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Abstract

We consider the standard linear complementarity problem (LCP): Find (z,y) €
R? guch that y = Mz + ¢, (z,y) > 0 and z;5; = 0 (: = 1,2,...,n), where M is
an n X n matrix and ¢ is an n-dimensional vector. Recently several smoothing
methods have been developed for solving monotone and/or Py LCPs. The aim
of this paper is to derive a complexity bound of smoothing methods using Chen-
Harker-Kanzow-Smale functions in the case where the monotone LCP has an fea-
sible interior point. After a smoothing method is provided, some properties of the
CHKS-function are described. As a consequence, we show that the algorithm ter-
minates in O 5’;63 log %ﬂ) Newton iterations where % is a number which depends
on the problem and the initial point. We also discuss some relationships between
the interior point methods and the smoothing methods.

1 Introduction

We consider the (standard) linear complementarity problem(LCP):

Find (z,y) € R*"
such that y= Mz +gq, (z,y) >0, z;4: =0 (¢ € N).
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where N = {1,2,...,n}, M is an n X n matrix and ¢ is an n-dimensional vector. We
assume that the following condition holds.

Condition 1.1. (i) The LCP is monotone, i.c., the matriz M 1is positive semi-definite:
(! = 22)"M(z' —2%) >0
for every z!, 2% € R".

(ii) The LCP has an interior feasible solution (Z, f/) satisfying

It is well known that both of the linear program and the convex quadratic problem can
be modeled as monotone LCPs. Recently several smoothing methods have been devel-
oped for solving monotone and/or Py LCPs, e.g., Burke and Xu [1],Chen and Chen [3],
Gowda and Tawhid [6],Chen and Ye [5], Song, Gowda and Ravindran [11],Tseng [13],etc.
Among others, Tseng [13] showed globally linear and locally superlinear convergence of a
smoothing method using Chen-Mangasarian functions under a condition which is milder
than Condition 1.1.

Our approach is based on the use of Chen-Harker-Kanzow-Smale smoothing function

¢(/J" a, b) =a+b- (a _b)2+4ﬂ2 (1)

with a positive number g > 0. This function was given by Chen and Harker[4] to
construct the first non-interior path-following method for the LCP. Several properties of
this function have been observed by Kanzow|[8], Qi and Sun[9, 10], Burke and Xu [2],
Sun and Qi[12], etc. The method proposed in this paper is very similar to the homotopy
continuation method for the nonlinear complementarity problem provided by Hotta and
Yoshise [7]. However, there are some differences among them. The first difference is that
we use the function (1) instead of using the function ¢(u,a,b) :=a+b— Via—=b)2+4u
as in [7]. As observed in [9] (and also in Section 3 of the paper), the behavior of the
function ¢ can be easily estimated compared to the function ¢. The second difference is
that we generate a sequence in the affine space {(z,y) € R*: y = Mz + q}. The LCP
can be regarded as a problem to find a solution which satisfies three categories of the
constraints: (i) the equality constraints y = Mz + g, (ii) the nonnegativity constraints
(z,y) > 0, and (iii) the complementarity conditions z;y; = 0(i € N). In [7], it is supposed
that all of these conditions do not satisfied at the initial point. However, in linear cases,
it is not difficult to find a point satisfying one of three categories of constraints. In this
paper, we start from an initial point satisfying the equality constraints in contrast to
the infcasible interior point methods in which the nonnegativity constraints are always



satisfied. The last difference is that we intend to reduce the value of p and the value of
¢ to zero, separately, while the values are changed simultaneously in [7].

The main purpose of this paper is to derive a complexity bound of a smoothing method
with the assumption that Condition 1.1 holds and without imposing any other additional
assumption. The paper is organized as follows. In Section 2, we propose our smoothing
algorithm for solving the monotone LCP. In Section 3, we collect several basic properties
which will be used in the complexity analysis of our algorithm. As a by-product, we
find a close relationship between the smoothing method and the interior point method in
terms of the Newton direction. In Section 4, we derive that the computational complexity
bound of our smoothing method results in O (j’:T" log 56—225) Newton iterations where ¥ is
a number which depends on the problem and the initial point. We also discuss some
relationships between the interior point methods and the smoothing methods in Section

3.

