding analysis that zλw � xγy for all
γ < λα + (1 − λ)β. Hence, by definition, φxy(zλw) = λα + (1 − λ)β =
λφxy(z) + (1− λ)φxy(w).

Next we assume that 0 < α = β < 1. By definition, we have

xµy � z and xµy � w for µ > α,
z � xµy and w � xµy for µ < α.

By Lemma 1(3),
xµy � zλw for µ > α,
zλw � xµy for µ < α.

Hence φxy(zλw) = α = λφxy(z) + (1− λ)φxy(w).

Case 2. Assume that w = y and 0 < α < 1. The proof for the other case
is similar. By definition,

xµy � z for µ > α,
z � xµy for µ < α.

By M3 and Lemma 2(1),

x(λµ)y = (xµy)λy � zλy for µ > α,
zλy � (xµy)λy = x(λµ)y for µ < α.

Hence, φxy(zλy) = λα = λφxy(z) + (1− λ)φxy(y).

Case 3. Assume that w = y and α = 1. The proof for the other case is
similar. We have the following three subcases to examine.

Subcase 3.1 φxy(zγy) = 1 for all 0 < γ < 1,
Subcase 3.2 φxy(zγy) = 0 for all 0 < γ < 1,
Subcase 3.3 0 < φxy(zγy) < 1 for some 0 < γ < 1.

Subcase 3.1 Let 0 < γ < 1. By A1 and A2, x � zγy � y. Let w∗ = z 1
2x.

We note that

w∗ 2γ
1+γ y = (z 1

2x) 2γ
1+γ y

= z γ
1+γ (xγy) (by M4)

= z γ
1+γ (y(1− γ)x) (by M2)

= (zγy) 1
1+γx (by M4)
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Thus, by Lemma 1(3), A2, and M3, w∗µy � zγy for µ > 2γ/(1 + γ). Since
φxy(zγy) = 1, zγy � xµy for all 0 < µ < 1. Thus, for all 0 < µ < 1,

zγy � (zγy) µ
µ+γ (xµy) (by A2)

= z γµ
µ+γ (y µ(1−γ)

µ+γ−µγ (xµy)) (by M4)
= z γµ

µ+γ (x γµ
µ+γ−µγ y) (by M2, M3)

= (z 1
2x) 2γµ

µ+γ y (by M4)
= w∗ 2γµ

µ+γ y,

so that zγy � w∗µy for µ < 2γ/(1 + γ). Hence, by definition, φw∗y(zγy) =
2γ/(1 + γ).

Let 0 < δ < γ. It follows from the preceding paragraph that φw∗y(zδy) =
2δ/(1 + δ). Since, by M3, zδy = (zγy) δγ y, Case 2 implies that

φw∗y(zδy) =
δ

γ
φw∗y(zγy) +

(
1− δ

γ

)
φw∗y(y)

=
2δ

1 + γ
,

where φw∗y(w∗) = 1 and φw∗y(y) = 0. This is a contradiction. Hence this
subcase cannot occur.

Subcase 3.2 Let 0 < γ < 1 and w∗ = z 1
2x. By M2 and M4, w∗γy =

z γ2 (x γ
2−γ y) = xγ2 (z γ

2−γ y). By Lemma 1(3), A1, and A2, x � w∗γy � y. By
A2 and α = 1, w∗γy � x γ

2−γ y.
For γ

2−γ ≤ µ ≤ 1, we have

w∗γy = z γ2 (x γ
2−γ y)

= z γ2 ((xµy) γ
µ(2−γ)y) (by M3)

= z γ2 (y 2µ−γµ−γ
µ(2−γ) (xµy)) (by M2)

= (z γµ
2µ−γ y)2µ−γ

2µ (xµy) (by M4)

We note that f(µ) = γµ/(2µ−γ) is strictly decreasing in µ for γ
2−γ ≤ µ ≤ 1

with f( γ
2−γ ) = 1 and f(1) = γ

2−γ . By the hypothesis of the subcase, xµy �
zf(µ)y for γ

2−γ < µ ≤ 1, so by A2, xµy � w∗γy. Therefore, by definition,
φxy(w∗γy) = γ

2−γ .
Let 0 < δ < γ. It follows from the preceding paragraph that φxy(w∗δy) =

δ
2−δ . Since, by M3, w∗δy = (w∗γy) δγ y, Case 2 implies that

φxy(w∗δy) =
δ

γ
φxy(w∗γy) +

(
1− δ

γ

)
φxy(y)

=
δ

2− γ
.
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This is a contradiction. Hence this subcase cannot occur.

