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1. INTRODUCTION

Most firms in developing countries will often resort to imitation to succeed in business. Mansfield, Schwartz and

Wagner [1981] reported that in spite of patent systems, new technologies tend to be imitated within a period as

brief as four years. In an empirical study on the speed at which various kinds of information about new products

and processes leak out, Mansfield [1985] found that a firm’s information about new process or product

innovations finds its way into the hands of rival firms within an average of 12 to 18 months.1 Mansfield also made

the interesting observation that differences in the rate of diffusion of technological information do not play an

important role in explaining differences in the ease of imitation across industries. Two theoretical questions arise:

First, how does the speed of imitation differ across industries or market structures? Second, does a more

competitive market structure lead to earlier imitation? If we recognize differences in market structures across

industries that Mansfield [1985] did not focus on, then the discrepancies in the speed of imitation (innovation

diffusion) can simply be explained by these differences in market structures. Nonetheless, as far as we know, no

theoretical approach to these questions has yet been attempted.

    We explore how the speed of innovation adoption may differ between two common theoretical market

structures, i.e., Cournot (quantity-setting) competition and Bertrand (price-setting) competition, and then compare

the results with the social optimum. We first modify a model of Reinganum [1981a, 1981b] so that we can

examine the speed of innovation adoption in a model of duopoly producing differentiated goods and then compare

the results in both types of market competition. In our model, it is assumed that one firm has invented a new

technology for its own use and a second firm can imitate (or adopt) the new technology at a cost which declines

over time. The imitator may not achieve the same level of reduction in the unit cost of production as the inventor

does. The extent of cost reduction is indexed by a parameter representing the ease of imitation.2

    We shall first show that innovation adoption occurs earlier (resp. later) in Cournot competition than in

                                                

1 Mansfield [1981] noted that information about process innovation tends to leak out more slowly than information about product

innovation because new processes can be developed with less communication and interaction with other firms than new products

(ibid. p. 219).

2 Mansfield, Schwartz and Wagner [1981] measured the ease of imitation by the ratio of imitation costs to innovation costs. By

relating the ease of imitation to the imitator’s ability to reduce the cost of production, we are able to analyze how the ease of

imitation affects the incentives for imitation and social welfare.
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Bertrand competition if the degree of production differentiation is sufficiently high (resp. low). The intuition

supporting these results is as follows. The total effect of the innovation may be positive, but the direct and indirect

effects are not uniformly positive in either market structure. Specifically, the direct effect is positive and higher in

Bertrand competition, while the indirect effect is positive in Cournot competition and negative in Bertrand

competition. Second, we shall show that in both competitions, the speed of innovation adoption is too slow for the

first adopter relative to the social optimum, irrelevant of the degree of product differentiation. However, it is too

slow (resp. too fast) for the second adopter relative to the social optimum if the degree of production

differentiation is sufficiently high (resp. low). Furthermore, social welfare at the optimum will be higher in

Bertrand competition than in Cournot competition if the degree of production differentiation is sufficiently high.

    An adopting firm maximizes its own intertemporal profits, represented by the sum of the discount present

value of the (temporal) market equilibrium profits, to choose the optimal adoption time. The timing issue arises

because the cost of adoption is assumed to decline over time. The adopter takes into account the benefits and

losses of delaying the adoption. The important point is that not the total profit but the marginal benefit determines

the speed of innovation adoption that is different between the two market structures. It was often pointed out that

Bertrand competition is inherently more competitive than Cournot competition because the former has a lower

price and larger output.3 This does not necessarily imply that Bertrand competition leads to stronger incentives for

innovation, as proposed in the existing literature.

    If two firms have symmetric demand functions and initially have equal unit costs of production, then one

firm who first introduces a new (superior) technology to lower the cost can enjoy the larger market share than the

other who still operates with an old (inferior) technology. When products are almost homogenous, the first firm

can monopolize the market in Bertrand competition, while this may not the case in Cournot competition. This is

why patterns of the speed of innovation adoption may differ between the two firms as well as across industries,

which has not been pointed out in the existing literature. The second adopter can only have the smaller market

share than the first adopter due to the inability of perfect imitation.

    Most papers considering adoption of cost-reducing innovation have assumed that the inventor is not a

member of the adopting industry and also assumed homogenous goods markets. This paper instead assumed that

the inventor is a member of the industry and also assumed differentiated goods markets. Quirmbach [1986]

compared the noncooperative and welfare-optimal diffusion rates in a model of Cournot oligopoly in a case of

                                                

3 See Singh and Vives [1984], Vives [1985] and Cheng [1985].
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linear demand functions, assuming homogenous goods markets, and explored how the additional number of

adopting firms influences the diffusion rate. However, Quirmbach did not take into account how the ease of

imitation influences the adoption times and social welfare. Petrakis [1994], assuming differentiated goods markets,

compared Cournot and Bertrand equilibrium adoption times with the socially optimal adoption time in a case of

linear demand functions. However, Petrakis did not focus on the effect of imitation on the adoption timing as well

as on social welfare.

    The reminder of this paper is organized as follows. Section 2 constructs a basic model. The Cournot and

Bertrand subgames are incorporated into a game of adoption of a new technology. Section 3 compares the optimal

adoption times between Cournot and Bertrand market structures. Section 4 provides welfare analysis. Concluding

remarks are given in Section 5.

2. A MODEL

We consider an economy with an imperfectly competitive sector, each firm producing a differentiated good, and a

competitive numeraire sector. Following Dixit [1979] and Singh and Vives [1984], we define the utility for the

representative consumer as U(q1, q2, M) = V(q1, q2) + M, where qi (i = 1, 2) denotes firm i’s output (good i) and M

denotes a numeraire good. There are no income effects on the duopoly industry. We assume competitive

consumers. Maximizing U－p1q1－p2q2 with respect to qi, where pi denotes good i’s price, we have ∂U/∂qi = pi

(i = 1, 2), which defines the demand function for good i.

