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ABSTRACT

The size-density hypothesis addressed in this paper is the relationship between
facility size and facility density in time minimization theory. It is known that multi-
Weber problems on a continuous plane show the relationship that facility density is
proportional to demand density raised to the two-thirds power. Although it israther hard
to state this relationship in ordinary p-median problems on networks because of the
difficulty in defining the notion of density, it is expected that the relationship holds also
in these classical p-median problems. In this paper, we define the facility density at a
certain node as the number of facilities which exist within a predetermined distance
(radius) from that node, and test the hypothesis in p-median problems by calculating
demand density and facility size, assuming a facility has the capacity to accommodate

demand. Numerical tests will be examined to confirm this relationship.
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1. Introduction

The classical minisum location problems are to find the several locations that
minimize the summed distance from discrete/continuous demands whose locations are
known. The principal objective of previous studies on minisum location problems was
to search an exact solution so far. For all practical purposes, however, it is not always
necessary for us to know rigorous optimal locations, but often sufficient if we can only
estimate the number of facilities for each area roughly. In that case, we only have to
know the facility density that is necessary for the demand density at that place.

For instance, when we locate primary schools in a region, we usually allocate
the number of schools according to population (or the number of pupils) and area of
each subregion. Normally the subregion with high population density requires more
schools than the average, and in a low population density subregion it is sufficient to
have the number of schools below the average. If we locate schools in such a way that
the summed distance from pupils to schools for all region is minimized, we first divide
the targeted region into several subregions, and then allocate the number of schools to
each subregion taking population into account. To what extent do we have to reflect
population to the number of schools then?

Location problems may generally be classified into two categories: planar
problems and network problems. In planar problems, minisum type location problems
are formulated as Weber or multi-Weber problems. These problems are most often
nonlinear optimization problems (e.g. Iri et al., 1984; Suzuki et al., 1991). In contrast,
network problems are formulated as median or p-median problems. These problems
tend to be linear zero-one optimization problems (see Daskin, 1995). Solution of these
minisum problems generally becomes more difficultand time-consuming to find, as the
number of facilities grows, especially for p-median problems. Therefore, it is rather hard
to seek exact solutions.

Instead of relying on several heuristic methods, the size-density hypothesis
might be useful in order to grasp the necessary facility density if we are not bound to
exact optimal locations. The size-density hypothesis is the relationship between the
facility sizes and the facility density in time minimization theory.It is known that multi-
Weber problems on a continuous plane show the relationship that the facility density is
proportional to the demand density raised to the two-thirds power.It is expected that the
relationship holds also in these classical p-median problems. If it is true, we can
estimate relatively easily the necessary number of facilities (or facility density) by using
this relationship.



In this paper we present evidence that the size-density hypothesis almost holds
in p-median problems and that it would be a useful idea to grasp the solution.
Justification of the hypothesis is checked by calculating demand density and facility size
for each node with a facility, assuming all facilities must have capacity to accommodate
their demand that generates from the neighbourhood. Also, the relationship between
demand density and facility size derived by the hypothesisis confirmed through some
numerical examples.

It seems to be rather hard to state this relationship in ordinary p-median
problems on networks because of the difficulty in defining the notion of density. In this
paper we define the facility density at a certain node as the number offacilities that exist
within a predetermined distance (radius) from that node. We try to test the hypothesis by
calculating demand density and facility size assuming all facilities have the capacity to
accommodate its demand.

The next section, Section 2, is a summary of the size-density hypothess in
multi-Weber problems. In Section 3, the exact solution of large p-median problems by
linear programming relaxation is treated. Section 4 presents the test of the size-density
hypothesis to p-median problems on a jurisdictional network of the Tokyo metropolitan
area of Japan. Conclusion and further research agenda are presented in the last section.

2. Size-Density Hypothesis in multi-Weber Problems

The fact that the facility density should be higher for higher population density
is generally recognized as being taken for granted. However, few researches have been
seen which specify the relation of both quantitatively.

Palmer (1973) considered the situation to locate a number of service points in a
district on a plane such that the mean travel distance is minimized, with the assumption
that clients travel to their nearest points. He deductively showed that the density of the
service points should be proportional to the two-thirds power of the population density.

Originally the size-density hypothesis was developed to account for variations
in the size of territorial subdivisions such as counties, states, or regions. The
terminology of the size-density hypothesis was introduced by Stephan (1972) who dealt
with such a number of systems of administrative-territorial divisions including those in
98 modern countries. He examined the size of territorial units in relation to the
population density of the units, which is derived under the theory of time minimization,
and explained the empirical fact that countries usually locate their smaller



administrative subdivisions in regions of higher population density (Stephan, 1977).
Stephan and McMullin (1981) concluded that the time-minimization theory also has
been supported in the case of U.S. counties during the period of their formation.