To simplify the presentation, we will use the notation

vec{z;} := (1,2, .. axn)TaA ®(p, z,y) := vec{@(p, i, yi) (1 € N)}.
The vector ®(u,z,y) will be sometimes abbreviated by ® := vec {¢(u,z;, ¥:) (i € N)}

and similarly, ®(f1,z,7) by ®, ®(i1,2,§) by & and ®(u*,z*,y*) by & . We also use
diag {z;(¢ € N)} to denote the diagonal matrix whose ith diagonal element is z; (i € N).

2 A smoothing algorithm using CHKS-function

As we have mentioned, the constraints in the LCP can be categorized into three groups:

(i) the equality constraints y = Mz + ¢,
(ii) the nonnegativity constraints (z,y) > 0,

(iii) the complementarity conditions z;y; = 0(¢ € N).

While the first and second groups consist of linear smooth constraints, the CHKS-function
defined by (1) gives us a way to approximate the non-smooth constraints in the third

group.

Proposition 2.1. Let ¢(u,a,b) := a+b—/(a — b)2 +4u?. For every nonnegative num-
ber u > 0, the following equivalence results hold for every a,b,c € IR.

(i) (Lemma 1.1 of [7})
[6(1,a,b) = ] <= [((a — ¢/2),(b—¢/2)) >0 and (a — c/2)(b—c/2) = y* > 0].
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(ii)

[f(pe, a,b) < 0] <= [ab < p? ifa+b> 0]
Specially, if p > 0 then
[¢(1t,a,b) < 0] <= [ab < p® ifa+b> 0]

(iii) (Lemma 2 of [9])

(a—1b)

4

V2¢ 7a7b == - (I,—b,—,
(ﬂ ) (m)s( uﬂ )(( ) Nﬂ)

i.e., ¢ is a concave function and

2
4

(a —b)
V2¢ 7a’ab S -
IV=6(u, a,b)]| T aey ( Nu )

Suppose that (Z,7) € R?" satisfies the equality constraints, i.e.,

4 2
<=
(a—b)2+4p2 ~ K

y=Mz+q
By the above lemma, we know that if the point (Z,7) € IR*" satisfies
&1, %, %) = ¢i (i € N)
for some 2 > 0 and ® € R", then
(2 — 6i/2), (i — 6:/2)) > 0, (F: — ¢:/2)(H — $:/2) =p®> >0, =Mz +gq

which implies that the point (Z — ®/2,5 — ®/2) € R?" is an analytical center of the
perturbed problem LCP(g, Z,7) given by

Find (z', ) € R*™ (2)
such that v = Mz'+ ¢, (¢',¥) >0, zlyi =0 (i € N)

where ¢ = M®/2 - ®/2 + q.

Suppose that we obtain a point (,7,y) € Ry X IR?" satisfying 4 = MZ + ¢ and
let ¢; = ¢(1, T;, 4;) (1 € N). We employ the following system of equations on the triplet
(u,z,y) € Ry x R?" to approximate the solution of the LCP at a point (&,%,9) €
R++ X ]R,2n:



y— Mz —q=0,
. )
¢, 20, 4i) = (1 — 04)¢i (1 € N).

Note that the first and the second equations are linear and they are always satisfied as long
as the Newton iteration for the above system goes. The Newton direction (Ap, Az, Ay) €
R!*?" to the system (3).should satisfy.the following.equations:

-MAz+ Ay =0, (4a)

AH = _(1 - Uﬂ)ﬁ’ _ (4b)

d,Ap+ DAz + DAy = —(1 — 04)® (4c)

where
d, := vec { — il , (5a)
\/(-’i'i - 5)* +4p?

D, := diag {1 — T Y , (5b)
V(@ — 5 + 42

D, :=diag {1+ T % . (5¢)
V(@ — 52 + 42

Since the equation (4b) is trivial, the system of the Newton direction can be reduced to

(_l];i Dj)(ﬁz>:<(1—a,,)nd,,—(1—a¢)£)- (6)

The following results are used in many papers on smoothing methods, hence we omit
their proofs.

Proposition 2.2. (i) For every (i, %,§) € Ry; x R*",

i — Ui

< 2.
\/(531' — %:)* +4p?

0<1+

ii) Thus D, and D, given by (5b) and (5¢c) are positive diagonal matrices and the system
y
(6) has a unique solution (Ax, Ay) whenever Condition 1.1 holds.