    Direct demand systems are given by qi = di(pi, pj) (i, j = 1, 2; i ≠ j). We assume that goods are gross

substitutes, i.e., ∂di/∂pj > 0, the direct demand function for good i is downward sloping with respect to good i’s

price, i.e., ∂di/∂pi < 0, and the own effect is larger than the cross effect, i.e., | ∂di/∂pi | >
 ∂di/∂pj > 0. Inverse

demand systems are given by pi = pi(qi, qj). Taking the total differential of the direct demand function qi = di(pi, pj)

with respect to output qi and holding the above assumptions, we find that the inverse demand function is

downward sloping with respect to each output, i.e., ∂pi/∂qi < 0 and ∂pj/∂qi < 0, and the own effect is larger

than the cross effect, i.e., | ∂pi/∂qi | > | ∂pi/∂qi |. A detailed calculation can be found in part (I) of Appendix.

    We denote the unit cost of production for firm i by ci. We shall formulate momentary price (Bertrand) and

quantity (Cournot) competitions, as follows:

    (i) Bertrand competition: Firm i maximizes the profit gi(pi, pj, ci) = (pi－ci)di(pi, pj) with respect to the price pi,

taking pj as given. The first-order condition, given by ∂gi(pi(pj), pj, ci)/∂pi = 0, defines the best-response
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function Ri
B(pj) = pi(pj). We assume that the second-order condition is concave in own prices, i.e., ∂2gi/∂pi

2 < 0.

Then, the second-order condition, given by ∂2gi(pi(pj), pj, ci)/∂pi
2 < 0, is satisfied. We also assume that prices are

strategic complements, i.e., ∂2gi(pi(pj), pj, ci)/∂pi∂pj > 0. The Bertrand-Nash market equilibrium is defined at a

point where the two best-response curves intersect. We assume that the Bertrand-Nash equilibrium uniquely exists.

A sufficient condition for uniqueness is | dRi
B(pj)/dpj | < 1, or equivalently, | ∂2gi/∂pi

2 | > ∂2gi/∂pi∂pj > 0.4 The

reaction functions are upward sloping since dRi
B(pj)/dpj = (－1){(∂2gi/∂pi

2)/(∂2gi/∂pi∂pj)} > 0 holds. The

equilibrium is locally stable since γB = (∂2gi/∂pi
2)(∂2gj/∂pj

2)－(∂2gi/∂pi∂pj)(∂2gj/∂pi∂pj) > 0 holds.

Henceforth we denote the market equilibrium prices by (pi
B, pj

B) = (pi(ci, cj), pj(ci, cj)) and the market equilibrium

profits by (πi
B, πj

B) = (gi(pi(ci, cj), pj(ci, cj), ci), gj(pi(ci, cj), pj(ci, cj), cj)). It holds that ∂2πi
B/∂pi

2 = 2(∂di/∂pi)

+ (pi－ci)(∂2di/∂pi
2) (< 0) and ∂2πi

B/∂pi∂pj =
 ∂di/∂pj + (pi－ci)(∂2di/∂pi∂pj) (> 0).

    (ii) Cournot competition: Firm i maximizes the profit fi(qi, qj, ci) = {pi(qi, qj)－ci} qi with respect to the output

qi, taking qj as given. The first-order condition, given by ∂fi(qi(qj), qj, ci)/∂qi = 0, defines the best-response

function Ri
C(qj) = qi(qj). We assume that the second-order condition is concave in own outputs, i.e., ∂2fi/∂qi

2 < 0.

Then, the second-order condition, given by ∂2fi(qi(qj), qj, ci)/∂qi
2 < 0, is satisfied. We also assume that quantities

are strategic substitutes, i.e., ∂2fi(qi(qj), qj, ci)/∂qi∂qj < 0. The Cournot-Nash market equilibrium is defined at a

point where the two best-response curves intersect. We assume that the Cournot-Nash equilibrium uniquely exists.

A sufficient condition for uniqueness is | dRi
C(qj)/dqj | < 1, or equivalently, | ∂2fi/∂qi

2 | > | ∂2fi/∂qi∂qj
 |.5 The

reaction functions are downward sloping since dRi
C(qj)/dqj = (－1){(∂2fi/∂qi

2)/(∂2fi/∂qi∂qj)} < 0 holds. The

equilibrium is locally stable since γC = (∂2fi/∂qi
2)(∂2fj/∂qj

2)－(∂2fi/∂qi∂qj)(∂2fj/∂qi∂qj) > 0 holds.

Henceforth we denote the market equilibrium outputs by (qi
C, qj

C) = (qi(ci, cj), qj(ci, cj)) and the market equilibrium

profits by (πi
C, πj

C) = (fi(qi(ci, cj), qj(ci, cj), ci), fj(qi(ci, cj), qj(ci, cj), cj)). It holds that ∂2πi
C/∂qi

2 = 2(∂pi/∂qi) +

qi(∂2pi/∂qi
2) (< 0) and ∂2πi

C/∂qi∂qj =
 ∂pi/∂qj + qi(∂2pi/∂qi∂qj) (< 0).

    Let and assume that ∂2di/∂pi
2 = x(p1

B, p2
B) ≦ 0, ∂2di/∂pi∂pj = y(p1

B, p2
B) ≧ 0, ∂2pi/∂qi

2 = X(q1
C, q2

C)

≦ 0 and ∂2pi/∂qi∂qj = Y(q1
C, q2

C) ≦ 0. We also assume that | x |
 ≧ | y | and | X |

 ≧ | Y | so that the sufficient

condition for uniqueness of the Bertrand-Nash equilibrium and that of the Cournot-Nash equilibrium should be

satisfied, i.e., | ∂2πi
B/∂pi

2
 | > | ∂2πi

B/∂pi∂pj | and | ∂2πi
C/∂qi

2
 | > | ∂2πi

C/∂qi∂qj |, respectively.