Gusein-Zade (1982a, b) started with the discussion on the central place theory
of Christaller and Losch. He treated the Bunge’s (1966) problem, which describes a
deformation of the plane that leads to a constant population density (for more details,
see Beavon, 1977; Rushton, 1972). Finally he concluded that the distribution of central
places should be determined in such a way that the number of residents served by one
center is proportional to the two-thirds power of the population density, instead of the
one-half power Bunge had proposed. Stephan and Eggers (1985) have summarized the
relation with some earlier works.

These findings are summarized as the theoretical relationships between facility
density, facility size, area of zones, and demand density, all of which are based on the
size-density hypothesis. The hypothesis is generally described as follows.

Let us consider that we place N facilities in a region D in which the population
(demand) distributes with the density /(x) at the location of xe D. We set the following
assumptions as Stephan (1977) considered:

(a) people receive services from the nearest facility,

(b) the frequency of service use does not depend on the distance from the facility,

(c) expenditures for travel distance are proportional to travel distance, and

(d) expenditures for facility construction or operation do not depend on its size.

In the region D, the already given population density 4(x) is not supposed to be uniform
generally. Also, facility density in the neighbourhood aroundxe D (its area is given by
dS) is denoted by n(x). Let us assume that the number of facilities is sufficiently large
and the facility density is uniform within a sufficiently small local area. Then the mean

distance d(x) to a facility around x should be approximately given by
d(x) = k/[n(x) (1)

where k is a constant value. If the area served by one facility forms a regular hexagon,k

32
is given by k= 4+;110g3 [2\3/3} =~ 0.3772, and if the area forms a circle, & 1s given
by k= 3—5: = 0.3761. Suppose that we have total population H, which can be written
T

as



H= L)h(x)dS 2)

Then the problem that minimizes the mean travel distance to the nearest facilities can be

described as the following functional minimization problem:

min d[n(x)] = — j d(x)h(x)dS

_2 L) hx) 4 3)

n(x

st. L n(x)dS = N

where D, is the territory of i-th facility and N is total number of facilities. The solution
of this functional optimization can be obtained by using Lagrangean multiplier method.
We then set Lagrangean as

kh(x)

HAJn(x)

Lin(x)) = | {——F===1+n(x)}dS 4)

where A is the Lagrangean multiplier. From the calculus of variations, we can derive

from the necessary condition that the following equation should be satisfied.

_k ) s
SH {n(x)}2/3+l 0 5)

Rewriting the above equation, we obtain
n(x) = C, {h(x)}** (6)

where C| represents a constant. This equation shows that, in optimum, facility density 1s
proportional to population density raised to the two-thirds power, and that brings about
minimum average travel distance. This fact means that the required number of facilities
in a dense area is less than that in a sparse area even when population of the two areas is
same.

Equation (6) is the most essential expression of the size-density hypothesis, but
we can adopt other expressions. Since the area served by one facility, a(x), is inversely

proportional to facility density, therefore it should be proportional to population density



raised to the minus two-thirds power:

a(x) = Cy {h(x)} ™" 7

where C; is a constant. The size of population served by one facility (or facility size, if
we assume facilities are not capacitated) is given by multiplying the area served by one
facility by population density. Thus we have

s(x) = a(x)h(x) = C, {h(x)}" ®)

where s(x) indicates facility size and C; is a constant.

In the real world, the assumptions (a)-(¢) do not always hold. The size-density
relationships derived above are not realized for such reasons that demand for facilities
depends on the distance traveled, or that the travel cost is not proportional to the
distance traveled. Some researchers have made many efforts for extensions,
generalizations, and empirical analyses of the size-density hypothesis For example,
Stephan (1988) reexamined the exponent of travel cost and reformulated the hypothesis
with the distributions of nongovernmental service centers. Gusein-Zade (1993)
generalized the exponential functions with the exponent not equal to the number shown
above.

3. Large p-Median Problems

For network location problems such as p-median problems, it may be
prohibitively expensive to work with the necessary network data as well as its solution.
In such cases, network location problems may well be approximated using planar
location problems. Instead of distance on the network, we use Euclidean or rectilinear
distance. The resulting problems are often easier to analyze.

On the other hand, many realistic assumptions can be incorporated in network
location problems which cannot be included in planar location problems. In network
models we have a transportation network which may represent a system of highways or
railways. The distance between two points, which is usually defined as the shortest
distance on a network, often represents actual spatial structure more accurately in
network models than in planar models. Sometimes this fact tends to facilitate for us to

treat p-median problems rather than multi-Weber problems, even when the problem is



quite large.

