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Abstract

We propose a new smoothing method using CHKS-functions for solving linear
complementarity problems. While the algorithm in [6] uses a quite large neighborhood,
our algorithm generates a sequence in a relatively narrow neighborhood and employs
predictor and corrector steps at each iteration. A complexity bound for the method is
also provided under the assumption that the problem is monotone and has a feasible
interior point. As a result, the bound can be improved compared to the one in [6].

1 Introduction

This paper deals with the standard linear complementarity problem (LCP):

LCP: Find (x;y) 2 IR2n

s.t. y =Mx+ q; (1)

(x;y) � 0; (2)

xiyi = 0 (i = 1; : : : ; n); (3)

where M is an n� n matrix and q is an n-dimensional vector.
We impose the following assumption on the LCP.

Assumption 1.1 (1) The LCP is monotone, i.e., the matrix M is positive semide�nite.

(2) The LCP has a feasible interior point, i.e., there exists a point (
Æ
x;

Æ
y) 2 IR2n satisfying

Æ
y=M

Æ
x +q and (

Æ
x;

Æ
y) > 0.

The basic idea of the smoothing method for the LCP is to rearrange or approximate
the system (1) { (3) using some smooth functions so that Newton-type methods can be
adopted. Mangasarian[12] �rst showed a class of such functions, and since then various
types of functions and algorithms have been provided (See e.g., [2, 1, 3, 4, 5, 7, 6, 8, 9, 10,
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13, 14, 15, 16]). While it is still an open problem whether we can construct a polynomial-
time smoothing algorithm, a complexity bound was shown in [6] for an algorithm using
the so-called Chen-Harker-Kanzow-Smale function (CHKS function), which is given by

�(�; a; b) := a+ b�
q
(a� b)2 + 4�2 (4)

where a; b 2 IR and � > 0. Based on this result, we provide a new type of algorithm which
employs a relatively narrow neighborhood compared to the one in [6] and whose iteration
consists of two steps, predictor step and corrector step. As a result, we obtain a better
complexity bound than the one in [6].

It should be noted that another analysis has been done for the case where the matrix
M is positive de�nite by Burke and Xu [3]. Their complexity bound deeply depends on
the condition number of M , while the size of the generated sequence plays an important
role in our analysis.

This paper is organized as follows. The new algorithm is described in Section 2. Some
basic results are collected in Section 3. Using them, a complexity bound is derived in
Section 4. Concluding remarks are given in Section 5.

We de�ne some symbols used throughout this paper. N means the index set f1; : : : ; ng.
Symbols IRn

+ and IRn
++ denote the n-dimensional nonnegative orthant and the n-dimensional

positive orthant, respectively. e denotes the vector with all components equal to one. For
a given vector x 2 IRn, vecfxig and diagfxig represent the n-dimentional vector whose i-th
element is i-th component of x and n � n-diagonal matrix whose i-th diagonal elements
is i-th component of x, respectively. For example,

vecfxiyig =
0
B@

x1y1
...

xnyn

1
CA ; diagfxig =

0
B@

x1 0. . .

0 xn

1
CA :

2 A predictor-corrector smoothing method

Let us de�ne the function � : IR++ � IR2n ! IRn as �(�;x;y) := vecf�(�; xi; yi)g. Let e
denote the vector whose components are 1s. For a given nonnegative vector h � e, let us
consider the system

y =Mx+ q; �(�;x;y) = ��h:
Suppose that the LCP satis�es Assumption 1.1. In the paper [7], the authors show that the
above system has a unique solution (x(�);y(�)) for every � > 0 and f(x(�);y(�)) : � > 0g
forms a 1-dimensional trajectory whose accumulation point as �! 0 is always a solution
of the LCP. Let us de�ne the set P as follows.

P := f(�;x;y) 2 IR+ � IR2n j y =Mx+ q;�(�;x;y) � 0g
Our algorithm traces the trajectory f(x(�);y(�)) : � > 0g using the following two neigh-
borhoods: for given � and � satisfying 0 < � < � < 1 and � + � < 1, let us de�ne the
inner neighborhood,

N (�) := P \ f(�;x;y) j jj�(�;x;y) + �hjj � ��g;
and the outer neighborhood

N (�+ �) := P \ f(�;x;y) j jj�(�;x;y) + �hjj � (�+ �)�g:
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Here the condition �(�;x;y) � 0 plays a crucial role when we derive the boundedness of
the generated sequence, and by this reason, the assumption h � e is imposed. In fact, if
(�; x; y) 2 N (�+ �) then

�(�+ �)� � �(�; xi; yi) + �hi � (� + �)�

for every i, which implies that �(�; xi; yi) � 0(i 2 N). The relationship � < � is required
only for ease of description in the further discussions.