    Henceforth we focus on the case where the demand functions are symmetric. Let ∂d1/∂p1 =
 ∂d2/∂p2 =

                                                

4
 See Tirole [1988, pp. 225-226], and Friedman [1983, pp. 70-71].

5 ibid.
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a(p1
B, p2

B), ∂d1/∂p2 =
 ∂d2/∂p1 = b(p1

B, p2
B), ∂p1/∂q1 =

 ∂p2/∂q2 = A(q1
C, q2

C) and ∂p1/∂q2 =
 ∂p2/∂q1 =

B(q1
C, q2

C) (< 0), where | a | > | b | and | A | > | B |. We now introduce the degree of product differentiation by δ =

(∂d1/∂p2)(∂d2/∂p1)/(∂d1/∂p1)(∂d2/∂p2) = B2/A2, where 0 < δ < 1.6 It follows that b = (－α)A d  since

a = αA and b = (－α)B. In Bertrand competition, we have ∂2πi
B/∂pi

2 = 2a－(x/a)di (< 0) and ∂2πi
B/∂pi∂pj

= －a d －(y/a)di (> 0). In Cournot competition, we have ∂2πi
C/∂qi

2 = 2A + Xqi (< 0) and ∂2πi
C/∂qi∂qj =

A d  + Yqi (< 0). Henceforth we assume that the unit costs of production are initially identical. Then, it holds at

(c1, c2) = (c, c) that d1 = d2 > 0 and q1 = q2 > 0.

    Singh and Vives [1984] and Vives [1984] showed the results, summarized in the following theorem:7

Theorem 1.  The outputs are larger more in Bertrand competition than in Cournot competition.

Theorem 1 means in our context that di > qi.

    We suppose that firm 1 is an inventor who developed a new technology and firm 2 an imitator. We also

suppose that each firm can reduce the current unit cost of production ci to ci－Δi by adopting a new technology at

time t = τi
 ∈ [0, ∞). We assume that firm 2 can imperfectly imitate the technology so that its cost-reduction

size is smaller than firm 1’s. We denote a parameter that represents the ease of imitation by σ, so that Δ1 =
 ε

and Δ2 =
 σε, where σ ∈ (0, 1]. We denote the cost of adoption by N(t). We assume that the cost declines

over time but at a decreasing rate:

Assumption 1.    dN(t)/dt < 0,  d2N(t)/dt2 > 0

Justification of Assumption 1 is that the technology, although too expensive at the initial stage, will be improved

due to ongoing basic research, which reduces these costs.8

                                                

6 Singh and Vives [1984] and Shy [1995] defined it in the case of linear demand functions. The degree of product differentiation can

be rewritten, by incorporating own-price elasticity of demand εii = (pi/di)(∂di/∂pi) < 0 and cross-price elasticity of demand εij =

(pj/di)(∂di/∂pj) > 0 (i, j = 1, 2; i ≠ j), as δ = ε12ε21/ε11ε22. A higher (resp. lower) δ means a lower (resp. higher) ε12ε21 or

a higher (resp. lower) ε11ε22.

7 See Singh and Vives [1984, Proposition 3] and Vives [1985, Proposition 1].

8 See Katz and Shapiro [1987].
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    We suppose that firm 1, anticipating the imitation subgame, develops a new technology at τ1, and firm 2,

taking the development time as given, adopts the technology at τ2. Both firms maximize the intertemporal profits,

defined by the present discounted value of the temporal profits, with respect to time. The intertemporal profit for

firm 1 is

    Φ1 = ò
1  

0 

t
e tr- π1(c1, c2)

 dt  + ò
2

1

 

  

t

t
 e tr- π1(c1－Δ1, c2)

 dt  + ò
∞ 

  2t
 e tr- π1(c1－Δ1, c2－Δ2)

 dt

              － e 1rt- N(τ1)

where ρ is a market interest rate. The intertemporal profit for firm 2 is

    Φ2 = ò
1  

0 

t
e tr- π2(c1, c2)

 dt  + ò
2

1

 

  

t

t
 e tr- π2(c1－Δ1, c2)

 dt  + ò
∞ 

  2t
 e tr- π2(c1－Δ1, c2－Δ2)

 dt

              － e 2rt- N(τ2)

    The first-order conditions for maximizing the intertemporal profits, which define the privately optimal

adoption times, are given by

(1)    ρN(τ1
*)－dN(τ1

*)/dτ1 =
 π1(c1－Δ1, c2)－π1(c1, c2)

(2)    ρN(τ2
*)－dN(τ2

 *)/dτ2 =
 π2(c1－Δ1, c2－Δ2)－π2(c1－Δ1, c2)

The second-order conditions are satisfied under Assumption 1, which implies that the objective functions for both

firms are concave with respect to time.

    In regard to (1) and (2), both firms equalize the marginal cost of innovation, represented by the left-hand

sides, with the (private) marginal benefit from innovation, represented by the right-hand sides. Note that the

marginal cost of innovation is decreasing, while the marginal benefit from innovation is constant, over time. The

privately optimal adoption time for each firm is given at a point where the two curves meet. We assume that

Assumption 2.  ρN(0)－dN(0)/dt = +∞,  ρN(∞)－dN(∞)/dt = 0
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Under Assumption 2, we can eliminate two corner-solution cases:9 (a) The marginal benefit from innovation is

higher than the marginal cost of innovation at t = 0. (b) The marginal cost of innovation is higher than the

marginal benefit from innovation for all t. In case (a), firms may adopt immediately, although they could gain

more by waiting a little moment. In case (b), on the contrary, they may not adopt. Thus, we have a unique interior

solution since the marginal benefit from innovation should be positive.10

3. THE INCENTIVES FOR INNOVATION

Clearly, the higher is the marginal benefit from innovation, the earlier is the privately optimal adoption time for

the imitator. In this sense, we measure the incentive for innovation by the increment of the adopter’s equilibrium

profit, as Bester and Petrakis [1993] did. In this section we compare the incentives for innovation and show how

the privately optimal adoption times differ between Cournot and Bertrand market structures.