Subcase 3.3 Fix a 0 < γ < 1. Assume that 0 < φxy(zγy) < 1. Note
that x � zγy � y. First we show that φxy(zγy) = γ, so φxy(zγy) =
γφxy(z) + (1− γ)φxy(y).

Assume first that φxy(zγy) < γ. By definition, xδy � zγy for all δ with
φxy(zγy) < δ < γ. Fix such a δ. Then we have

x δγ y = y γ−δγ x (by M2)
= (y(1− δ)x) γ−δ

γ(1−δ)x (by M3)
= (xδy) γ−δ

γ(1−δ)x (by M2)

= x δ(1−γ)γ(1−δ)(xδy) (by M2)

� x δ(1−γ)γ(1−δ)(zγy) (by Lemma 2(2))
= (zγy) γ−δ

γ(1−δ)x (by M2)
= z γ−δ1−δ (y γ−δγ x) (by M4)
= z γ−δ1−δ (x δγ y) (by M2)
� z (by Lemma 1(2))

Since φxy(z) = 1, z � x δγ y, a contradiction.
Assume next that φxy(zγy) > γ. By definition, zγy � xδy for all δ

with γ ≤ δ < φxy(zγy). Fix such a δ with δ 6= γ. Let γ < µ < δ. Since
z � xδy � y and zγy � xδy, we have

zµy = z µ−γ1−γ (zγy) (by M2, M3)
� xδy. (by Lemma 1(3))

It follows from Lemma 2(2) that zν(zµy) � zν(xδy) for all 0 < ν < 1. Let
ν = µ(1− δ)/(δ(1− µ)), so that

z µδ y = z µ(1−δ)
δ(1−µ)(zµy) (by M2, M3)

� z µ(1−δ)
δ(1−µ)(xδy)

= x δ−µ1−µ(z µδ y). (by M2, M4)

By Lemma 1(2), z µδ y � x. On the other hand, Lemma 1(3) gives x � z µδ y,
since x � z and x � y. This is a contradiction. Hence we must have
φxy(zγy) = γ.

Next we show that φxy(zδy) = δ for all δ 6= γ. Since, by M3, zδy =
(zγy) δγ y for 0 < δ < γ, Case 2 gives

φxy(zδy) =
δ

γ
φxy(zγy) = δ.

Assume γ < δ < 1. Take any µ for which γ < µ < 1. We have

(xµy) δ−γ
δ−µγ (zδy) = xµ(δ−γ)

δ−µγ (y δ−γδ (zδy)) (by M4)

= xµ(δ−γ)
δ−µγ (zγy) (by M2, M3)
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If δ < µ and zδy � xµy, then by A2, xµ(δ−γ)
δ−µγ (zγy) � xµy. Thus, by Case 2,

φxy

(
x
µ(δ − γ)
δ − µγ

(zγy)
)

=
µ(δ − γ)
δ − µγ

φxy(x) +
δ(1− µ)
δ − µγ

φxy(zγy)

=
µ(δ − γ) + δγ(1− µ)

δ − µγ
,

which is strictly smaller than µ, a contradiction.
If µ < δ and xµy � zδy, then it follows that

φxy

(
x
µ(δ − γ)
δ − µγ

(zγy)
)
> µ,

a contradiction. Hence we must have that

xµy � zδy for µ > δ,
zδy � xµy for µ < δ,

which give φxy(zδy) = δ.

Case 4. Assume that β = 0 and α > 0. Since w = y is covered by Case 3,
we assume that w 6= y. The proof for the other case is similar.

Let 0 < γ < α. It follows from Cases 2 and 3 that φxy(z γαy) = γ and
φxy(xγw) = γ. By Case 1, for all 0 < µ < 1, φxy((z γαy)µ(xγw)) = γ. We
note

(z γαy) α(1−γ)
2α−γ(1+α)(xγw) = z γ(1−γ)

2α−γ(1+α)(y
1−γ
2−γ (xγw)) (by M4)

= z γ(1−γ)
2α−γ(1+α)((w(1− γ)x) 1

2−γ y) (by M2)

= z γ(1−γ)
2α−γ(1+α)(w

1−γ
2−γ (xγy)) (by M4)

= (z γαw) α(1−γ)
2α−γ(1+α)(xγy) (by M4)

Then, applying Case 2, it follows from the analysis similar to the last para-
graph of Subcase 3.3 that φxy(z γαw) = γ. Since γ is arbitrary as long as
0 < γ < α, we obtain that φxy(zλw) = λφxy(z) + (1− λ)φxy(w).