For given � 2 (0; 1) and h � 0, suppose that we obtain a point (��; �x; �y) 2 N (�). This
assumption is not strict: For any x0 2 IRn,

� set y0 :=Mx0 + q,

� choose a �0 so that �0 > maxf0; x0i y0i (i 2 N)g.
Then we can easily �nd that (�0;x0;y0) 2 P . Moreover,

� set h := ��(�0;x0;y0)=�0,
Then the point (��; �x; �y) lies in the inner neighborhood N (�).

At each iteration, we reduce the value of � by a constant ratio 1� ��. As a result, the
point (�k+1;xk;yk) may not lie in the inner neighborhood N (�), but we will see that it
still lies in N (�+ �)(see Lemma 4.1). To con�ne the sequence in the inner neighborhood
N (�), we consider the following system to reduce the value of k�(�k+1;x;y) + �k+1hk:8><

>:
� = ����;

y �Mx� q = 0;
�(�; xi; yi) + �hi = ��(��i + ��hi) (i 2 N):

(5)

where �� 2 [0; 1] and �� 2 [0; 1] are parameters which control the target points of �
and �i (i 2 N) for approximation. Let (��:�x; �y) := (�k;xk;yk). We employ the Newton
direction (�x;�y) for approximating the solution of the above system, which is given by0

B@ 1 0 0

0 �M I
d� Dx Dy

1
CA
0
B@ ��

�x
�y

1
CA =

0
B@ �(1� ��)��

0

�(1� ��)(�� + ��h)

1
CA (6)

where

d� := vecfhi � 4��p
(�xi � �yi)2 + 4��2

g;

Dx := diagf1 � �xi � �yip
(�xi � �yi)2 + 4��2

g;

Dy := diagf1 + �xi � �yip
(�xi � �yi)2 + 4��2

g;
�� := �(��; �x; �y) := vecf�(��; �xi; �yi)g:

Note that the system (6) can be reduced to

�� = �(1� ��)��; (7) 
�M I
Dx Dy

! 
�x
�y

!
=

 
0

(1� ��)��d� � (1� ��)(�� + ��h)

!
: (8)
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By setting �� = 1 and �� = 0, after solving a �nite series of the above systems, we can
�nd a new point (�k+1;xk+1;yk+1) 2 N (�) (see Lemma 4.2).

Here, we describe our algorithm in detail.
Algorithm.

Step 0 : Initialization
Set � > 0, k := 0,
Set 1 > � > � > 0 s.t. �+ � < 1 and h 2 IRn

+,
Choose x0 2 IRn and calculate y0 := Mx0 + q,
Choose �0 > 0 s.t. (�0;x0;y0) 2 N (�).
Let us de�ne

� :=
�khk+ 2

p
n
�2
+ 2

p
n; (9)

� :=
p
nkhk+ (�+ �)2; (10)

�� := n

(
��+p�2 + f� � (�+ �)2gf(� + �)2 � �2g

� � (�+ �)2
;
1

2

)
< 1: (11)

Step 1 : Stopping Criteria

If �k < �, then stop.

Step 2 : Predictor Step

Let �k+1 = (1� ��)�k.

Step 3 : Corrector Step
Set p := 0, (�̂; x̂0; ŷ0) := (�k+1;xk;yk), and let �̂0 := �(�̂; x̂0; ŷ0).

Step 3.1 : If (�̂; x̂p; ŷp) 2 N (�), then go to Step 4.
Calculate the Newton direction (��̂p;�x̂p;�ŷp) by solving the system (6) with
�� = 1, �� = 0 and (��; �x; �y) = (�̂; x̂0; ŷ0).
Set the step size

�p := min

(
1;

�̂jj�̂p + �̂hjj
2fjj�x̂pjj2 + jj�ŷpjj2g

)
; (12)

Calculate (x̂p+1; ŷp+1) := (x̂p; ŷp) + �p(�x̂p;�ŷp),
Let �̂p+1 := �(�̂; x̂p+1; ŷp+1).
Set p := p+ 1 and go to Step 3.1.

Step 4 :
(xk+1;yk+1) := (x̂p; ŷp). Calculate �k+1 as �(�k+1;xk+1;yk+1).
Set k := k + 1 and go to Step 1.