In our algorithm, we first find an initial point (u°, 2%, 3°) so that it satisfies
Y’ = Mz"+ ¢ and @° = &(u° %1% <0. (7)
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In fact, the determination of the initial point in Step 0 and (ii) of Proposition 2.1 ensures
that (u°, 2%, y°) satisfies (7). Each iteration consists of two steps, Step 1.1 and Step 1.2.
In Step 1.1, we fix the value u* and devote ourselves to reduce the value of |®*| in the
set {(x,y) € R™ : ®(u*,z,y) < 0} until the inequalities ||®F|| < e is satisfied with a
sufficiently small e. Throughout these steps, we choose g, = 1 and hence Ap? = 0 (see
(4)) the value u* is never changed. In Step 1.2, the value of u is certainly updated by a
half of it and also the vectors (z,y) are updated along the Newton direction.

Algorithm.
Step 0: Let € >0 and k := 0. Let 2° € IR", y° := Mz° + ¢ and choose a p° such that
(1°)? > max{0, 20y} (i € N)}
and let ¢¢ := ¢(u0, 2%, 49) (i € N).
Step 1: If p* < € then stop else let p := 0, 3° := ¥, §° := y* and @0 := ¢* (i € N).

Step 1.1 If ||®?|| > € then let g, := 1 and g, := 0 else go to Step 1.2. Compute
the Newton direction (ApP, Az?, Ay?) by solving the system (6). Define

g*(8) := (1 - 0)[19”|| + %{IIM”II2 + [l A7} (8)

and define 6? as

: |87 }
0P := min< 1, 9
{ AP+ [AFT) 9)

Let
(74, %) 1= (3%, ) + 0°(AP, A7), 7 = (ut, 374, g7+
and let p:= p+ 1. Go to Step 1.1.
Step 1.2 Let (Z,79) := (3%,97). Let 0, := 1/2 and 04 := 1. Compute the Newton -
direction (Af, AZ,Ay) by solving the system (6). Let
(W, 2B M) = (uF, 7,9) + (AR, AZ,AG) = (44/2, 2+ Az, 5 + Ap)
and let k£ := k + 1. Go to Step 1.

By Proposition 2.2, the Newton direction at each step can be calculated. Also, 67
in Step 1.1 is well-defined since (Axz?, Ay?) = 0 means ®* = 0 by (6) which contradicts
|®7|| > €. Also, since the value y* is always reduced to u*/2 at each iteration k, the
number of Newton iterations required by the outer steps is [log -“c—o] where [z] denotes
the smallest integer k satisfying x < k. Thus, what we should do is to give a bound of
the number of Newton iterations required in Step 1.1 at each k. In Section 4, we will
discuss it and derive a bound of the total number of iterations of the algorithm.
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It may happen that the step size 67 in the algorithm is too small for the practical use.
In such a case, we can adopt a certain inexact linesearch procedure for the problem

minimize ||[®(4F + AP, Z° + AP, + 0AYP)||,
subject to ®(if + §AuP, IP + 0AzP, §* + 0Ay?) < 0.

3 Some properties of the function ¢ and the New-
ton directions

In this section, we collect some basic properties of the CHKS function ¢ and the Newton
directions satisfying the system (4a) — (4c) and/or (6)

The following results will be used to show that the generated sequence lies in a
bounded simplex whose volume depends on the problem. Similar result has been shown
by Burke and Xu[2].

Proposition 3.1 (Lemmas 2.2 and 2.4 of [2]) : Suppose that Condition 1.1 holds.
Let us define the set

AB,1°) := {(2,y) e R™ : y = Ma+gq, B(u,z,y) <0, |®(p, 2,y)|| < B, p € (0,p°]}(1
for every 8 > 0 and p® > 0. Then for every (z,y) € A(B, u°),

—(B/2)e <z <A(B, 10, —(B/2)e <y < (B, u)e,

where v is given by

n(u) + @ +(8/2e) (¥ +(8/2)e) 5/

min,-{.%,-, :a,'}

(8, 1°) = (11)

Proof: Let (z,y) € A(B, 1°) and ¢; = ¢(p, i, ;) (i € N). The lower bounds of x and
y are directly follows from (i) of Proposition 2.1 and ¢(u, z;,y;) > —f for every i € N.