    We have {πi
B(ci－Δi, .)－πi

B(c, .)}－{πi
C(ci－Δi, .)－πi

C(c, .)} = {πi
B(ci－Δi, .)－πi

C(ci－Δi, .)}－

{πi
B(c, .)－πi

C(c, .)} for a given cj. Then, by The Mean Value Theorem there exists some m ∈ (ci－Δi, ci) that

satisfies [{πi
B(ci－Δi, .)－ πi

C(ci－Δi, .)}－{πi
B(c, .)－πi

C(c, .)}]/(－Δi) = d{πi
B(m, .)－πi

C(m, .)}/dci. Thus,

we have only to explore the sign of d{πi
B(m, .)－πi

C(m, .)}/dci.

    We have the following proposition:

Proposition 1.  Innovation adoption occurs for both firms earlier (resp. later) in Cournot competition than in

Bertrand competition if products are highly differentiated (resp. almost homogenous), that is, the degree of

product differentiation δ is close to zero (resp. unity).11

Proof. It holds that dπi
B/dci =

 ∂πi
B/∂ci + (∂πi

B/∂pj)(∂pj
B/∂ci) = di[－a d {－a d －(y/a)di}/γB－1],

where ∂πi
B/∂ci = (－di) by the Hotelling’s lemma and ∂pj

B/∂ci = (－1/γB)(∂di/∂pi)(∂2πj
B/∂pi∂pj) > 0,

                                                

9 Reinganum [1989] employed the same assumption (ibid. Assumption 11).

10 In view of (1) and (2), both τ1
 * and τ2

 * are determined as an intersection point of the two reaction functions in τ1
 –τ2 plane,

satisfying τ1
 * < τ2

 *. Since τ1
 * and τ2

 * are independent of each other, a pair of the privately optimal adoption times (τ1
 *, τ2

 *)

constitutes the Nash equilibrium adoption times.

11 The definition of ‘highly differentiated or almost homogenous products’ is owed by Shy [1995, pp. 136-137].
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and dπi
C/dci =

 ∂πi
C/∂ci + (∂πi

C/∂qj)(∂qj
C/∂ci) = qi{－A d (A d  + Yqi)/γC－1}, where ∂πi

C/∂ci

= (－qi) by the Hotelling’s lemma and ∂qj
C/∂ci = (－1/γC)(∂2πj

C/∂qi∂qj) > 0. With δ close to 0, | dπi
B/dci

 |

= di > | dπi
C/dci

 | = qi by Theorem 1. Thus, in view of (1) and (2), the optimal adoption time is solved as an

interior solution in both competitions: (0 <) τi
*B < τi

*C < +∞. With δ close to 1, | dπi
B/dci

 | = 0 < | dπi
C/dci

 | =

qi. Thus, in view of (1) and (2), the optimal adoption time is solved as an interior solution in Cournot competition

but is solved as a corner solution in Bertrand competition: (0 <) τi
*C < τi

*B = +∞. Q.E.D.

Bester and Petrakis [1993] and Petrakis [1994] showed in a model of linear demand functions where products are

sufficiently substitutable that the incentives for innovation are stronger in Cournot competition than in Bertrand

competition. This result implies that innovation adoption occurs earlier in Cournot competition than in Bertrand

competition. Petrakis [1994] had the same results, except that only the linear demand case was explored and the

ease of imitation was not taken into account. Note that we have shown the result in Proposition 1 beyond the case

of linear demand functions.

    Let us now provide the intuition of Proposition 1. By the Envelope Theorem, we have dπi/dci =
 ∂πi/∂ci +

(∂πi/∂xj)(∂xj/∂ci), so that dπi/d(－ci) =
 ∂πi/∂(－ci) + (∂πi/∂xj){∂xj/∂(－ci)}. The total effect of a

cost-reducing innovation, dπi/d(－ci), is decomposed into two effects: the direct effect or the cost-minimizing

effect, ∂πi/∂(－ci), and the indirect effect or the strategic effect, (∂πi/∂xj){∂xj/∂(－ci)}, where the valuable

x represents the market equilibrium output q or price p.12 First, by the Hotelling’s lemma and Theorem 1, we have

∂πi
B/∂(－ci) = di > ∂πi

C/∂(－ci) = qi. Hence, the sign of the cost-minimizing effect is positive in both

competitions and is higher in Bertrand competition than in Cournot competition. Second, it holds that∂pj
B/∂ci =

(－1/γB)(∂di/∂pi)(∂2πj
B/∂pi∂pj) = (∂pj

B/∂pi
B)(∂pi

B/∂ci) = {dRj
B(pi)/dpi}(∂pi

B/∂ci) > 0 since ∂pi
B/∂ci

= (1/γB)(∂di/∂pi)(∂2πj
B/∂pj

2) > 0 and ∂qj
C/∂ci =  (－1/γC)(∂2πj

C/∂qi∂qj) = (∂qj
C/∂qi

C)(∂qi
C/∂ci) =

{dRj
C(qi)/dqi}(∂qi

C/∂ci) > 0 since ∂qi
C/∂ci = (1/γC)(∂2πj

C/∂qj
2) < 0. Since (by symmetry) sign(∂πi

B/∂pj)

= sign(∂πj
B/∂pi) > 0 and sign(∂πi

C/∂qj) = sign(∂πj
C/∂qi) < 0, we have sign[(∂πi

B/∂pj){∂pj
B/∂(－ci)}]

= (－1)sign[(∂πj
B/∂pi)(∂pi

B/∂ci){dRj
B(pi)/dpi}] < 0. On the other hand, sign[(∂πi

C/∂qj){∂qj
C/∂(－ci)}] =

(－1)sign[(∂πj
C/∂qi)(∂qi

C/∂ci){dRj
C(qi)/dqi}] > 0. Hence, the sign of the strategic effect is positive in the case

of strategic substitutes and negative in the case of strategic complements. In the case of strategic complements, the

direct effect should be larger than the indirect effect in total. As Proof of Proposition 1 suggests, if the degree of

                                                

12 See Brander and Spencer [1983] and Tirole [1988].
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product differentiation δ is close to zero (resp. unity), then the strategic effect will be smaller (resp. larger) than

the cost-minimizing effect.