Remark.

1. We can start from any initial point x0 2 IRn.

2. Since � � 6 and �+ � < 1, �� is given by a positive real number.

3. The following proposition ensures that Step 3.1 is well-de�ned.

Proposition 2.1 (Lemma 4.1 of [11], (i) of Lemma 8.3.1 of [17]) The system (6)
has a unique solution (��;�x;�y) whenever Assumption 1.1 holds.
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4. In practical use, we may use an inexact line search method to decide the step size �p

in Step 3.1. The way is to minimize jj�(�̂; x̂p + �p�x̂p; ŷp + �p�ŷp) + �̂hjj subject
to �(�̂; x̂p + �p�x̂p; ŷp + �p�ŷp) � 0. As we will see in Lemma 4.2, the obtained
step size is larger than the value in (12).

3 Some basic results

In this section, we collect some basic results concerning the CHKS-function. All of which
are required in the next section for deriving a complexity bound of the algorithm.

Proposition 3.1 Let �(�; a; b) := a+ b�p(a� b)2 + 4�2 for any � � 0. The following
results hold for every a; b; c 2 IR.

(i) (Lemma 1.1 of [7])

�(�; a; b) = c if and only if (a� c=2; b � c=2) � 0 and (a� c=2)(b � c=2) = �2:

(ii) (Lemma 2 of [13])

r2�(�; a; b) = � 4

(
p
(a� b)2 + 4�2)3

0
B@ a� b

��
�

1
CA (a� b;��; �) ; (13)

i.e., � is a concave function and

jjr2�(�; a; b)jj � 4

(
p
(a� b)2 + 4�2)3


0
B@ a� b

��
�

1
CA

2

� 4p
(a� b)2 + 4�2

� 2

�
:

(14)

(iii)

0 < 1� a� bp
(a� b)2 + 4�2

< 2 for � > 0: (15)

For every (x;y) 2 IR2n and � > 0, de�ne �� := vecf�(��; �xi; �yi)g and let

(x0;y0) := (�x� ��=2; �y � ��=2):

(i) of Proposition 3.1 implies that if y = Mx + q then the point (x0;y0) 2 IR2n is an
analytical center of a perturbed LCP(v):

Find (x0;y0) 2 IR2n

s.t. y0 =Mx0 + q0; (x0;y0) > 0 and x0iy
0
i = 0 (i 2 N);

where q0 = q+(M � I)v=2. The next proposition gives us more detailed properties of the
perturbed problem LCP(v).

Proposition 3.2 (Proposition 4 of [6]) Let (��; �x; �y) 2 IR++ � IR2n be a point satisfying
�y =M �x+ q and let ��i = �(��; �xi; �yi) for i 2 N . Then the following results are true.
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(i)
p
(�xi � �yi)2 + 4��2 = x0i + y0i � 2�� > 0 for i 2 N .

(ii) The solution of (8) is the unique solution of the system 
�M I
Y 0 X 0

! 
�x
�y

!
=

 
0
�d

!
(16)

where

�d =
1� ��

2
f(X 0 + Y 0)��h� 4��2eg � 1� ��

2
(X 0 + Y 0)(�� + ��h): (17)

(iii) Suppose that Assumption 1.1 is satis�ed. Let L(�; �0) be the level set of the function
k�(�;x;y)k i.e.,

L(�; �0) := f(�;x;y) 2 IR+ � IR2n j jj�(�;x;y)jj � �; � 2 (0; �0]g: (18)

If (��; �x; �y) 2 IR++� IR2n lies in the set P \L(�; �0) for some � > 0 and �0 > 0 then

0 <
��2

3�(�; �0)
� x0i � 2�(�; �0); (19)

0 <
��2

3�(�; �0)
� y0i � 2�(�; �0) (20)

for i 2 N , where �(�; �0) = maxf(�; �0); �0g,

(�; �0) :=
n(�0)2 + (

Æ
x +(�=2)e)T (

Æ
y +(�=2)e)

minifoxi;
o
yig

>
�

2
(21)

and (
Æ
x;

Æ
y) is a feasible interior point whose existence is ensured by Assumption 1.1.

The proposition below often used in the �eld of interior point algorithms.