To show the upper bounds, we use the fact that Condition 1.1 holds. Since y = Mz+gq,
Y=M 2 +q and M is positive semidefinite, we have

0 < (z— HT(y—¥)

= {(z-®/2) - (2 -8/2)}T{(y— ®/2) - (¥ —9/2)}.

By expanding the right hand side, we observe that
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(¥ —9/2)" (a—8/2)+(F —8/2)" (y—8/2) < (z—8/2)"(y—8/2)+(F —8/2)" (¥ —®/2).(

Let us show that the right hand side of the above inequality is bounded. The boundedness
of the first term follows from (i) of Proposition 2.1, i.e.,

(zi — 0:/2)(% — ¢:/2) = 1
and hence
(z - @/2)"(y — @/2) = np® < n(u°)’.
For the second term, the inequality
(2 ~2/2)7(4 ~2/2) < (2 +(8/2)e)" (Y +(6/2)e)
holds since
0>®>—pe and (£,9) > 0. (13)
Combining the above two bounds with (12), we have

(¥ —@/2)T (z—2/2)+(Z —8/2)T(y—2/2) < n(1°)*+(Z +(8/2)e)" (Y +(B/2)e).(14)
For the right hand side of (12), the inequalities (13) also imply that
Y—®/2>Y>0, % -5/2>%>0
and that
0 < (Ui —¢i/2)(zi — ¢i/2), 0 < (% —¢i/2)(wi — ¢:/2)
for every i € N. Thus, by (14), we see that
n(1®)® + (2 +(8/2)e)" (¥ +(8/2)e)
Ui —¢i /2
n(10)? + (£ +(8/2)e)"(Y +(8/2)e)
min,-{.%,-, :8,}
n(1°)? + (£ +(8/2)e)" (Y +(8/2)e)
T —¢i/2
n(p”) + (& +(8/2)e)" (Y +(/2)e)

min,-{:%,-, :8,'}

i —¢if2 <

<

bl

yi—¢if2 <

Finally, the inequality (3, u°) > 3/2 follows from (z, 13) >0and p° > 0. 3

The proposition below is a collection of simple results on the Newton equation (6),
but plays a key role in providing a complexity of the algorithm.
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Proposition 3.2. Let (i,7,9) € Ry X R?" be a point satisfying y = MZ + q and let
& = (i1, %, %) (i € N). Define

(.1?’, y,) = (j - (5/2’ g - ‘5/2) (15)

Then the following results are true.

(i) VE -G +42 =, +9, > 25 (i€ N).

(ii) The solution of (6) is the unique solution of the system

(5 )(5)-(3) X

where

1-—0’¢

h:=-2(1-o0,)i% — (X'+Y"d. (17)

(iii) Suppose that Condition 1.1 holds. If (i, Z,7) € R4y x R lies in the set A(B, u°)
for some 3 > 0 and p® > 0 then

P <2 <29(8,1%) (i€ N),

0< <y <2%(B,1°) (i € N).

(8, 1°)
where
Y8, 1°) := max{(8, u°), 1’} (18)

(see (11) for the definition of y).

Proof: (i): The inequalities are straightforward since \/ (Z; — 9:)2 +40% = (Zi4+ 3:)— s
by the definition of ¢;, and since (z; — y;)? > 0.
(ii): It follows from (6) and (5a) — (5¢c) that the direction (Az, Ay) satisfies

i — Y

1 - A+ (14— )Ayf
V(&= )7 + 472 V(@ =50 + 4727

41 _
BRG (s/(:?,- — 5+ 4/12) Smeh
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for every ¢ € N Multiplying both sides of the above by \/ (Z; — ;)2 +4p% > 0 and

substituting \/ (Z; — ;)2 + 42 = z} + o, the assertion follows. (iii): By the definitions
of ¥} and ¢; (i € N), we see that

Y = %—$if2
e P— -
= ¥- 5{(37:' + ) — \/(-’Cz - %)? +4p°}

- %{(ﬂi - &)+ /(5 — )2 + 482},

Since the function g(a) := a + va? + b with some b > 0 is strictly increasing function
w.rt. a € R, a lower bound of 3; — Z; in the set A(3,u°) gives the one of (§; — 7;) +