Case 5. Similar to the proof for Case 1 when α = β. 2

Step 2. We introduce Fishburn’s hierarchical axiom with height n, named
H(n), and prove the following claim.

Claim 2 Let n be a positive integer. Suppose that M is a mixture space
that satisfies axioms A1–A3, and H(n). Then (M ,�) has an n-dimensional
lexicographic quasilinear representation.
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To state H(n), we need several notations and definitions. We define two
binary relations, w and =∗, on N by

〈x, y〉 w 〈z, w〉 ⇐⇒ 〈x, y〉 ⊇ 〈z, w〉 and φxy(z) > φxy(w),
〈x, y〉 =∗ 〈z, w〉 ⇐⇒ 〈x, y〉 ⊇ 〈z, w〉 and φxy(z) = φxy(w).

When 〈x, y〉 ⊇ 〈z, w〉 and both intervals are in N , exactly one of 〈x, y〉 w
〈z, w〉 and 〈x, y〉 =∗ 〈z, w〉 must hold. It is easy to see from the definitions
that w is reflexive and =∗ is irreflexive. The failure of φxy(z) = φxy(w) can
happen only if the Archimedean axiom AA is false.

We now define a key binary relation =0 on N induced by w as follows:

〈x, y〉 =0 〈z, w〉 iff 〈x,w〉 ∪ 〈z, y〉 w 〈x, y〉
and 〈x,w〉 ∪ 〈z, y〉 w 〈z, w〉.

Assuming that axioms A1, I1, and I2 hold, Fishburn (1982, Chapter 4)
proved that

(a) w on N is reflexive and transitive,
(b) =0 on N is an equivalence relation.

Thus we can partition N into equivalence classes by =0, and let N0 =
N / =0. N0 consists of a single class N if and only if the Archimedean
axiom AA holds. Given an equivalence class A ∈ N0, let M (A) denote
the set of all elements in M that appear in at least one interval in A,
i.e., M (A) = ∪A〈x, y〉. Then Fishburn (1982, Chapter 4) also showed that
axioms A1, I1, and I2 imply that

(c) each M (A) for A ∈ N0 is a mixture set,
(d) for any two distinct A,B ∈ N0, either M (A)∩M (B) = ∅ or M (A) ⊃
M (B) or M (B) ⊃M (A).

Now we are ready to state Fishburn’s hierarchical axiom. Adjacent mix-
ture subsets induced by =0 are identified by ⊃1, so that, for all A,B ∈ N0,

M (A) ⊃1 M (B)
iff M (A) ⊃M (B) and M (A) ⊃M (C) ⊃M (B) for no C ∈ N0.

Furthermore, mixture subsets separated by k − 1 other ordered mixture
subsets are identified by ⊃k, so that, for k ≥ 2 and for all A,B ∈ N0,

M (A) ⊃k M (B)
iff M (A) ⊃1 M (C) and M (C) ⊃k−1 M (B) for some C ∈ N0.

Given a positive integer n, Fishburn’s hierarchical axiom with height n is
described as follows.
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H(n). For n = 1, there is no A,B ∈ N0 such that M (A) ⊃ M (B). For
n > 1, there are some A,B ∈ N0 such that M (A) ⊃n−1 M (B), and for all
A,B ∈ N0, if M (A) ⊃M (B) then M (A) ⊃k M (B) for some 1 ≤ k ≤ n−1.

Proof of Claim 2. Let n be a positive integer. Assume that axioms A1–
A3, and H(n) hold for (M ,�). Fishburn (1982, Theorem 4.3) proved the
lexicographic quasilinear representation by assuming axioms A1, I1, I2, and
H(n) for (M ,�). He first derived the facts (a)–(d), and then came to the
representation using (a)–(d) and a partial weak representation as in Claim
1 of Step 1. Since his proofs for (a)–(d) are valid under our assumption
that axioms A1–A3 hold, his derivation of the representaiton also applies to
obtain the desired result. 2

Step 3. The sufficiency proof is completed by showing that axiom H(m)
holds for somem ≤ n. Suppose on the contrary that there areA1, . . . .An+1 ∈
N0 such that M (A1) ⊃ · · · ⊃M (An+1). For every i = 1, . . . , n+ 1, we take
a nonempty interval 〈xi, yi〉 ∈ Ai.