    Bester and Petrakis [1993] referred to a ‘market share effect’ reflecting how differences in market structure

can influence the incentives for innovation through determination of the equilibrium output. They showed that this

effect is stronger with closely substitutable products—hence the incentives for innovation are stronger—in

Bertarnd competition than in Cournot competition. Qiu [1997] pointed out that the market share effect is less

important because the identicalness of all players makes both the pre-innovation and post-innovation equilibria

symmetric. Qiu also showed that the incentives for innovation are stronger in Cournot competition than in

Bertarnd competition, regardless of substitutability of the products. However, these papers were modeled in

timeless settings.

4. WELFARE ANALYSIS

How does an increase in the ease of imitation affect social welfare? How is the speed of imitation evaluated from

the social optimality viewpoint? We shall analyze these interesting problems and make the relevant discussions.13

We denote consumer’s surplus by Θ and producer’s surplus by Π. Total surplus is denoted by Λ = Θ +
 Π.

Note that in regard to consumer’s surplus, ΘB = U(d1(p1
B, p2

B), d2(p1
B, p2

B), M)－p1
Bd1(p1

B, p2
B)－p2

Bd2(p1
B, p2

B)

and ΘC = U(q1
C, q2

C, M)－p1(q1
C, q2

C)q1
C－p2(q1

C, q2
C)q2

C. We define social welfare by the (net) present

discounted value of total surplus, as follows:14

    Ω = ò
1  

0 

t
e tr- Λ(c1, c2)

 dt + ò
2

1

 

  

t

t
 e tr- Λ(c1－Δ1, c2)

 dt + ò
∞ 

  2t
 e tr- Λ(c1－Δ1, c2－Δ2)

 dt

           － e 1rt- N(τ1)
 － e 2rt- N(τ2)

A social planner maximizes Ω with respect to τi on behalf of firm i and compares the privately optimal adoption

time(s) τi
* with socially optimal adoption time(s) τi

** .

                                                

13
 Barzel [1968] compared a monopoly regime with a competition regime in regard to the speed of innovation adoption and

evaluated it from the viewpoint of social optimality.

14 Quirmbach [1986] defined social welfare as post-innovation total surplus.
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    The first-order conditions for maximizing social welfare, which define the socially optimal adoption times,

τi
** , are given by

(3)    ρN(τ1
** )－dN(τ1

** )/dτ1 = Λ(c1－Δ1, c2)－Λ(c1, c2)

(4)    ρN(τ2
** )－dN(τ2

** )/dτ2 = Λ(c1－Δ1, c2－Δ2)－Λ(c1－Δ1, c2)

In regard to (3) and (4), the right-hand sides show the social marginal benefits from innovation and the left-hand

sides show the social marginal costs of innovation. Henceforth we focus on the case where the right-hand sides

are positive.

    We explore how an increase in the ease of imitation affects on social welfare. Taking the total differential of

Ω with respect to σ, we have dΩ/dσ = (∂Ω/∂τ2)(∂τ2
** /∂σ) + ∂Ω/∂σ, where the second term in the

right-hand side vanishes since by (4) it holds that ∂Ω/∂σ = e 2rt- [{ρN(τ2)－dN(τ2)/dτ2}－{Λ(c1－Δ1,

c2－Δ2)－Λ(c1－Δ1, c2)}] = 0 at τ2 = τ2
** . Thus, the total effect an increase in the ease of imitation, dΩ/dσ,

consists of the indirect effect alone, (∂Ω/∂τ2)(∂τ2
** /∂σ).

    We proceed to evaluate the privately optimal adoption times in both competitions from the social optimality

viewpoint. We have the following theorem:

Theorem 2.   ∂Ω/∂τ2 < (resp. >) 0 if and only if d{Θ(c1－Δ1, k) + π1(c1－Δ1, k)}/dc2 < (resp. >) 0 at (c1,

c2) = (c－ε, kB) where k is such a value in (c2－Δ2, c2) that satisfies {Θ(c1－Δ1, c2－Δ2) +
 π1(c1－Δ1, c2

－Δ2)}－{Θ(c1－Δ1, c2) +
 π1(c1－Δ1, c2)} = (－Δ2)d{Θ(c1－Δ1, k) + π1(c1－Δ1, k)}/dc2.

A proof can be found in part (II) of Appendix. Theorem 2 implies that at the privately optimal adoption time τ2 =

τ2
*, social welfare increases (resp. decreases) if an only if consumer will benefit more (resp. less) than the

inventor will lose. In like manner, we can show that at (c1, c2) = (c－ε, s), where s is such a value in (c2－Δ2, c2)

that satisfies {Θ(c1－Δ1, c2) + π2((c1－Δ1, c2)}－{Θ(c1, c2) + π2(c1, c2)} = (－Δ1)[d{Θ(s, c2) + π2(s,

c2)}/dc1], it holds that ∂Ω/∂τ1 < (resp. >) 0 if and only if d{Θ(s, c2) +
 π2(s, c2)}/dc1 < (resp. >) 0.