\/ (% — ;)% + 4i2. Here, Proposition 3.1 and the inequality (11) ensure that

—2v(8,1°) < % — % < 2v(8,1°)

and hence we obtain that

yi > —v(8, 1°) + /7(B, 10)? + 4722,

By the definition (18) of 7, the lower bound of ¥} is given as follows:

4 > Ly .
(B, 1) + /7(B, 10)2 + 4p2 — VB, 10)

—v(B8, 1) + \/7(ﬂ,u°)2 +4p2 =

The upper bound of y| = g — #;/2 follows from the three facts: 3; < (B, u°) (see
Proposition 3.1), ¢;/2 < (/2 and 3/2 < (B, u°) (see (11) and (18)). By a similar
discussion, the lower and the upper bounds of z} (i € N) are obtained.

The type of the system (16) often appears in the field of interior point algorithms and
the following results are well-known (see, for example, [15]).

Proposition 3.3. Suppose that M is an n X n positive semi-definite matriz. For every
(«,y) > 0 and h € R", the system (16) has the unique solution (Ax, Ay) which satisfies
the following inequalities:

0 < Az"Ay < |(X'Y')72h||

(XYY Ax® + [(XTY) V2 X Ayl? < [(X'Y") V2|2 (19)

In our analysis, by Proposition 2.1 and the definition (15) of (z',3y'), we see that
X'Y" = p*I with i > 0. Thus the inequality (19) can be rewritten as
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IY'Az|? + | X Ayll? < |15
and hence
YAzl < 2], X Ayl < |IA]-
In addition, if (Z,y) € A(B, u°) as in (iii) of Proposition 3.2, then

ﬁ(ﬂ_, 1)

i

1 < 289 ey <

72

This leads us to the following corollary.

Corollary 3.4. Suppose that the assumptions in (iii) of Proposition 3.2 are satisfied.
Then

;Y(ﬂ, N) 1.
A,

layl < Y)Y Ayl < Wuﬁn-

1Az]| < (X)X Azl <

Here h is given by (17).

The last proposition gives a second order approximation of the behavior of ® along
the Newton direction (Ap, Az, Ay).

Proposition 3.5. Let (i, Z,7) € R such that ®(f1,7,5) = ® < 0 and let (Ap, Az, Ay)
be the solution of the system (4a) - (4c).

(i) For everyie N and @ € [0,1],

0 > {1_9(1_%5)}43.'
> ¢+ 0Ap, T+ 0Az, 5+ 0Ay)
- 62
2 {1-6(1 - 00)}di = —{(1 - 0, + A + Ay}
7

(ii)
|®(+ 64w, T + Az, 5+ 0Ay)||
- 62 _
<{1- 001 - oo} 1Bl + —{(1 - )2 Vni? + || Az|? + || Ay|*}.
I
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Proof: Using Taylor’s expansion, we have
di(+ 0Au,z + 0Az, 5+ 0Ay)
_ AN 02 A,U,
= ¢i + 0V¢(ﬂa x;, ?7:) Axi + E (A/J., Al‘,‘, Ayz) V2¢(ﬁl7 j:’ —i) A‘T:ia
Ay;

where (&', %}, 7}) = (B, %, §:) + 0'(Ap, Az;, Ay;) and 8’ € [0,0] C [0,1]. For the first
derivative, by (4c) and a simple calculation, we can see that

Aup )
V¢(ﬂ7ji,gi) ( A.’L‘,’ ) = _(1 - 0¢)¢i.
Ay,

For the second one, (iii) of Proposition 2.1 gives the bound

Ap 2
’ 0

0> (A, Az, Ay) V(I 7, B) | Azi, | 2 ——{Ap” + Az} + Ay}

Ay; a
Since Ap = —(1 —o,)p and ' > i — (1 — 0,)[i = 0,fi, we obtain the assertion (i).
Now we have that
0 > {1-6(1-0y)}®
> ®(p+0Aup,T+0Ax, 5+ 0Ay)

2
> {1000 -} — ({1 = 0 et veo (Aaf) +vec 8071}

By a similar discussion as in the proof of Theorem 4.1 in [2], the assertion (ii) follows. g

4 Complexity analysis of the algorithm

As we have mentioned in Section 2, we have to show the finite termination of Step 1.1 to
derive a complexity bound of the algorithm. To do this, we prepare three lemmas below.
Throughout the discussions below, we assume that Condition 1.1 holds.