Now we shall construct a decreasing sequence, 〈z1, w1〉, . . . , 〈zn+1, wn+1〉,
backwardly as follows. Let 〈zn+1, wn+1〉 = 〈xn+1, yn+1〉. Then for 1 ≤ k ≤ n,
let

〈zk, wk〉 = 〈zk+1, yk〉 ∪ 〈xk, wk+1〉.
Thus by construction, 〈z1, w1〉 ⊇ · · · ⊇ 〈zn+1, wn+1〉.

The following lemma is proved by Nakamura (2000, Lemma 7), assuming
axioms A1, I1, and I2. However, his proof is also valid under our assumption.

Lemma 4 If 〈x, y〉 ∈ A, 〈z, w〉 ∈ B, and M (A) ⊃ M (B), then 〈x,w〉 ∪
〈z, y〉 w 〈x, y〉 and 〈x,w〉 ∪ 〈z, y〉 =∗ 〈z, w〉

It follows from Lemma 4 that 〈zk, wk〉 w 〈xk, yk〉 and 〈zk, wk〉 =∗ 〈zk+1, wk+1〉.
Therefore, for k = 1, . . . , n, 〈zk, wk〉 =0 〈xk, yk〉, and

〈z1, w1〉 =∗ · · · =∗ 〈zn+1, wn+1〉.

For every k = 1, . . . , n, we take an element x∗k ∈ 〈zk, wk〉 for which

φzkwk
(x∗k) 6= φzkwk

(zk+1).

To show a violation of A(n), let a sequence of pairs of elements in M ,
(x′1, y

′
1), . . . , (x′n+1, y

′
n+1), be backwardly defined as follows. Take any x′n+1

and y′n+1 in 〈zn+1, wn+1〉 to satisfy that x′n+1 � y′n+1 if n + 1 is odd, and
y′n+1 � x′n+1 if n+ 1 is even. Then, for k = n, n− 1, . . . , 1, we define x′k and
y′k by

zk+1 � x∗k =⇒


x′k =

{
x∗k if k is even,
x′k+1 if k is odd,

y′k =
{
y′k+1 if k is even,
x∗k if k is odd,
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x∗k � zk+1 =⇒


x′k =

{
x∗k if k is odd,
x′k+1 if k is even,

y′k =
{
y′k+1 if k is odd,
x∗k if k is even.

It is easy to see by construction that x′1 � y′1 and, for k = 1, . . . , n,

x′k � y′k ⇐⇒ y′k+1 � x′k+1,

and either x′k = x′k+1 or y′k = y′k+1. Also we have that, for k = 1, . . . , n,

〈x′k, y′k〉 =∗ 〈y′k+1, x
′
k+1〉 if k is odd,

〈y′k, x′k〉 =∗ 〈x′k+1, y
′
k+1〉 if k is even.

Therefore, for k = 1, . . . , n,

x′kλx
′
k+1 � y′kλy′k+1 for all 0 < λ ≤ 1 if k is odd,

y′kλy
′
k+1 � x′kλx′k+1 for all 0 < λ ≤ 1 if k is even,

which clearly violate A(n). This completes the sufficiency proof of Theorem
1.

Sufficiency Proof of Theorem 2 Suppose that axioms A1, I1, I2, and
A4∗(n) hold. When n = 1, it suffices to show the following lemma.

Lemma 5 The lower Archimedean axiom LAA holds if and only if the
upper Archimedean axiom UAA holds.

Proof. Suppose that the lower Archimedean axiom LAA holds, i.e., for
x, y, z ∈ M , x � y � z and y � xαz for some 0 < α < 1. We are to show
that xβz � y for some 0 < β < 1. When the upper Archimedean axiom
UAA holds, it similarly follows that axiom LAA holds.