    By Theorem 2, we can show whether the privately optimal adoption time for firm 2 will be earlier or later

than the socially optimal adoption time in both competitions. (i) First, d(ΘB + π1
B)/dc2 = (1/γB){ a2 d d1－

2a2d2 + xd1d2－(x d  + y)(d1)
2}. It holds that d1 > d2 = 0 at (c1, c2) = (c－ε, kB), where c－σε < kB < c. That is,

firm 1 can capture all the market since it can produce with the superior (new) technology while firm 2 still does
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with the inferior (current) technology. With δ close to 0, we have d(ΘB + π1
B)/dc2 < 0. Hence, the privately

optimal adoption time is later than the socially optimal adoption time: τ2
*B > τ2

**B . With δ close to 1, on the

other hand, we have d(ΘB + π1
B)/dc2 > 0. Hence, the privately optimal adoption time is earlier than the socially

optimal adoption time: τ2
*B < τ2

**B . (ii) Second, d(ΘC + π1
C)/dc2 = (1/γC){  A2 d {－(2－ d )q2 + q1}－

B(X－Y)q1q2}. It holds that q1 > q2 > 0 at (c1, c2) = (c－ε, kC), where c－σε < kC < c. With δ close to 0, we

have d(ΘC + π1
C)/dc2 < 0. Hence, the privately optimal adoption time is later than the socially optimal adoption

time: τ2
*C > τ2

**C . With highly substitutable products, it holds that d(ΘC + π1
C)/dc2 > 0. Hence, the privately

optimal adoption time is earlier than the socially optimal adoption time: τ2
*C < τ2

**C .

    In sum up, we have the following proposition:

Proposition 2.  The speed of innovation for the second adopter (i.e., imitator) is too slow (resp. too fast) relative

to the social optimum in both Bertrand and Cournot duopoly markets if the degree of product differentiation is

close to zero (resp. unity).

    How are the privately optimal adoption times for the first adopter in both competitions evaluated from the

social optimality viewpoint? It holds that d1 > d2 = 0 at (c1, c2) = (c－ε, sB), where c－ε < sB < c, and q1 > q2 > 0

at (c1, c2) = (c－ε, sC), where c－ε < kC < c. (iii) First, d(ΘB + π2
B)/dc1 = (1/γB){ a2 d d2－2a2d1 + xd1d2－

(x d  + y)(d2)
2} < 0, which implies that ∂ΩB/∂τ1 < 0. Hence, the privately optimal adoption time is later than

the socially optimal adoption time: τ1
*B > τ1

**B . (iv) Second, d(ΘC + π2
C)/dc1 = (1/γC){  A2 d {－(2－

d )q1 + q2}－B(X－Y)q1q2} < 0, which implies that ∂ΩC/∂τ1 < 0. Hence, the privately optimal adoption

time is later than the socially optimal adoption time: τ1
*C > τ1

**C . These results hold irrelevant of the degree of

product differentiation.

    In sum up, we have the following proposition:

Proposition 3.  The speed of innovation for the first adopter is too slow relative to the social optimum, irrelevant

of the degree of product differentiation, in both Bertrand and Cournot duopoly markets.

Figure 1 illustrates the results in Proposition 2 and Proposition 3.

    Quirmbach [1986] had the same results in the case of Cournot competition with homogeneous goods where

the number of adopting firms is two and the demand functions are linear (ibid. Proposition 8). Petrakis [1994] also
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had the same results in the case of Bertrand and Cournot duopoly with differentiated goods where the demand

functions are linear.

    It is of quite interest to consider why the privately optimal adoption time can be earlier than the socially

optimal adoption time in spite of the existence of market power and the resulting distortion. In such a case, the

marginal benefit will be more for the imitator than for the consumer, and the marginal benefit for the consumer

will be less than marginal loss for the inventor. Moreover, it is not the consumer but the imitator who will

appropriate the increment of the social benefit. As a result, the private marginal benefit from innovation may be

larger than the social marginal benefit from innovation.

    Taking the total differential of (4) and rearranging terms, we have ∂τ2
** /∂σ < 0 under Assumption 1.

That is, an increase in the ease of imitation accelerates innovation for the second adopter. With δ close to 0, we

have ∂ΩB/∂τ2 < 0 and ∂ΩC/∂τ2 < 0. Since dΩB/dσ = (∂ΩB/∂τ2)(∂τ2
**B/∂σ) > 0 and dΩC/dσ =

(∂ΩC/∂τ2)(∂τ2
**C /∂σ) > 0, an increase in the ease of imitation improves social welfare in both

competitions. With δ close to 1, we have in this case ∂ΩB/∂τ2 > 0 and ∂ΩC/∂τ2 > 0. Since dΩB/dσ =

(∂ΩB/∂τ2)(∂τ2
**B /∂σ) < 0 and dΩC/dσ = (∂ΩC/∂τ2)(∂τ2

**C/∂σ) < 0, an increase in the ease of

imitation worsens social welfare in both competitions. We have the following proposition:

Proposition 4.  An increase in the ease of imitation improves (resp. worsens) social welfare in both Bertrand

and Cournot duopoly markets if products are highly differentiated (resp. substitutable).

    Let us now compare social welfare at the optimum in both competitions. We first explore the effect on

producer’s surplus and then the effect on consumer’s surplus.

    First, in which competition does producer’s surplus increase more due to the unit cost reduction by one firm?

That is, whether is larger, | dΠB/dci
 | or | dΠC/dci

 | ? We have the following theorem:

Theorem 3.  | dΠB/dci
 | > | dΠC/dci

 | with δ close to zero.