Proposition 3.3 (Proposition 5 of [6]) Suppose that M is an n� n positive semide�nite
matrix. For every (x0;y0) > 0 and �d 2 IRn, the system (16) has the unique solution
(�x;�y) which satis�es the following inequalities:

0 � �xT�y � jj(X 0Y 0)�
1

2 �djj; (22)

jj(X 0Y 0)�
1

2Y 0�xjj2 + jj(X 0Y 0)�
1

2X 0�yjj2 � jj(X 0Y 0)�
1

2 �djj2: (23)

Let (��; �x; �y) be a �xed point. To derive a complexity bound, we need to estimate the
value of the function � along the line segment (��+���; �x+��x; �y+��y). The following
results can be obtained by a similar discussion to the one of Proposition 6 in [6].

Proposition 3.4 Let (��; �x; �y) 2 IR++ � IR2n such that �(��; �x; �y) = �� � 0 and let
(��;�x;�y) be the solution of the system (6).

(i) For every i 2 N and � 2 [0; 1],

f1 � �(1� ��)g( ��i + ��hi)

� �(��+ ���; �xi + ��xi; �yi + ��yi) + ��hi

� f1� �(1� ��)g(��i + ��hi)� �2

����
((1� ��)

2��2 +�x2i +�y2i ):

6



(ii) For every � 2 [0; 1],

k�(��+ ���; �x+ ��x; �y + ��y) + ��hk
� f1� �(1� ��)gk�� + ��hk+ �2

����
f(1 � ��)

2pn��2 + k�xk2 + k�yk2g:

The following corollary is a special case of the above proposition.

Corollary 3.5 Let (��; �x; �y) 2 IR++ � IR2n such that �� � 0 and let (��;�x;�y) be the
solution of the system (6) with the parameters �� = 1 (i:e:; �� = 0) and �� = 0.

(i) For every i 2 N and � 2 [0; 1],

(1� �)(��i + ��hi)

� �(��; �xi + ��xi; �yi + ��yi) + ��hi

� (1� �)(��i + ��hi)� �2

��
(�x2i +�y2i ):

(ii)

jj�(��; �x+ ��x; �y + ��y) + ��hjj
� (1� �)jj�� + ��hjj+ �2

��
fjj�xjj2 + jj�yjj2g:

For ease of notation, we de�ne Æi for i 2 N , g, D� and (D�)max as follows:

Æi(�) :=
q
(xi � yi)2 + 4�2; (24)

g(�) := jj�(�;x;y) + �hjj2; (25)

D� := diagf(d�)ig = diagfhi � 4�=Æi(�)g; (26)

(D�)max := maxf(D�)ii (i 2 N)g: (27)

Here the vector d� is given in (6). The next results are used to show that (�k+1;xk;yk) =
((1 � ��)�k;xk;yk) 2 N (�+ �) in Step 2.

Proposition 3.6 Let (��; �x; �y) 2 N (�). Then there exists a �� for which �� + �� > 0
and

g(��+ ���) � (�+ �)2(��+ ���)2 (28)

for any � 2 [0; 1]. For such ��, the following relations hold.

(i)

��g0(��)�� � 2�
p
nj(D��)maxj��:

(ii)

1

2
jg00(��+ ���)j � �jjhjj+ 2

p
n
�2
+ 2(�+ �)

p
n

for every � 2 [0; 1].
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(iii)

jg(��+��)j � �2��2 + 2�
p
nj(D��)maxj � j��j��

+
n�jjhjj+ 2

p
n
�2
+ 2(� + �)

p
n
o
j��j2:

Proof: Let us consider the function

�g(�) := (�+ �)�2 � g(�):

Since the function �g(�) is continuous w.r.t. � and �g(��) > 0, there exists a �� such that
�g(�+ ���) � 0, i.e.,

g(��+ ���) � (�+ �)(��+ ���)2 (29)

for every � 2 [0; 1].
By the de�nitions (24) of Æi(�) and (25) of g(�), we see that

g(�) =
nX
i=1

f�(�; xi; yi) + �hig2

=
nX
i=1

fxi + yi � Æi(�) + �hig2;

Æ0i(�) =
8�

2
p
(xi � yi)2 + 4�2

=
4�

Æi(�)
:

By a direct calculation, we have

g0(�) = 2
nX
i=1

(�i + �hi)

�
hi � 4�

Æi(�)

�
;

g00(�) = 2
nX
i=1

(�
hi � 4�

Æi(�)

�2
+ (�i + �hi)

�
� 4

Æi(�)

� 
1� 4�2

Æi(�)2

!)

where the second term of the twice derivative follows from

�
hi � 4�

Æi(�)

�0
= �

4Æi(�)� 4� � 4�
Æi(�)