A great deal of endeavor should be necessary to do with large p-median
problems. The methods that can be used for p-median problems are relaxed linear
programming (ReVelle and Swain, 1970; Morris, 1978), the dual ascent methodology,
Lagrangean relaxation (Galvdo and Raggi, 1989), and so forth. However, there is a limit
to these methodologies.

In that case, the size-density hypothesis is very useful to find the solution, if it
holds in p-median problems. By looking at the demand density in the neighborhood of a
certain node, we can estimate the number of facilities needed near that node. The rest of
this paper is devoted to ascertain whether the hypothesis holds in p-median problems
through some numerical examples.

ReVelle and Swain (1970) dealt with the method to solve p-median problems
by relaxing the integer constraint to a simple non-negativity requirement. Morris (1978)
also considered an application of linear programming (LP) to fixed charge plant location
problems, which bear some resemblance to p-median problems. He found that ordinary
linear programming typically produces integer solutions to uncapacitated problems.
Rosing, ReVelle, and Vogelaar (1979) considered how to reduce both the computer
space and computational time in the LP formulation of p-median problems. Rosing,
Hillsman, and Vogelaar (1979) compared LP solution with other solving techniques
including some heuristics.

In this paper the exact optimal solution, which is used for checking the
hypothesis, is found by using the LP formulation of ReVelle and Swain (1970). The
integer constraint on the decision variables in this formulation is relaxed to a
nonnegativity constraint, and the presence of integers in the solutions is used as a test of
feasibility.

4. Tests for the Size-Density Hypothesis in p-Median Problems

Equation (8) is one of the theoretical expressions of the size-density hypothesis.
We use it to check whether the hypothesis holds also in p-median problems, by
verifying the relationship between facility size and demand density through a numerical
example.

Here we take up a large p-median problem with 280 demand points
(simultaneously being candidates for facility locations), which represent local
government offices in the Tokyo region of Japan. Let us assume that every node is



weighted by the 1990 population (assumed equivalent to demand) of their jurisdictions
from the census (Figure 1). The area of circles in the figure indicates the population. The
spatial linkages are given by Delaunay network or minimum spanning tree (MST)
generated from the demand points, as shown in Figure 2 and 6, respectively. The reason
why we focus our mind on these two networks is that the former represents the most
similar situation to the Euclidean space in multi-Weber problems and the latter
represents the situation of least similarity, which is farthest from multi-Weberproblems.
The locational configuration would depend on the network. We adopt the two typical
cases. The distances are the inter-jurisdictional distances on the network measured by
using latitude-longitude data for the locations of local government offices.

In the Delaunay network case (Figure 2), we have obtained (relaxed) LP
solutions which fully terminated integer when p=10, 19, 28, 40, 56, and 70. Selected
sites of a 28-median example are listed in Table 1, and illustrated by closed circles in
Figure 3 in which assignments are expressed by minimum path trees. It is readily seen
that higher facility densities take place in the vicinity of higher population densities
(compare with Figure 1). Table 1 also indicates that a facility at higher population
density area tends to have much demand and many demand points assigned.

To ascertain this relation quantitatively, let us define the notion of demand
density on a network. As shown in Figure 4, for the demand point located at nodej,
consider a set N, of nodes to which the shortest path distance from; does not exceed the
given nonnegative covering radius, 7. In that case, the demand density at node j, 4,

should be represented by

S,

h/ - ieNj _ (9)

nr

where H; is the population at node i. If we have dense network in all directions, 4, means
the population density in the circle with radius# on a plane.
With this form of demand density and facility size s;, let us test the following

relation

s =Ch° (10)
J S

at each node j selected as a median, and check if the exponent « be approximately one-
third by ordinary least squares (OLS) method (see Equation (8)). Figure 5 shows the



relationship between demand density and facility size in the 28-median example. The
radius » was set to be 15 kilometers (approximately equal to the radius of average area
per facility). Facility size does not increase so drastically as demand density increases.

The regression result gives us the following relation:

s, =346168 h,"*" (R*=0.761) (11)

The correlation shows a relatively high degree, and the estimated exponent & is found
very close to one-third as expected. It can be said that the size-density hypothesis almost
holds 1n this case.