Proof. We obtain dΠB/dci = d(πi
B + πj

B)/dci = dπi
B/dci + dπj

B/dci = (1/γB){ a2δdi + 2a2 d dj－x d (dj)
2

+ y d didj－γBdi}, where dπi
B/dci = ∂πi

B/∂ci + (∂πi
B/∂pj)(∂pj

B/∂ci) = di[－a d {－a d －

(y/a)di}/γB－1] and dπj
B/dci = (∂πj

B/∂pi)(∂pi
B/∂ci) = (1/γB)[a d {2a－(x/a)dj} dj] > 0, and dΠC/dci =

d(πi
C + πj

C)/dci = dπi
C/dci + dπj

C/dci = (1/γC){－A2δqi + 2A2 d qj + AX d (qj)
2－AY d qiqj－γCqi},



14

where dπi
C/dci =

 ∂πi
C/∂ci + (∂πi

C/∂qj)(∂qj
C/∂ci) = qi{－A d (A d  + Yqi)/γC－1} and dπj

C/dci =

(∂πj
C/∂qi)(∂qi

C/∂ci) = (1/γC)[A d (2A + Xqj)qj] > 0. With δ close to 0, therefore, we have | dΠB/dci
 | = di

> | dΠC/dci
 | = qi by Theorem 1. Q.E.D.

According to Theorem 3, if the degree of product differentiation is sufficiently high, then producer’s surplus

increases more in Bertrand competition than in Cournot competition.

    Second, in which competition does consumer’s surplus increase more due to the unit cost reduction by one

firm? That is, which is larger, | dΘB/dci
 | or | dΘC/dci

 | ? We have the following theorem:

Theorem 4.  Assume that | x | and | X | are sufficiently small. Then, | dΘB/dci
 | > | dΘC/dci

 | for all 0 ≦ δ < 1.

Proof. We obtain dΘB/dci = (－di)(dpi
B/dci) + (－dj)(dpj

B/dci) = (1/γB){－2a2di－a2 d dj + xdidj－y d (dj)
2}

< 0, where dpi
B/dci = (1/γB)(2a2－xdj) > 0 and dpj

B/dci = (1/γB)(a2 d  + ydj) > 0. We also obtain dΘC/dci =

(－qi)(dpi
C/dci) + (－qj)(dpj

C/dci) = (1/γC){－A2(2－δ)qi－A2 d qj－(AX－AY d )qiqj－(AX d －

AY)(qj)
2} < or > 0, where dpi

C/dci = (∂pi/∂qj)(dqj
C/dci) + (∂pi/∂qi)(dqi

C/dci) = (1/γC){－A d (A d  + Yqj)

+ A(2A + Xqj)} > 0 and dpj
C/dci = (∂pj/∂qi)(dqi

C/dci) + (∂pj/∂qj)(dqj
C/dci) = (1/γC){ A d (2A + Xqj)－

A(A d  + Yqj)} > or < 0. However, with δ close to 0 (resp. < 1), it holds that dpj
C/dci < (resp. >) 0. If the

demand functions are less convex, that is, | x | and | X | are sufficiently small, then, substituting from a = αA, we

have dΘB/dci
 ≒ (－1/γC)(2A2di + A2 d dj) < 0 and dΘC/dci

 ≒ (－1/γC){(2－δ)A2qi + A2 d qj} < 0,

hence | dΘB/dci
 | > | dΘC/dci

 | for all 0 ≦ δ < 1 by Theorem 1. Q.E.D.

According to Theorem 4, consumer’s surplus increases more in Bertrand competition than in Cournot competition,

no matter how the degree of product differentiation may be.

    In sum up, | dΛB/dci
 | > | dΛC/dci

 | since dΛB/dci = dΠB/dci + dΘB/dci and dΛC/dci = dΠC/dci + dΘC/dci.

Formally, we have the following theorem:

Theorem 5.  Assume that | x | and | X | are sufficiently small. Then, | dΛB/dci
 | > | dΛC/dci

 | with δ close to zero.

A formal proof can be found in part (III) of Appendix.

    According to Theorem 5, total surplus increases more in Bertrand competition than in Cournot competition if
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the demand functions are less convex and the degree of product differentiation is sufficiently high. The socially

optimal adoption times are then solved as interior solutions and they are earlier in Bertrand competition than in

Cournot competition, i.e., (0 <) τi
**B  < τi

**C  (< +∞).

    Hence, we have the following proposition:

Proposition 5.  Social welfare at the optimum will be higher in Bertrand competition than in Cournot

competition if the degree of production differentiation is sufficiently high.

A proof can be found in part (IV) of Appendix.

    Singh and Vives [1984], Vives [1985], Cheng [1985] and Qiu [1997] showed that Bertrand competition is

more efficient than Cournot competition in the sense that the price is lower and the output is larger, which implies

that total surplus is higher in Bertrand competition than in Cournot competition. Proposition 5 is an extension of

their analyses to the framework in which the timing issue arises.

5. CONCLUDING REMARKS

We have explored the differences between the Cournot and Bertrand market structures in the speed of innovation

adoption and then evaluated the results from the social optimality viewpoint. We have pointed out that market

structure (or industry) patterns may generate the differences. This point sharply contrasts with Mansfield [1985]

that found no significant differences across industries.

    Imitation increases consumer’s surplus as well as producer’s surplus. We have shown that in highly

differentiated industries, the consumer will benefit more than the innovator (leader) will lose. As a result, the

private marginal benefits from innovation for the imitator (follower) will be larger than the social marginal

benefits from innovation. The privately optimal adoption times for the follower will be earlier than the socially

optimal adoption times and vice versa. We have also shown that innovation adoption will be worth more socially

in Bertarnd competition than in Cournot competition.

    In both market structures (industries), if products are highly differentiated, then the private marginal benefit

from innovations for both firms are larger than the social marginal benefits from innovation. If products are

almost homogenous, then the private marginal benefit from innovation is smaller for the innovator (leader) and

larger for the imitator (follower) than the social marginal benefit from innovation. A social planner should force
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the follower to pay a tax in the case of homogenous goods industries, as Petrakis [1994] suggested, or

alternatively, to pay a fee to the leader, at which level the private and social marginal benefits from innovation are

equalized. With payment, the privately optimal adoption time would be earlier for the leader but later for the

follower than that without payment. The socially optimal adoption time, however, would not be affected.