Æi(�)2
= � 4

Æi(�)
+

16�2

Æi(�)3
= � 4

Æi(�)

 
1� 4�2

Æi(�)

!
:

(i) By the de�nition of D��, we have

��g0(��)�� = 2

�����
nX
i=1

( ��i + ��hi)

�
hi � 4��

Æi(��)

������ = 2
���eTD��(�� + ��h)

���

� 2jjejj � jjD��(�� + ��h)jj = 2
p
n

vuut nX
i=1

(D��)2ii(
��i + ��hi)2

� 2
p
n

r
max
i
f(D��)iig2

vuut nX
i=1

(��i + ��hi)2

= 2
p
n

����max
i
f(D��)iig

���� jj�� + ��hjj:

8



Since (��; �x; �y) 2 N (�), i.e., jj�(��; �x; �y) + ��hjj = jj�� + ��hjj � ��� by the assumption, we
obtain (i).
(ii) For every � 2 (0; 1) and i 2 N , de�ne

!i(�) :=
4(��+ ���)

Æi(��+ ���)
(30)

(iii) of Proposition 3.1 implies that !i(�) 2 [0; 2],

k!(�)k � 2
p
n; 0 � 1� !i(�)

2

4
� 1 (31)

for every i 2 N and � 2 [0; 1]. Recall that, by the de�nition (4),

Æi(�+ ���) = �xi + �yi � �(��+ ���; �x; �y)

= (�xi � �(��+ ���; �x; �y)=2) + (�yi � �(��+ ���; �x; �y)=2): (32)

Let us de�ne

x0i(�) := (�xi � �(��+ ���; �x; �y)=2); y0i(�) := (�yi � �(��+ ���; �x; �y)=2): (33)

Then
x0i(�) + y0i(�) � 2(��+ ���)

holds by (i) of Proposition 3.2. Thus, we obtain

jj(X 0(�) + Y 0(�))�1jj � 1

2(��+ ���)
(34)

and

1

2
jg00(��+ ���)j

=

�����
nX
i=1

n
(hi � !i(�))

2

� (�(��+ ���; �xi; �yi) + (��+ ���)hi)

�
� 4

Æi(��+ ���)

� 
1� !i(�)

2

4

!)�����
(by the de�nition (30) of !i)

�
nX
i=1

(hi � !i(�))
2 +

nX
i=1

����� 4

x0i(�) + y0i(�)
(�(��+ ���; �xi; �yi) + (��+ ���)hi)

�����
(by (31), (32) and (33))

= jjh� !(�)jj2 + 4jj(X 0 + Y 0)�1 (�(��+ ���; �x; �y) + (��+ ���)h) jj1
� (jjhjj+ jj!(�)jj)2 + 4

p
njj(X 0 + Y 0)�1jjjj�(�+ ���; �x; �y) + (�+ ���)hjj

� �jjhjj+ 2
p
n
�2
+ 2

p
n �
p
g(��+ ���)

��+ ���

(by (31), (34) and the de�nition of g)

� �jjhjj+ 2
p
n
�2
+ 2(�+ �)

p
n:

(by (29))
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(iii) By Taylor's expansion, the value of g(�+��) is given by

g(��+���) = g(��) + g0(��)���+
1

2
g00(��+ ����)���2

for some � 2 (0; 1). Combining (i) and (ii) with this equation, we conclude that

jg(��+��)j
� jg(��)j+ jg0(��)jj��j+ 1

2
jg00(��+ ���)jj��j2

� (���)2 + 2�
p
nj(D��)maxj�� � j��j+

n�jjhjj+ 2
p
n
�2
+ 2(�+ �)

p
n
o
j��j2:

4 A complexity analysis

In this section, we derive a complexity bound of the algorithm described in Section 2. The
lemma below shows that a reduction rate of � in Step 2 can be evaluated explicitly. In
particular, the rate is better than O(1 � 1

n
) if khk = 0 and is better than O(1 � 1p

n
) if

khk = 1.

Lemma 4.1 Let (�k;xk;yk) 2 N (�).

(i) Then ((1� �)�k;xk;yk) 2 N (�+ �) for every � 2 [0; ��]. Here �� is de�ned by (11).

(ii) If h = e, then there exists a value �̂ = O(1=n) for which �̂ � ��.