Lemma 4.1. At each iteration k, the inequality

1671 < max {1 — @7l L1y, (20)
< AT+ A7) 2
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holds for p =0,1,2... in Step 1.1.

Proof: Throughout Step 1.1, we set the parameters o, and 04 as 0, =1 and 04, = 0.
Thus, by (ii) of Proposition 3.5, we have

. . oP)?2
) < (1 - oy + LAl + o) = 76,
By the definition of (9), if

171 *

<1
2(1a21% + |Ay?)|?)

then

: 7] )
PeP) = |7 (1 — ,
g = | ”( A + A7)

and if
o
2([B [+ [P =
then
AzP|2+ |[AyP)2 1, -
#(0) = o(1) = BTV o 2y

In both cases, we can check that the inequality (20) holds. ¢
Lemma 4.2. (i) Let (fi,Z,§) be any point generated in the algorithm. Then
®(p,z,9) <0.
(ii) Let (i*, 7", §*) be any point generated at the iteration k. Then
(%, 2, §")|| < 6°
and hence
(B*,2%,5%) € A(B*, 1°)
where

14



gt = W (21)

Proof: By the construction of the algorithm, the initial point (u?, % y°) satisfies
®(u0, 2% %) < 0 and each direction used in the algorithm is a solution of the system
(4a) — (4c) for some o, € [0,1] and o4 € [0,1]. Since the step size 8 never exceeds 1 by
(i) of Proposition 3.5; we'can see -that -at everynext-terate, the value of ¢; is always
nonpositive for every ¢ € N.

Lemma 4.1 ensures that the sequence {<i>”} generated in Step 1.1 is strictly decreasing.
Since we assume that ||®(u*, 2%, y*)|| < € at the first stage of Step 1.2, we only have to
consider how the value |®(uF*!, zF+!, y**1)|| is increased in Step 1.2. In Step 1.2, we
choose 0, =1/2, 6, =1 and 6 = 1. Thus, it follows from (ii) of Proposition 3.5 that

2
[+, 25+, g | < e+ E{\/f_l(uk)2/4 +[|Az]® + [|Ay|*}- (22)
Since (pf, 2%, y*¥) € A(e, u°), by Corollary 3.4, we see that

e, 10)?
IAZ|? + | Ay|? < 2= oL In*]1?
where h* = —(p*)%e and
IB*]l = (u*)*Vn.
Thus we can see that

27(e, u°)?
laz]® + Ayl < = g—(E")'n
(%)
= 27(e, u%)?n
Since the definition (18) of 4 and € < p* < u® imply that

VA e GV i B W | CYL0 e | GV

4 — 4 “0 — uk ’
we obtain the bound
2 n k _
”@(ﬂkH,kav yk+1)” < _k { \/—( + 2"/(6,#0)271}
2 9_
< — (e, 1”)’n
,u 4
0
< 67(6,;’: )

Now we are ready to show our main theorem.
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Theorem 4.3. (i) At each iteration k, Step 1.1 terminates after

167 ﬁk, 0\4 q>k (I,k
Pk = [2ma.x{ 7 (Nl’:)g I ”, l}log—lle—”

Newton tterations.

(ii) The total number of Newton iterations in the algorithm is bounded by

o | {5 o (o] )
€ € €
Here & and (* are given by (18) and (21), and

= 0)2
G = M (23)

Proof: (i): (ii) of Lemma 4.2 and Corollary 3.4 ensure that the inequality

F¥(BF, 1°)?
jaa? + el < 2 X o
holds with

hP = —%(X’ +Y')®P,

Since the bound
1 . . .
B2l < SIX" + Y'I|97]] < 23(8%, )| @7
follows from (iii) of Proposition 3.2, we find that
0)4

~( 3k ,,0\2 A 85( 8%,
lAz?]? + A% < 2% {2364, )87} = 7((—[“‘—

(e pky eI

This implies that

”(i)l’”’uk > ”(i)p””k (“k)4 _
Alaz?|? + lag®l®) — 4 8¥(B*, u°)*|| ||
_ (1*)°
325(B*, u0)4|| &7
N

329(6%, u0) (| @1

Here the last inequality follows from Lemma 4.1, i.e.,
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1e7]l < [12°) = [|2*|.