APPENDIX

(I) Properties of the inverse demand functions  Taking the total differential of the direct demand systems qi =

di(pi, pj) (i, j = 1, 2; i ≠ j), we have ∂p1/∂q1 = (1/α)(∂d2/∂p2) < 0, ∂p1/∂q2 = (－1/α)(∂d1/∂p2) < 0,     

∂p2/∂q1 = (－1/α)(∂d2/∂p1) < 0 and ∂p2/∂q2 = (1/α)(∂d1/∂p1) < 0, where α = (∂d1/∂p1)(∂d2/∂p2)－

(∂d1/∂p2)(∂d2/∂p1) > 0.

(II)  Proof of Theorem 2  It follows that ∂Ω/∂τ2 =
 －e **2rt- [{Θ(c1－Δ1, c2－Δ2) +

 π1(c1－Δ1, c2－Δ2)}

－{Θ(c1－Δ1, c2) +
 π1(c1－Δ1, c2)}]. There exists some k ∈ (c2－Δ2, c2) that satisfies {Θ(c1－Δ1, c2－Δ2) +

π1(c1－Δ1, c2－Δ2)}－{Θ(c1－Δ1, c2) +
 π1(c1－Δ1, c2)} = (－Δ2)d{Θ(c1－Δ1, k) + π1(c1－Δ1, k)}/dc2 by

the Mean Value Theorem. Hence, ∂Ω/∂τ2 < (resp. >) 0 holds as d{Θ(c1－Δ1, k) + π1(c1－Δ1, k)}/dc2 <

(resp. >) 0. Q.E.D.

(III)  Proof of Theorem 5  We have dΛB/dci = (1/γB)[{－(2－δ)a2di + a2 d dj + (x－y d )didj－(x d －

y)(dj)
2}－γBdi] and dΛC/dci = (1/γC)[{－2A2qi + A2 d qj－AXqiqj + AY(qj)

2}－γCqi]. Hence, | dΛB/dci
 | = di +

(1/γB){(2－δ)a2di－a2 d dj－(x－y d )didj + (x d －y)(dj)
2} and | dΛC/dci

 | = qi + (1/γC){2A2qi－

A2 d qj + AXqiqj－AY(qj)
2}]. With  δ = 0, since | dΛB/dci

 | = di + (1/γB){(2a2di－xdidj－y)(dj)
2} and | dΛC/dci

 |

= qi + (1/γC){2A2qi + AXqiqj－AY(qj)
2}, we have only to investigate the sign of | dΛB/dci

 |－| dΛC/dci
 | = (di－qi)

+ [{2A2/(γB/α2)} di－(2A2/γC)qi] + {(－x/γB)didj－(AX/γC)qiqj} + {( y/γB)(dj)
2 + (AY/γC)(qj)

2}, where di－qi

> 0 by Theorem 1 and (y/γB)(dj)
2 + (AY/γC)(qj)

2 ≧ 0. First, in order to investigate the sign of{2A2/(γB/α2)} di

－(2A2/γC)qi, we should show the following lemma:

Lemma A1.  If | x | is sufficiently small, then γB/α2 ≦ γC for all 0 ≦ δ < 1.

Proof. Substituting from a = αA into γB = {2a－(x/a)di}{2 a－(x/a)dj}－{－a d －(y/a)di}{－a d －

(y/a)dj} (> 0), we have: γB/α2 = (4－δ)A2－(1/α2)(2x + y d )(di + dj) + (1/α4){( x/A)2－(y/A)2} didj.

Comparing it with γC = (4－δ)A2 + (2AX－AY d )(qi + qj) + (X2－Y)2qiqj (> 0), we have γB/α2 ≦ γC for
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all 0 ≦ δ < 1 if | x | is sufficiently small. Q.E.D.

In view of Lemma A1, we have {2A2/(γB/α2)}di－(2A2/γC)qi > 0 since di > qi. Second, in order to investigate

the sign of{(－x/γB)didj－(AX/γC)qiqj}, we should show the following lemma, which proof is straightforward:

Lemma A2.  If | X | is sufficiently small, then | x |/γB ≧ AX /γC for all 0 ≦ δ < 1.

In view of Lemma A1, we have (－x/γB)didj－(AX/γC)qiqj > 0 since di > qi. By Lemma A1 and Lemma A2,

therefore, we have | dΛB/dci
 | > | dΛC/dci

 |. Q.E.D.

(IV) Proof of Proposition 5  First, ΛB－ΛC = {U(d1(p1
B, p2

B), d2(p1
B, p2

B), M)－c1d1(p1
B, p2

B)－c2d2(p1
B, p2

B)}－

{ U(q1
C, q2

C, M)－c1q1
C－c2q2

C}. Let total surplus as S(z1, z2) = U(z1, z2, M)－c1z1－c2z2 and take the total

differential of S(z1, z2). Then, dS(z1, z2) > (resp. <) 0 if and only if (p1－c1)/(p2－c2) > (resp. <) －dz2/dz1, where pi

= ∂U/∂zi > ci. We have dS(z1, z2) > 0 since di > qi implies that dzi > 0, hence S(d1, d2) > S(q1, q2). That is, ex ante

total surplus is larger in Bertrand competition than in Cournot competition: ΛB(c1, c2) > ΛC(c1, c2). Second,

social welfare at the social optimum (τ1
** , τ2

** ) is written as: Ω = (1/ρ)[Λ(c1, c2) + e **1rt- {－dN(τ1
** )/dt} +

e **2rt- {－dN(τ2
** )/dt }]. We have already shown in the main text that τi

**B  < τi
**C  if the demand functions are

less convex and the degree of production differentiation is sufficiently high. Thus, under Assumption 1, we have

ΩB > ΩC. Q.E.D.
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