Proof: (i) Let us consider (1 � �)�k for some � 2 [0; 1]. Since (�k;xk;yk) 2 N (�) and
� > 0, we have

g(�k) = jj�(�k;xk;yk) + �hjj2 � �2(�k)2 < (�+ �)2(�k)2:

Thus, by the continuity of g(�) with respect to �, there exists an �� 2 (0; 1) such that

g((1 � �)�k) � (� + �)2((1 � �)(�k))2:

for every � 2 [0; ��]. Let us �nd such ��. For every � 2 (0; 1), (iii) of Proposition 3.6 holds
and hence,

g((1 � �)�k)

� �2(�k)2 + 2�
p
nj(D�k )maxj�(�k)2 +

��jjhjj+ 2
p
n
�2
+ 2(�+ �)

p
n
�
�2(�k)2

=
n
�2 + 2�

p
nj(D�k )maxj� +

��jjhjj+ 2
p
n
�2
+ 2(� + �)

p
n
�
�2
o
(�k)2

�
n
�2 + 2

p
nj(D�k)maxj� +

��jjhjj+ 2
p
n
�2
+ 2

p
n
�
�2
o
(�k)2:

Thus if �� satis�es

�2 + 2
p
nj(D�k)maxj�� +

��jjhjj+ 2
p
n
�2
+ 2

p
n
�
��2 � (�+ �)2(1� ��)2 (35)

then g((1 � �)�k) � (� + �)2((1 � �)(�k))2 for every � 2 [0; ��]. By the de�nition (27) of
(D�)max, we have j(D�k )maxj � �. Hence the above inequality (35) can be replaced by

�2 + 2
p
n��� +

��jjhjj+ 2
p
n
�2
+ 2

p
n
�
��2 � (�+ �)2(1� ��)2

10



By rearranging the inequality (35) with the de�nitions (9) and (10) of � and �, we obtain

(� � (�+ �)2)��2 + 2��� � f(� + �)2 � �2g � 0:

Since � � 6 by its de�nition (9) and since we assume � + � < 1, there exists a positive
solution of the above inequality, which gives us a bound

�� =
��+p�2 + f� � (�+ �)2gf(� + �)2 � �2g

� � (�+ �)2
:

Thus we obtain the assertion (i).
(ii): Since �+ � 2 (0; 1) and � � 4n by the de�nition (9), it is easy to see that

��+p�2 + f� � (�+ �)2gf(� + �)2 � �2g
� � (�+ �)2

� ��+p�2 + (� � 1)(2� + �)�

�

=
1

�
� ��

2 + f�2 + (� � 1)(2� + �)�g
�+

p
�2 + (� � 1)(2� + �)�

� 1

�
� (� � 1)(2� + �)�

2�+
p
(� � 1)(2� + �)�

=
� � 1

�
� (2� + �)�

2�+
p
(� � 1)(2� + �)�

� 3

4
� (2�+ �)�

2�+
p
(� � 1)(2� + �)�

= O

�
1

�+
p
�

�
:

Thus, by the de�nitions (9) and (10), we obtain the assertion (ii).
The following lemma shows a reduction rate of the value k�̂p + �̂hk at each iteration

p in Step 3.1.

Lemma 4.2 At each iteration p in Step 3, the following inequality holds.

jj�̂p+1 + �̂hjj � max

(
1� �̂jj�̂p + �̂hjj

4fjj�x̂pjj2 + jj�ŷpjj2g ;
1

2

)
jj�̂p + �̂hjj:

Proof: At the beginning of Step 3, we have (�̂; x̂0; ŷ0) := (�k+1;xk;yk) which satis�es
(�̂; x̂0; ŷ0) 2 N (�+ �), i.e.,

jj�(�̂; x̂0; ŷ0) + �̂hjj � (�+ �)�̂; ŷ0 =M x̂0 + q and �(�̂; x̂0; ŷ0) < 0:

Throughout Step 3, we set the parameters �� := 1 and �� := 0, respectively. Therefore,
by (ii) of Corollary 3.5, we have

jj�(�̂; x̂p + ��x̂p; ŷp + ��ŷp) + �̂hjj � (1� �)jj�̂p + �̂hjj+ �2

�̂
fjj�x̂pjj2 + jj�ŷpjj2g

at each iteration p. Let us de�ne sp(�) = (1� �)jj�̂p + �̂hjj+ �2

�̂
fjj�x̂pjj2 + jj�ŷpjj2g. It

attains the minimum at

��p :=
�̂jj�̂p + �̂hjj

2fjj�x̂pjj2 + jj�ŷpjj2g

11



and the value is given by

sp(��p) =

(
1� �̂jj�̂p + �̂hjj

4fjj�x̂pjj2 + jj�ŷpjj2g

)
jj�̂p + �̂hjj: (36)