First we assume that y � xλz for all 0 < λ < 1. Let 0 < γ < 1. By I1,
xγy � xγz � yγz. Take any λ for which γ < λ < 1. Since xγz = (xλz)γλz
by M3, and y � xλz, I1 gives y γλz � xγz. Let f(λ) = γ(1−λ)/(λ+γ−2λγ).
We note that

(xγz)f(λ)(y γλz) = x(γf(λ))(z f(λ)(1−γ)
1−γf(λ) (y γλz)) (by M4)

= x(γf(λ))(y γ(1−f(λ))
λ(1−γf(λ))z) (by M2, M3)

= x(γf(λ))(z λ−γ+γf(λ)(1−λ)
λ(1−γf(λ)) y) (by M2)

= x(γf(λ))((yγz)λ−γ+γf(λ)(1−λ)
λ(1−γ)(1−γf(λ))y) (by M3, M2)

= x(γf(λ))(y γ(1−f(λ))−λγ(1−γf(λ))
λ(1−γ)(1−γf(λ)) (yγz)) (by M2)

= x(γf(λ))(y f(λ)(1−γ)
1−γf(λ) (yγz))

= (xγy)f(λ)(yγz) (by M4)
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Thus by I1, (xγy)f(λ)(yγz) � xγz. Since f(1) = 0, f(γ) = 1
2 , and f is

strictly decreasing in λ for which γ ≤ λ ≤ 1, A4∗(1) is violated. Hence
xβz � y for some 0 < β < 1.

If xβz ∼ y for some 0 < β < 1, then by A1 and I1, xγ(xβz) � y, so by
M2 and M3, x(β + γ − βγ)z � y. 2

Suppose that n > 1. Since axioms A2 and A3 hold, Claim 2 in the
sufficiency proof of Theorem 1 obtains if axiom H(n) also holds. It then
follows from Theorem 4 in Fishburn (1982, Chapter 4) that the lexicographic
representation must be linear. It remains to show that axiom H(m) holds
for some m ≤ n. Suppose on the contrary that H(m) fails to hold for any
m ≤ n. As shown in Step 3 of the sufficiency proof of Theorem 1, there is a
decreasing sequence of preference intervals, 〈z1, w1〉, . . . , 〈zn+1, wn+1〉, such
that

〈z1, w1〉 =∗ · · · =∗ 〈zn+1, wn+1〉.

Note that φzn+1wn+1(wn+1) = 0, φzn+1wn+1(zn+1) = 1 and 0 = φzkwk
(wk) ≤

φzkwk
(zk+1) = φzkwk

(wk+1) ≤ φzkwk
(zk) = 1 for k = 1, . . . , n. Let K0 = {k :

φzkwk
(zk+1) = 1 and 1 ≤ k ≤ n}. We have two cases to examine: K0 = ∅;

K0 6= ∅.

Case 1 (K0 = ∅) For k = 1, . . . , n, take any x∗k ∈ 〈zk, wk〉 such that
φzkwk

(x∗k) > φzkwk
(zk+1). Then x∗1 � x∗2 � · · · � x∗n � zn+1 � wn+1, and

x∗kλx
∗
k+2 � x∗k+1 for k = 1, . . . , n,

where x∗n+1 = zn+1 and x∗n+2 = wn+1. This contradicts A4∗(n).

Case 2 (K0 6= ∅) Let k0 = minK0. Let 0 < λ < 1. For every ` =
k0 + 1, . . . , n + 1, let z1

` = wk0λz` and w1
` = wk0λw`. Then 〈z1

1 , w
1
1〉 =∗

· · · =∗ 〈z1
n+1, w

1
n+1〉, where z1

i = zi and w1
i = wi for i = 1, . . . , k0. Let

K1 = {k : φz1kw1
k
(z1
k+1) = 1 and 1 ≤ k ≤ n}. If K1 = ∅, then Case 1 applies

to obtain a contradiction. Thus assume that K1 6= ∅. By construction,
k0 < minK1.

A similar modification of z1
1 , . . . , z

1
n+1, w1

1, . . . , w
1
n+1 gives a decreasing

sequence, 〈z2
1 , w

2
1〉 =∗ · · · =∗ 〈z2

n+1, w
2
n+1〉 with K2 = {k : φz2kw2

k
(z2
k+1) =

1 and 1 ≤ k ≤ n}. If K2 = ∅, then Case 1 again gives a contradiction. If
K2 6= ∅, then minK1 < minK2. This modification process continues up to
at most n times, and gives a contradiction.

This completes the sufficiency proof of Theorem 2. 2
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