Thus ||&?|| will be reduced at least by the factor 1 — §* where

ko oo (u*)® 1
"= mm{327(ﬂ’“,u°)4ll¢’“ll’ 5} o

at each iteration p. Now let us consider the inequality w.r.t. the number of iteration p

(1—65)7)|®%) < e (25)
By taking logarithms in both sides above and using the inequality
log(1 — 6*) < —6F < 0

we can derive a lower bound of p

> [Log121]

as a sufficient condition of p to satisfy (25). Substituting (24), we obtain the assertion
(i) from Lemma 4.1.

(ii): By the definitions (18) of ¥, (21) of 8* and (23) of 3, and by the relation uf > e,
we have

B* < B and F(B*,p°) < A(B,u°).

for every k. Since ||®F|| < 8* by (ii) of Lemma 4.2, we have that

163(8,108 |\, B
o o o

< B )]

for every k. Thus the total number of Newton iterations is bounded by
K - -
g [ (167(ﬂ, 1B )]
PF < Jlog=|- Y 2| —/=—+1
2r < flos] 3 [o (U
f {[ (167'8 ) ﬁ+1>1 +(K+1)}
[ ]
= logg {[32*7[3;1 ( . 5>]+3(K+1)}
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where K satisfies €/2 < (1/2)% 1 < € and is bounded by [log(u°/¢€)]. Since p* = (1/2)Fu°

and

K 1\° K

%08 - wrl
1 ( )K+1
(W02 (28 )

1 1 —(1/2)%K+D
(1/2)5(K+1)(N0)5 25 _ 1

1 1
(1/2)5(K+1)(N0)5§

1 1

(1/2)2{(1/2)% (u)}° 31

1 1
(1/2)%(/2)° 31
210

314
34
6_5,

IA

we complete the proof of the theorem. 4

5 Concluding remarks

In this paper, we provide a computational complexity of a smoothing method for the
LCP under Condition 1.1 holds. A feature of our analysis is that we need not impose
any other additional assumptions on the problem. Consequently, we can show that the
algorithm terminates in

~6 =2

¥Fn. Fn
Newton iterations where -y is a number which depends on the problem and the initial
point.

In Section 3, we collect some properties of the smoothing method. These results give
us not only the tools for complexity analysis but also information on the relationship
between interior point method and smoothing method. Let (2/,y’) be an feasible interior
point of the LCP’ (2). In many interior point algorithms based on the primal-dual
algorithm (sce, for example, [14], etc.), the unique solution (Az™, Ay'™) of the system

18



M I\[aAz) _ 0
Y’ X')(Ay - —X'y’+ue)

for some u > 0 is often used as a search direction. Let us consider the Newton equation
(16) with 0, = 0 and 0 = 1. As we have mentioned in Section 2, (z'y’) is an analytical
center of the perturbed problem (2) satisfying

y =Mz +¢, (2'y) >0, gz =p>0.
Thus, X'y’ = pe and the solution (Az*™, Ay*™) coincides with (Az™", Ay'™). That is

the direction (Az™, Ay*™) can be regarded as the search direction used in the interior
point method at an analytical center (2, y').

At the end of Step 1.1 of the iteration 0, we obtain a point (Z,y) satisfying
|2(k°, 2, 9)| = ||1®] <€, y=Mz+q

after

16 ﬂO’ 0)4||HO <I)0
o (S ot

Newton iterations ((i) of Theorem 4.3. Let us consider the perturbed problem LCP(u°, z, %)
(2). Since ||®|| = [|®(1°, Z,7)|| is sufficiently small, we may consider the problem as an
e-approximated problem in which the axes are shifted by ¢; € [—¢/2,¢/2](i € N) . Since
(z — ®/2,5— ®/2) > 0 is an analytical center of a perturbed problem (2), we can apply
an O(y/nL) feasible interior point algorithm for solving (2) with the initial point (Z, 7).
Thus, if the number

167 ﬁO, 01410 il
S

of iterations required in Step 1.1 does not exceed O(y/nL), then we can obtain an e-
approximated solution of the LCP in O(y/nL) iterations.
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