In the MST case (Figure 6), we again could obtain integer solutions by LP
relaxation when p=10, 19, 28, 40, 56, and 70, and solutions illustrated by closed circles
in Figure 7 (tree shows assignments). The tendency that higher facility density takes
place in the vicinity of higher population density does not seem to change. The radiusr
is set to be 15 kilometers again, and the relationship between demand density and
facility size in the 28-median solution is shown in Figure 8. As we can see, the
relationship is not so good as that in the Delaunay case. The regression result provides

us the following relation:

s, =342030 1 ** (R?=0.646) (12)

The estimated exponent & becomes larger than in the Delaunay case. This is explained
by the MST network being much less than two-dimensional space than the Delaunay
network. This observation means that the difference with the degree of the connection of
the network influences the robustness of the relation even if the same demand
distribution is given.

In Tables 2 and 3, regression results with other numbers of facilities p are
provided. Except for p=10 (in this case, the assumption of uniform demand distribution
would not hold), we can find the fact that the estimated exponent @ is stable to be
around one-third in the Delaunay cases. Also, even in the MST cases, we can confirm
that & is given steadily between 0.4 and 0.5, though the stability in the relation is not
so good. The relationship is robust with regard to the number of facilities. This ensures
that the size-density hypothesis holds true even inp-median problems.

5. Concluding Remarks



We have examined the size-density hypothesis in p-median problems. Seeking
the exact solution obtained by applying LP relaxation to sample problems, it was shown
that the relation that facility size is proportional to demand density raised to the one-
third power also sufficiently holds in large p-median solutions, especially when the
Delaunay network is given. This result may allow us to expect that we can solve largep-
median problems in a relatively simple manner with some certainty for optimality.

This study is a start, by no means an end, to a further research agenda. First, the
numerical example treated in the paper was only for typically ideal networks. It would
be necessary to examine more realistic or non-typical networks. For future research, it
might be necessary to reconsider the definition of demand density on networks. Second,
the development of new heuristics for large p-median problems might be considered,
though the method to seek the solution is not discussed in this paper. By grasping the
distribution of the demand density in a targeted region and dividing intop areas in a way
that each area has the demand scale as proportional to the one-third power, we can have
a good approximation of the p-median solution. Third, we should verify whether the
hypothesis could be proved empirically from actual facility locations (see Suzuki, 1999).
Tests should be applied to various types of facilities, since many kinds of facilities

would have different characteristics. This paper hopefully leads to these researches.
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Figure 1. Population distribution in 1990 in the Tokyo region.
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Table 1. A p-median solution on the Delaunay network in the Tokyo region p=28).

No. Jurisdiction name # of assigned Demand size Population density
nodes r=15
1 Tsuchiura 16 624605 6.23
41 Oyama 17 761817 573
49 Kawagoe 14 1105247 20.78
50 Kumagaya 28 1015496 8.09
52 Urawa 7 1224982 42.76
56 Tokorozawa 12 1251780 39.51
70 Koshigaya 6 732005 28.31
120 Miyashiro 22 953377 14.49
129 Chiba 8 1301222 20.55
131 Funabashi 6 1474072 41.74
132 Kisarazu 4 278256 3.75
141 Kashiwa 13 1024252 23.38
152 Shisui 17 585865 6.25
177 Sumida 8 1396987 112.44
181 Ota 5 1519840 70.32
182 Setagaya 6 1646904 101.31
184 Nakano 5 1800088 114.15
189 Itabashi 4 1558600 116.22
192 Katsushika 5 2139768 94.06
194 Hachioji 16 1154351 31.84
203 Koganei 14 1771868 64.65
227 Yokohama-Kanagawa 7 1334701 59.88
238 Yokohama—Midori 6 1288119 59.82
240 Yokohama—Sakae 8 1599623 50.21
249 Yokosuka 4 571727 16.72
253 Odawara 9 490371 6.94
256 Sagamihara 5 1047205 35.07
267 Samukawa 8 993474 25.11
Total 280 32646602
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Figure 4. Definition of demand density on a network.
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Figure 5. Size-density relationship in the solution on the Delaunay network (p=28).
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Figure 6. Minimum spanning tree (MST) generated by the location of local government
offices.
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Figure 7. A p-median solution on the MST network (p=28).
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Table 2. Regression results of the size-density relationship on the Delaunay network.

s

p 7 (km) C, a R?

10 20 338951 0.642 0.94489
19 15 447609 0.375 0.74489
28 15 346168 0.345 0.76098
40 10 249245 0.329 0.66853
56 10 160859 0.365 0.60495
70 10 138109 0.344 0.52008

Table 3. Regression results of the size-density relationship on the MST network.

D 7 (km) C, é R?

10 20 865514 0.451 0.58461
19 15 380288 0.496 0.75266
28 15 342030 0.421 0.64632
40 10 159401 0.507 0.74844
56 10 134673 0.474 0.71685
70 10 146284 0.380 0.55419
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