If ��p < 1 then we set �p := ��p, and hence,

jj�(�̂; x̂p + ��x̂p; ŷp + ��ŷp) + �̂hjj � sp(��p):

Otherwise,
�̂jj�̂p + �̂hjj2

2fjj�x̂pjj2 + jj�ŷpjj2g � 1 (37)

and �p turns out to be 1. Thus, we obtain

sp(1) =
jj�x̂pjj2 + jj�ŷpjj2

�̂
� 1

2
jj�̂p + �̂hjj:

The assertion follows from the de�nition of (12) of �p in Step 3.1.

Here, (�;x;y) 2 N (�+ �) implies that

jj�(�;x;y)jj � jj�(�;x;y) + �hjj+ �jjhjj � (�+ �)�+ �jjhjj � (�+ � + jjhjj)�0:

Thus, we have
N (�+ �) � P \ L(��; �0)

where �� = (� + � + khk)�0, and by (19) and (20), x0i � 2�(��; �0) and y0i � 2�(��; �0) for
every i 2 N . These bounds lead us to the fact that

jjX 0 + Y 0jj � 4�(��; �0): (38)

Since X 0Y 0 = ( �X � ��=2)( �Y � ��=2) = ��2I, the inequality (23) implies that

1

��
jjY 0�xjj2 + 1

��
jjX 0�yjj2 � 1

��
jj�djj2

i.e.,

jjY 0�xjj2 + jjX 0�yjj2 � jj�djj2:

Therefore, both jjY 0�xjj and jjX 0�yjj are bounded by jj�djj. In addition, (�x; �y) lies in the
bounded simplex P \ L(��; �0). Hence, (19) and (20) give us the bounds

jj(X 0)�1jj � 3�(��; �0)

��2
; jj(Y 0)�1jj � 3�(��; �0)

��2
:

Thus we obtain

jj�xjj2 + jj�yjj2 � jj(Y 0)�1jj2jjY 0�xjj2 + jj(X 0)�1jj2jjX 0�yjj2

� 9�(��; �0)2

��4
fjjY 0�xjj2 + jjX 0�yjj2g � 9�(��; �0)2

��4
jj�djj2: (39)

Using this result, we show the following main theorem.

12



Theorem 4.3 (i) At each iteration k, Step 3.1 terminates after

P k �
&
2max

(
2 � 36�(��; �0)4�

(�k+1)4
; 1

)'

Newton iterations.

(ii) The total number of Newton iterations in the algorithm is bounded by

&
216�(��; �0)4

���4

'
+ 3

 
1
��
log

�0

�
+ 1

!

where �(��; �0) and �� are de�ned by (21) and (11), 4.1 and �� = (�+ � + khk)�0.

Proof: (i) In Step 3, we set the parameter �� = 1(i:e:;��̂p = 0) and �� = 0. Thus the
system (16) is given by

 
�M I
Y 0 X 0

! 
�x̂
�ŷ

!
=

 
0

d̂
p

!

where d̂
p
= �1

2(�̂
p + �̂h). By the inequality (38), the norm of d̂

p
is bounded by

jjd̂pjj � 1

2
jjX 0 + Y 0jjjj�̂p + �̂hjj � 2�(��; �0)jj�̂p + �̂hjj:

Combining the inequality (39) with the above, one has

jj�x̂pjj2 + jj�ŷpjj2 � 9�(�; �0)2

�̂4
jjd̂pjj2 � 4 � 9�(��; �0)4

�̂4
jj�̂p + �̂hjj2:

and

�̂jj�̂p + �̂hjj
4fjj�x̂pjj2 + jj�ŷpjj2g � �̂5

4 � 36�(��; �0)4jj�̂p + �̂hjj
� �̂5

4 � 36�(��; �0)4(�+ �)�̂

� (�k+1)4

4 � 36�(��; �0)4 :

where the last two inequalities are derived from the facts jj�̂p + �̂hjj � (� + �)�̂ and
�̂ = �̂0 = �k+1. Therefore, by Lemma 4.2, the value of jj�̂p + �̂hjj is reduced at least by

the factor (1� Æk) at each inner iteration p, where Æk := min

(
(�k+1)4

4 � 36�(��; �0)4 ;
1

2

)
. Let us

consider the number of iteration P k for which the point (�̂; x̂P
k

; ŷP
k

) satis�es the criterion
in Step 3.1, i.e.,

k�(�̂; x̂P k

; ŷP
k

) + �̂hk � ��̂:

Since k�̂0 + �̂hk � (�+ �)�̂, a suÆcient condition is

(1� Æk)P
k

(�+ �) � � (40)

13



By taking logarithms in both sides above and using the inequality

log(1� Æk) � �Æk < 0

we can derive a lower bound of P k

P k �
�
1

Æk
log

�+ �

�

�
:

By the assumption 0 < � < � < 1, we obtain �+�
�

� 2 and the assertion (i).
(ii) An upper bound of the total number of Newton iterations is given by

KX
k=0

P k =
KX
k=0

&
2maxf2 � 36�(

��; �0)4

(�k+1)4
; 1g
'
:

Here, we can see that

KX
k=0

&
2maxf2 � 36�(

��; �0)4

(�k+1)4
; 1g
'

�
KX
k=0

&
2

 
2 � 36�(��; �0)4

(�k+1)4
+ 1

!'

�
&
4 � 36�(��; �0)4

KX
k=0

1

(�k+1)4

'
+ 3(K + 1):

Since we set �k+1 = (1� ��)�k, we know that �k+1 = (1� ��)k+1�0 and

1

(�k+1)4
=

1

(�0)4(1� ��)4
�
�

1

1� ��

�4k
:

Thus, the sum is given by

KX
k=0

1

(�k+1)4
=

1

(�0)4(1� �)4

KX
k=0

�
1

1� ��

�4k

=
1

(�0)4(1� �)4
�
�

1
1���

�4(K+1) � 1�
1

1���

�4 � 1
: (41)

The stopping criteria �k < � and the reduction rate 1� �� of �k ensure that

(1� ��)� � (1� ��)K�0 = �K < �:

The �rst inequality above implies that

�
1

1� ��

�4(K+1)

�
�

1

1� ��

�8 (�0)4
�4

Substituting this into (41), we obtain that

1

(�0)4(1� ��)4
�
�

1
1���

�4(K+1) � 1�
1

1���

�4 � 1
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� 1

(�0)4(1� ��)4
�
�

1
1���

�8 � (�0)4
�4

� 1�
1

1���

�4 � 1

<
1

(�0)4(1� ��)4

�
1

1���

�8 � (�0)4
�4�

1
1���

�4 � 1

=
1

(�0)4(1� ��)4
� 1

(1� ��)4 � (1� ��)8
� (�

0)4

�4

=
1

(�0)4(1� ��)8
� 1

1� (1� ��)4
� (�

0)4

�4

=
1

(1� ��)8
� 1

1� (1� ��)4
� 1
�4

=
1

(1� ��)8
� 1

f1� (1� ��)gf1 + (1 � ��)gf1 + (1� ��)2g �
1

�4

=
1

��(1� ��)8f1 + (1� ��)gf1 + (1� ��)2g �
1

�4

� 1
��(1=2)8

� 1
�4

<
28

���4

where the third inequality follows from the de�nition (11) i.e., �� � 1=2.
By a similar discussion in the proof of (i) of the theorem, the inequality (41) gives us

a bound K � 1
��
log �0

�
. Thus, we can conclude that

KX
k=0

P k �
&
216�(��; �0)4

���4

'
+ 3

 
1
��
log

�0

�
+ 1

!

The following corollary follows from (ii) and (iii) of Lemma 4.1.

Corollary 4.4 Suppose that h 2 IRn
+ satis�es h = e. Then the algorithm terminate in

O

 
�(��; �0)4n

�4

!

number of iterations.

5 Concluding remarks

We propose a new smoothing algorithm for the LCP and derive its complexity bound
when the problem satis�es Assumption 1.1. In a previous work, Hotta, Inaba and Yoshise

[6] proposed another smoothing algorithm whose complexity bound is O

 
n
�6

�6
log

�2n

�2

!
.

Combining the predictor-corrector strategy with the idea of using relatively narrow neigh-

borhood, we can improve the bound as O

 
n
�4

�4

!
(Corollary 4.4). As a by-product, we

show that there exists a point (�0;x0;y0) 2 N (� + �) for each (�;x;y) 2 N (�), where
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�0 = (1 � ��)� and (1� ��) = O(1 � 1=n) ((ii) of Lemma 4.1). For further research, It will
be important to �nd an algorithm which reduces the value of k�k polynomially, and/or to
evaluate the value of � more tightly to construct a polynomial-time smoothing method.
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